
E thermodynamics and cosmology

The thermal history of the Universe combines three aspects: Firstly, the decrease of
temperature of the cosmic photon bath with increasing scale factor, which is mediated
by the recession motion of particles at which scattering processes take place or as a
straightforward transformation effect, secondly, the decrease in the corresponding
energy scale at which particle processes take place such as the formation of light
nuclei in the early Universe and the formation of atoms, and lastly the equilibration
of particle ensembles.

E.1 Temperature evolution and FLRW-dynamics

The subject of this chapter is the relationship between the temperature of cosmologi-
cal fluids, in particular photons, and the geometry of the Universe, i.e. the scale factor
a. In physics it is a common approach that a new phenomenon is traced back to the
most fundamental measurements we can take, time intervals and distances. In this
spirit the effect of fields on charges in electrodynamics is explained by considering
the acceleration of a test charge and general relativity itself is a theory of how the
measurements of time intervals and distances is affected by the presence of gravita-
tional fields. Likewise, temperature as a phenomenon can traced back to mechanical
measurements by means of a Carnot-engine. A Carnot-engine is a cyclic engine which
operates between two heat reservoirs at different temperature and converts heat into
mechanical energy at a fixed efficiency which only depends on the ratio between the
two temperatures. It can be used as a thermometer to determine the temperature of
one reservoir relative to the other by determining the heat flux and the amount of
mechanical work. Mechanical work can be measured purely by measurements of time
intervals and distances, for instance, the mechanical work can be used to accelerate
a test object of a given mass. From this point of view it is perhaps not surprising
that temperatures are affected by changes in the metric, as they influence the basic
measurements of distances and time-intervals.

The Universe is filled with a photon background in which the photons outnumber
baryons by a factor of about 109, implying that the photon temperature governs many
of the particle reactions until they can decouple from the photons under certain
conditions. The photons are in thermal equilibrium and their temperature decreases
while the Universe expands, in face the relationship between photon temperature T
and the scale factor a is T ∝ a. It is very important to realise, however, that photons can
neither equilibrate nor make transitions to a new equilibrium temperature without
interacting with matter: This is a direct consequence of electrodynamics, which is
linear and does not include direct scattering processes between photons. The change
in temperature of the photons is caused in emission and absorption processes or mere
scattering processes with charged particles taking place in an expanding space: Due
to the relative motion between e.g. atoms in which photon emission and absorption
processes one realises a decrease in photon wavelength with the Hubble expansion,
and therefore a decrease in energy due to a general relativistic Doppler-effect. This
mechanical picture can be viewed in a very abstract way: Due to the relative motion
between emitting and absorbing atoms the photon gas undergoes a thermodynamic
change of state and is relaxed, accompanied by a decrease in temperature T ∝ a.

Equilibration takes place in interactions of photons with matter in which the
photon number is not conserved. Photons (and in fact all relativistic ensembles
with massless particles) have the curious property that many properties including
their number in an ensemble at equilibrium is determined by the temperature (and
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the chemical potential). The number of photons changes if the system is brought
to a different temperature by a non-adiabatic process which is at contrast with an
ensemble of atoms, which can at fixed particle number assume any temperature. In
fact, the number of photons can fluctuate as interactions take place where single
photons are absorbed and more than one photon is emitted. This implies that a
grand-canonical description needs to be used for photons, where the particle number
is not fixed and photons may be generated or destroyed.

For this chapter, keep in mind that the density ρ under the Hubble-expansion
with the scale factor a behaves according

ρ ∼ a−3(1+w) (E.234)

with an equation of state parameter w. In particular one gets for radiation with
w = +1/3 the scaling ρ ∝ a−4, which is commonly interpreted as a scaling of volume
which dilutes the number density by a−3 together with an additional redshifting by
another factor of a, as the photons are scaled to longer waverlength by increasing a.

At first, let’s have a look at the ’textbook derivation’ of the temperature evolution
T(a). From statistical mechanics we know that ideal, relativistic gases (photons) have
an adiabatic index of κ = 4/3. Further, the Hubble-expansion is adiabatic (because
there are no heat fluxes that would transport thermal energy away, as heat fluxes
would violate the cosmological principle and because there is no decay of particles
into photons which would effectively constitute a source of thermal energy) and
therefore the thermal energy content is unchanged δQ = 0. Using the adiabatic
invariant

T Vκ−1︸︷︷︸
V

1
3 =(a3)

1
3 =a

= const. (E.235)

we obtain the important result

Ta = const. or T ∼ 1
a
. (E.236)

As second approach, let’s try a (hopefully) more intuitive way: We start with the
thermal energy E = kBT and use the dispersion relation E = cp for relativistic particles
like photons (effectively, this is the point where this derivation becomes compatible
with the previous one: The dispersion relation is equivalent to the relativistic adiabatic
index). Now using the de Broglie-relation p = h

λ
, we end up using λ ∼ a from the

Hubble-expansion at

E = kBT = cp =
ch
λ
∼ 1

a
(E.237)

From both of the above derivations it can be concluded, that as the Universe increases
by a, the temperature drops by 1/a. The temperature T as a function of comoving
distance (or equivalently, conformal lookback time), is shown in Fig. 6, for different
cosmological models.

E.2 Cosmic microwave background

The Universe is filled with a thermal ensemble of photons, whose temperature drops
as the Universe expands. Depending on the physical picture one adopts, there are

48

https://en.wikipedia.org/wiki/Cosmic_microwave_background


e.2. cosmic microwave background
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Figure 6: Temperature T as a function of comoving distance χ, for 3 different ΛCDM
cosmologies

different views on the dependence of temperature with redshift: Clearly, the wave-
length of each photon is redshifted with the Hubble-expansion and the photons are
measured to have longer wavelengths at later times, and the ratio between observed
wavelength to inital wavelength is proportional to 1/(1 + z) or, equivalently, to the
scale factor a. In order to link this change in wavelength to temperature, one can in-
voke three principes: Firstly, the momentum p of a photon in inversely proportional to
wavelength λ, p = h/λ, with the Planck-constant h as the constant of proportionality,
and secondly, the dispersion relation of photons is that of ultrarelativistic particles,
E = cp. If one then assign the thermal energy E = kBT to an ensemble of photons
in order to relate their typical energy to temperature, one obtains kBT = ch/λ. As
the wavelength λ is proportional to the scale factor, T must scale proportional to
1/a. Using the photon dispersion relation c = λν which relates wavelength λ and
frequency ν implies the inverse scaling of frequency, ν ∝ a−1 and therefore ν ∝ T.

The same result can be obtained in a very different physical picture: Consider-
ing the photon fluid as a thermodynamic substance and the Hubble-expansion as a
(reversible) change in volume by a factor a3, one would derive the change in tempera-
ture with the adiabatic relation. Adiabatic changes in state are characterised by the
absence of a heat flux, and clearly such a heat flux would violate the FLRW-symmetry
assumptions. For an adiabatic change in state the quantity TVκ−1 is constant, with
the volume V, the temperature T and the adiabatic index κ of the substance. Photons
as ultrarelativisitic particles have κ = 4/3, implying the relation T ∝ a−1 with V ∝ a3.

There is a nice consistency between both pictures: If the Universe was filled with
thermal non-relativistic particles, their adiabatic index of κ = 5/3 would imply a
dependence T ∝ a−2, which could likewise be derived by using a quadratic dispersion
relation E = p2/(2m): Together with the definition of thermal energy E = kBT and
the de Brogie-relation p = h/λ this suggests T ∝ a−2 as well. One should be careful in
generalising this result to other substances: The adiabatic index of κ = 5/3 applies to
non-relativistic particles with 3 translational degrees of freedom. If the Universe was
filled with a diatomic gas it would be wrong to derive a scaling T ∝ a−6/5 given its
adiabatic index of κ = 7/5 on the basis of the three translational and two rotational
degrees of freedom. Because only the translational degrees of freedom are affected
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(and the corresponding components of momentum redshifted), the gas would also
cool down ∝ a−2.

It should be kept in mind that a photon gas always needs interactions with
particles such as atoms to reach thermal equilibrium, because electrodynamics as
a linear theory has perfect superposition and no scattering between the photons
themselves (at least at the energies we are concerned with). Therefore, the increase in
volume due to the Hubble expansion needs to be thought of as the increase in distance
and the corresponding cosmological redshifting between emission and absorption of
a photon at two locations: The photons are coupled to the Hubble expansion through
scattering processes on advected particles.

The temperature of the photon background is sufficiently low at a scale factor of
a ≃ 10−3 to allow the formation of atoms from free nuclei and electrons. As the Uni-
verse becomes neutral scattering processes between photons and free electrons cease,
the Universe becomes transparent to light and photons can propagate freely along
straight lines: This corresponds to the release of the cosmic microwave background.
Although, due to the FLRW-symmetries, the formation of atoms takes place at the
same instant everywhere simultaneously, we perceive this process at a fixed distance
isotropically around us: The spherical surface, from which the photons of the cosmic
microwave background seem to emanate is called the surface of last scattering, or,
the photosphere of the cosmic microwave background.

An estimate of the formation temperature of hydrogen atoms from the ionisation
energy would correspond to about 104 Kelvin and not to the 3 × 103 Kelvin one finds
in cosmology: In fact, the formation of atoms and therefore the release of the cosmic
microwave background is delayed. The decoupling of the photons would be a very
slow process, in which the rate of formation of atoms and their destrucion by photons
with sufficient energy would slowly tilt towards the first process as the temperature
decreases. Instead, there is a forbidden, two-photon transition from the 2s-state to
the ground state, which allows the generation of a photon population at a lower
temperature along with a population of neutral atoms as they can not be reionised
due to a deficit in photon energy.

The incredibly accurate data taken by the FIRAS-instrument onboard the COBE-
satellite shows clearly that the CMB is described by a Planck-spectrum with proper
Bose-Einstein statistics and not by an analogously constructed Wien-spectrum with
Boltzmann-statistics, as illustrated by Fig. 7.

E.3 Into and out of equilibrium

Thermal equilibrium is maintained by collisions between particles, which implies a
competition between two time-scales: The collision time scale tc, at which particles ex-
change energy and momentum, and the Hubble-time scale, on which the temperature
changes due to the expansion of the Universe: If tc ≪ tH, collisions between particles
are frequent and thermal equilibrium can be maintained, but if tc ≫ tH, the system
can drop out of thermal equilibrium. This happens necessarily at some point in the
history of the Universe, because one can estimate tH to be tH = 1/H(a) ∝ a2 during
radiation domination, whereas the collision rate Γ = n⟨συ⟩ with the number density
n, the cross-section σ and the particle velocity υ implies a scaling of tc = Γ −1 ∝ a3 due
to the inverse proportionality to the particle number density. Therefore, tc/tH ∝ a
and thermal equilibrium can be maintained at early times, and can break down at
late times.

Specifically, the time-evolution of the number density of particles follows a conti-
nuity equation,
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Figure 7: Spectrum of the cosmic microwave background as recorded by the FIRAS in-
strument onboard the COBE-satellite, with the best fitting Planck- and Wien-spectra in
comparison

ṅ + div(nυ) = 0 (E.238)

which reduces to ṅ + 3Hn = 0 by substituting the Hubble-flow υ = Hr, by assuming
homogeneity of the particle density and by using that divr = 3. Then, the number
density of particles has the solution d ln n/dt = −3H, which is solved by n(t) ∝
exp(−3Ht) if H is constant, otherwise by n(t) ∝ exp(−3

∫
dtH). Relating this to the

scale factor one can substitute the definition of the Hubble function, H = ȧ/a, yielding
d ln n/dt = −3d ln a/dt with the solution n ∝ a−3, as expected: The substitution of the
Hubble-law υ = Hr conserves homogeneity perfectly, and is in fact the only law that
would allow this. As a proof, please remember that in an isotropic case one could
substitute a generalised Hubble law υ ∝ rα into the continuity equation, where the
divergence is explicitly formulated in spherical coordinates,

∂iυ
i =

1
r2

∂
∂r

(r2+α) =
2 + α
r2 r1+α = H(2 + α)rα−1, (E.239)

which does not depend on r if α = 1, implying that n can only change with time.

The time-evolution is modified if there are collisions present and if particles can
be created in reactions,

ṅ + 3Hn = −Q + S = −Γ n
(
1 −

n2
T

n2

)
(E.240)

with the collision rate Q = ⟨συ⟩n2 and the particle creation rate S for which we make
the ansatz S = ⟨συ⟩n2

T. Because both processes involve the collisions between particle
pairs, the pair number density is relevant which is well approximated by the squared
particle density. The particle density n should decrease if particles thermalise through
collisions, which takes place at the rate Γ , and particles are created at the rate Γ from
a thermal background, necessitating the proportionality to the density of thermal
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e. thermodynamics and cosmology

particles nT. The number density of thermal particles nT can be predicted from a
dispersion relation and the suitable statistics.

Introducing the comoving number density N = na3 with the derivative Ṅ =
a3(ṅ + 3Hn) yields

Ṅ = −ΓN
(
1 −

N2
T

N2

)
(E.241)

which can be rewritten by replacing the time variable t with the scale factor a,

d ln N
d ln a

= − Γ
H

(
1 −

N2
T

N2

)
(E.242)

by writing Ṅ = aHdN/da. In this relation, the competition of time scales is clearly
expressed by the prefactor Γ /H, which is large if tc ≪ tH and collisions dominate,
and conversely small if tc ≪ tH, in which case the Hubble expansion dominates. This
prefactor changes the rate at which n can change if N , NT, and can effectively keep
N constant even if N , NT in the limit Γ ≪ H, for a dominating Hubble-expansion.

If a system is away from thermal equilibrium, the number N is larger than NT,
implying a positive bracket in the last equation, which causes N to decrease in time,
meaning that the system is driven towards thermal equilibrium, which is reached
at N = NT where the evolution of N stops. If conversely, NT is larger than N, the
sign switches and N can increase and the system can freeze out, if the prefactor Γ /H
allows it.

E.4 Photon background as a thermodynamical ensemble

The properties of a cosmological radiation background can be understood from the
properties of a quantum system at thermal equilibrium. Distributing the particles in
phase space needs to respect the Friedmann-symmetries, so one assumes homogeneity
in configuration space and isotropy in momentum space for any cosmological observer,
while one is free to choose the distribution in momentum space as a function of energy
and the dispersion relation E(p) of the particles. Specifically, for photons one has as
the ultrarelativitic dispersion relation E(p) = cp with the momentum p = h/λ, and
the phase space density n(p, T) = 1/(exp(cp/(kBT)) − 1) for bosons.

An ideal gas of photons has the interesting property that its chemical potential
µ vanishes and the corresponding fugacity exp(µ/(kBT)) is equal to one: This is
related to the fact that the photon number is not constrained, due to emission and
absorption processes, which cause the number of photons in the system to fluctuate.
In equilibrium the Helmholtz free energy F = F(T, V, N) is at a minimum, as it
describes the energy of a system in thermal equilibrium at a given temperature T,
volume V and particle number N. Because F follows by a Legendre transform from
the internal energy U, F = U − TS replacing the entropy S by the temperature T one
obtains for the differential dF = −SdT − PdV + µdN. The minimum condition implies
that ∂F/∂N = µ = 0, meaning that the chemical potential for a system at constant
temperature and volume vanishes, µ = 0, in thermal equilibrium.

Radiation pressure and entropy of the thermal photon gas result from differ-
entiation of the grand canonical potential J(T, V, n), which describes a system at
equilibrium at fixed temperature, constant chemical potential and not performing
mechanical work. Specifically, the grand canonical potential J(T, V, µ) is defined as
J = U − TS − µN and by substituting the Euler-relation U = TS − PV + µN it is
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e.4. photon background as a thermodynamical ensemble

readily shown to be J = −PV. The grand canonical potential has the differential
dJ = −SdT − PdV − Ndµ, which can be shown by substituting the Euler relation
dU = TdS − PdV + µdN. It follows from the grand canonical partition sum Z by
taking the logarithm,

J = −kBT ln Z. (E.243)

The grand canonical partition sum Z is defined as

ln Z =
g

(2πℏ)3

∫
d3x

∫
d3p ln

(
1 − exp

(
−

cp

kBT

))
(E.244)

if the dispersion relation for ultrarelativistic particles E(p) = cp is substituted for the
energy and if their statistical weight is g, meaning that a single state can be occupied
by g particles: Photons have spin 1, and being ultrarelativistic, there can only be two
particles per state, g = 2. The expression for the grand canonical partition sum Z can
be written in a closed form by integration by parts,

ln Z = −
gV

(2πℏ)3

∫
dp 4πp2 ln

(
1 − exp

(
−

cp

kBT

))
=

gV
(2πℏ)3

∫
dp

4πc
3kBT

p3 1

exp
(

cp
kBT

)
− 1

(E.245)

while identifying the configuration space volume V =
∫

d3x and assuming isotropy in
momentum space, and abbreviating β = 1/(kBT). The integration can be carried out
by substituting x = βcp and using the relation

∫
dx xn/(exp(x) − 1) = ζ(n + 1)Γ (n + 1),

ln Z =
gV

(2πℏ)3
4π
3

(
kBT
c

)3

ζ(4)Γ (4). (E.246)

The difference between the distribution functions for Bose-Einstein, Fermi-Dirac
and Boltzmann statistics are shown in Fig. 8.

Already from the expression for Z it is apparent that the temperature must
scale ∝ a−1. An adiabatic change of state implies that the system moves to a new
temperature while the relative probabilites are unchanged: While the configuration
space scales ∝ a3 and the momentum space ∝ a−3 due to the scaling of the photon
momentum p = h/λ ∝ a−1, it is necessary for the temperature to scale ∝ a−1 in
order for the partition sum to remain invariant. It is quite interesting to note that
the rescaling of temperature is sufficient for particles obeying different dispersion
relations, as long as this dispersion, i.e. the relation between energy and momentum
is scale free. Any deviation from a power law would have the consequence that a
rescaling affects high and low-energy particles differently, breaking the overall shape
invariance under rescaling by a. In this way it is possible to derive simple scaling
behaviours for ultrarelativistic particles with E = cp or for classical particles with
E = p2/(2m).

A very interesting illustration of the shape-invariance of the Planck-spectrum
is Wien’s displacement law: The shape of the spectrum itself defines a frequency
scale, which needs to scale necessarily ∝ 1/a in order not to violate the dispersion
relation. This is in fact realised in any definition of such a scale in the spectrum,
for instance through the location of the maximum. dS(ν)/dν = 0 yields a frequency
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Figure 8: Bose-Einstein, Fermi-Dirac and Boltzmann-distribution functions

νmax = proportional to the temperature and hence proportional to 1/a. Alternatively,
one could consider the mean photon frequency ν̄ =

∫
dνn(ν), or the median frequency,

which are all proportional to the temperature and hence inversely proportional to the
scale factor a.

In the following we will derive the most important thermodynamical properties of
a photon gas by an intuitive argument using a weighted integral over the occupation
statistic and by a thorough derivation using the grand canonical partition sum:
Starting with the internal energy one would use the phase space distribution n(p, T)
and the ultrarelativistic dispersion relation E = cp to collect the energy across the
entire momentum space by carrying out the dp-integration, while the configuration
space integration simply yields the volume of the system V:

U =
gV

(2πℏ)3

∫
4πp2dp E(p)

1

exp
( E(p)
kBT

)
− 1

(E.247)

where again isotropy in momentum space was assumed, d3p = 4πp2dp. The integral
can be rewritten by integration by parts,∫

4πp2dp ln
(
1 − exp

(
cp

kBT

))
=

∫
4π

p3

3
dp

1

exp
(

cp
kBT

)
− 1

(E.248)

implying that ln Z = U/3 and pV = ln Z, i.e. the relation p = U/(3V) between
pressure and internal energy as well as J = U/3. The total energy density of the
radiation background is an expression of the Stefan-Boltzmann law. The total energy
density can be evaluated to be equal to σSBT4 with the Stefan-Boltzmann-constant
σSB: This is in complete agreement with the fact that the number density

∫
dν n(ν) is

diluted ∝ a−3 and each photon’s energy is redshifted by an additional factor of a−1,
resulting in a decrease of the energy density ∝ a−4, or equivalently, a proportionality
of the energy density with T4, as derived before.

The factor 1/3 in the relation between pressure and energy density follows from
the same integral. The transfer of momentum onto a surface would be 2p cos θ under
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reflection and the flux of photons would be c cos θ. Therefore, assuming again isotropy
of the photon momenta one would collect the total momentum transfer

P =
g

(2πℏ)3

∫
d3p 2cp cos2 θ n(p, T) =

U
3V

(E.249)

by using spherical coordinates d3p = 2πp2dp sin θdθdφ, where the azimuthal inte-
gration yields 2π and the polar one 1/3, for the range of angles 0 ≤ θ ≤ π/2.

For evaluating the integrals which were needed for computing thermodynamical
quantities one can use the following trick and rewrite the phase-space distribution
function n(p, t) as a geometric series starting at m = 1. In general, one has

∞∑
m=0

qm =
1

1 − q
→ q

∞∑
m=0

qm =
∞∑

m=1

qm =
q

1 − q
=

1
1
q − 1

, (E.250)

and therefore
1

exp(x) − 1
=
∞∑

m=1

exp(−mx). (E.251)

Substituting into the expressions obtained above yields∫
dx

xn−1

exp(x) − 1
=

∫
dx xn−1

∞∑
m=1

exp(−mx). (E.252)

The integral can be solved by substitution y = mx, dy = mdx,∫
dx xn−1

∞∑
m=1

exp(−mx) =
∞∑

m=1

mn
∫

dy yn−1 exp(−y) = ζ(n)Γ (n), (E.253)

where one can identify Riemann’s ζ-function and the Γ -function in the last step.
The entropy can be determined by differentiation of the grand canonical potential

with respect to temperature, dJ = −SdT − pdV + µdN, and consequently

S = − ∂J
∂T

=
∂
∂T

(kBT ln Z) = k

(
ln Z +

1
z

∂Z
∂(kBT)

)
(E.254)

or, equivalently by using U = TS − pV = TS − J (if µ = 0), such that S = (U + J)/T =
4U/(3T). Therefore, the total entropy S is conserved because VT3 = const from
these considerations, in accordance with the entropy being constant for an adiabatic
reversible change of state. The entropy density S/V scales ∝ T3 and therefore ∝ a−3.
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The total number N of particles can be derived through an integral over the phase
space density,

N =
gV

(2πℏ)3

∫
4πp2dp

1

exp
(

cp
kBT

)
− 1

(E.255)

or equivalently, by differentiation of the grand canonical potential with respect to µ,

N = − ∂J
∂µ

= −kBT
∂
∂µ

ln Z (E.256)

For this purpose one needs to include a chemical potential in the definition of ln Z,

ln Z =
gV

(2πℏ)3

∫
4πp2dp ln

(
1 − exp

(
−
cp + µ
kBT

))
(E.257)

which is set to zero after differentiating, yielding exactly the intuitive result. Evaluat-
ing the integrals shows the scaling of particle number density N/V ∝ a−3 due to the
proportionality to T3 and the conservation of the total number of particles N.

It suffices to replace the phase space density n(p, T) by n(p, T) = 1/(exp(cp/(kBT))+
1) for the description of (massless) neutrinos: In complete analogy one obtains expres-
sions for the particle number density n = N/V, the entropy density s = S/V and the
energy density u = U/V with identical scaling behaviours with temperature, but with
different numerical prefactors due to the changed sign in the phase space density.

There is a very interesting catch in the physical properties of the Universe’s photon
and neutrino backgrounds: Their temperature is not equal. Due to the annihilation
of electron-positron pairs into photons there has been a source of thermal energy in
the photon background, lifting it’s temperature to 2.736 Kelvin, in comparison to the
neutrino background which is at equilibrium at a temperature of 1.95 Kelvins. As
there is essentially no coupling between photons and neutrinos, the two would never
really equilibrate.

E.5 Quantum-statistics and classical statistics

The Universe is filled with particles at thermal equilibrium, whose thermodynamic
properties can be derived using quantum statistics, i.e. Bose-Einstein-statistics for
particles with integer spin such as photons and Fermi-Dirac-statistics for particles
with half-integer spin, for instance neutrinos. The quantum mechanical description is
necessary in particular at low energies, and this energy is characterised by the thermal
wavelength λth. If the particle separation is smaller than the thermal wavelength,
quantum mechanical interference becomes important and the behaviour deviates
from that of a classical system: In contrast to classical statistics, quantum mechanical
particles show constructive interference in the case of bosons, if two particles are
interchanged, and destructive interference in the case of fermions. This impacts on
the occupation statistics, because there can be arbitrarily many bosons in a single
state due to constructive interference whereas there can only be a single fermion due
to destructive interference. There is no such restriction for classical particles as they
are distinguishable: In their time evolution it is always possible to track them through
phase space, and a state with interchanged particles is clearly different.

The thermal wavelength corresponds to the de-Broglie wavelength λ = ch/E of a
photon with kBT of thermal energy, λth = ch/(kBT). It scales ∝ a with the scale factor,
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Figure 9: Planck- and Wien-spectra at different equilibrium temperatures

likewise the typical distance between particles of a given energy. Therefore, the pho-
ton gas is always characterised by the same Planck-distribution irrespective of scale
factor, because for the same fraction of photons quantum mechanical interference
is important, and the Hubble expansion will not affect the shape of the statistical
distribution. The same argument holds for non-relativistic particles with a quadratic
dispersion relation: E = p2/(2m), in which case the thermal wavelength would result
in λth = h/

√
2mkBT, which scales ∝ a in consistence with the scaling T ∝ a−2.

Planck- and Wien-spectra for different temperatures are compared to each other
in Fig. 9, clearly showing an overabundance of photons at low energies in the correct
quantum mechanical formulation relative to the classical prediction. In addition,
the maxima show a clear linear trend to increase with increasing temperature as a
manifestation of the Wien-displacement law.

E.6 Radiation backgrounds

Although the picture that the Universe is filled with photons, whose equilibrium
temperature drops as the Universe expands is quite correct, it is worth pointing out
two things: The change in wavelength or temperature is caused purely by the change
in the metric, or if one adopts physical coordinates, by the a general relativistic
Doppler-effect due to recession motion of the emitter. Because both the observer and
the emitter in cosmology are following their world-lines in freely falling motion, one
can be sure that locally for both the laws of special relativity are valid due to the
equivalence principle. Because of the fact that in each frame all physical processes are
determined by the laws of special relativity only, the redshifting effect on a photon
can be unambiguously determined: In this respect, the interpretation would be that
in the distant Universe atomic physics is exactly the same as it is here, and that we can
measure a change in photon wavelength because we know the emission process under
which a photon has been generated, for instance a certain atomic transition leading
to a spectral line, and attribute the change in photon wavelength to the change in the
metric between emission and absorption of a photon.

The Universe is filled with a homogeneous and isotropic radiation field in accor-
dance with the symmetry assumption of the FLRW-metric. We perceive this photon
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background today as a blackbody radiation with an equilibrium temperature of
TCMB = 2.725 Kelvin. Looking along the backwards light cone towards earlier times,
we perceive this temperature to be higher by a factor of 1/a (a is smaller than one
in the past, implying a higher temperature) and there are physical processes, for
instance emission and absorption processes with atoms, that take place at the corre-
sponding temperature: The FLRW-symmetry assumptions make sure that at every
time the photon background has the same temperature everywhere, but moving along
the backward light cone of an observer one can see processes that are governed by
temperature to set in at a certain redshift or, equivalently, distance relative to us.

For instance, atoms are formed in the Universe at a temperature of about 3000
Kelvin, and this formation of atoms takes place everywhere at the same age of the
Universe, typically 1012 seconds after the Big Bang. For an observer today, this
temperature is reached going back by about 1000 units in redshift, or to a scale
factor of a = 10−3, in order for the Universe to reach this temperature relative to
the temperature of the background today. Again due to the FLRW-symmetries, the
temperature is reached on the surface of a sphere with a distance of about 3χH
centered on us, on which we can observe radiation from the formation of atoms. The
notion that we are surrounded by a photosphere of the cosmic microwave background
does not imply that our position as observers is special: In fact any other observer at a
different position would see an identical photosphere in perfect spherical symmetry
around them with the same radius today.

The effect of different cosmological models or choices of cosmological parameters
on the evolution of the background temperature is only relevant if a physical distance
or time is assigned to a scale factor, because for this assignment the Hubble function is
needed, which includes all density parameters and equations of state. The comoving
distance along the backward light cone to the CMB photosphere can be computed as
an integral

χCMB = c

aCMB∫
1

da
a2H(a)

(E.258)

with aCMB = 10−3.
In some calculations is is practical to use the temperature as a time-variable, which

is possible due to the monotonic relationship between scale factor and temperature:
T/TCMB = 1/a implies dT/da = −TCMB/a

2. For instance, one might estimate the
thickness of the photosphere intuitively for a certain value of ∆T, inside which the
temperature drops enough for atoms to form:

∆χ ≃
∣∣∣∣∣dχdt

∣∣∣∣∣∆T =
∣∣∣∣∣dχda

da
T

∣∣∣∣∣∆T =
c

H(a)
∆T

TCMB
. (E.259)

If one very coarsely assumes in the next step that ∆T ≃ 0.1Tcomb, one obtains
∆χ ≃ 10−2.5χH with Tcomb = 3000 Kelvin.

E.7 Particle cosmology

Extrapolating the dependence of temperature with the knowledge of the fact that
the scale factor was much smaller in the past implies that the temperature in the
early Universe was very high. There are two observations which support this idea,
specifically, there is the cosmic microwave background on one side and the relative
abundances of light chemical elements including their isotopes which are formed
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in the early Universe in a process called nucleosynthesis. Nucleosynthesis models
constrain, in addition to nuclear reactions and the time passed between the initial
and final temperatures, as well the relative abundances of neutrons and protons as
its initial condition, with implications for baryongenesis at an even earlier stage.

E.7.1 Baryogenesis

In the course of the evolution of the early Universe, the temperature cools down
sufficiently to allow the formation of baryons from quarks and gluons, i.e. there
is a phase transition from the quark gluon-plasma to baryons such as protons and
neutrons. At this point one can (and should) also ask the valid question, why there
is more matter than antimatter in our Universe, for instance more protons than
antiprotons, for which Sacharow has given three criteria:

1. The baryon number B has to be violated, e.g. by the asymmetric decay of a
hypothetical X-particle precursing quarks and leptons,

X→ 2u 51% vs. → d̄ + e+ 49% ∆B = 0.177 (E.260)

in comparison to the decay of the anti-particle X̄,

X̄→ 2ū 49% vs. → d + e− 51% ∆B = −0.157 (E.261)

∆B is the baryon number weighted with the branching ratio.

2. CP- and P-symmetry have to be broken

3. The system has to be in thermal non-equilibrium

If all these criteria are fulfilled, baryons can outnumber anti-baryons. This is described
e.g. as part of a grand unified theory of particle physics, it should be mentioned that
all these theories are very uncertain.

E.7.2 Big bang nucleosynthesis

At a temperature scale of ∼ 1014 Kelvin the Universe experiences a phase transition
at which protons and neutrons are formed from a plasma composed of quarks and
gluons according to the rules of quantum chromodynamics, a quantum field theory
that describes the interactions of these particles. Due to a slight mass difference
between protons and neutrons (the neutron being more massive by about xxx Gev)
one finds a slightly larger number of protons in the equilibrium of the β-process

n↔ p + e− + ν̄e (E.262)

After the formation of protons and neutrons the Universe continues to expand and
to lower its temperature until temperatures are reached which allow the formation of
light nuclei. Because neutrons are unstable with a lifetime of about 900 seconds, they
partially decay until the formation of light nuclei starts at much lower temperatures.
The neutron decay changes the abundance of protons significantly.

From the relation T ∼ 1
a we can draw conclusions about the thermal history

of our Universe as a was much smaller in history. For example at a ∼ 10−10 the
corresponding temperature was T ∼ 1010K and therefore ϵth ∼ MeV, which allows
nucleosynthesis in the early Universe shortly after the big bang. At a ∼ 10−3 the
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temperature was T ∼ 103K or ϵth ∼ eV, which allows the formation of the first atoms.
In the next chapters we will have a closer look at both mentioned periods.

For our initial conditions (at ϵth ∼ GeV), the process

p + e− ⇌ n + νe (E.263)

is allowed in both direction whereas after the freeze-out (T drops to ϵth ∼ MeV) the
process only happens from right to left (as known from ’normal’ neutron decay with
an ν̄e). As the life-time of neutrons is ∼ 15 min, the rate n

p drops from n
p = 1 to n

p ∼
1
7

before the fusion to deuterium D (at T ∼ 2MeV)

p + n ⇌ D + γ (E.264)

sets in. The backwards process from right to left results from high energetic photons,
which cause the dissociation of the deterium again, therefore fusion only sets in at
ϵth ∼ 100keV energies.

A crucial point for creating heavier element is the ’deuterium-bottleneck’, as there
has to be a decent amount of deuterium while still having left over neutrons. At
this point the next question to ask is: How much time was there for production of
deuterium in the right temperature-window? The answer is: Not much, from abun-
dance measurements (hyperfine structure) we know of nD

np
∼ 3.5 · 10−5, this limitation

only leads to a creation of very light elements in the big-bang nucleosynthesis up to
A ∼ 5...7.

Back at the big bang nucleosynthesis, one could compare the photon background
to the neutrino background from the produced νe’s. For the derivation of the neutrino
background one has to consider that neutrinos are fermions and therefore has to
exchange the Bose- to a Fermi-Dirac-distribution and ends up at a pretty similar
result (Remember that the Fermi-Dirac-distribution can be written as a difference of
two Bose-distributions at different temperatures) which we don’t discuss here. Just
prior to nucleosynthesis, photons are produced by annihilation

e+ + e− → 2γ (E.265)

with temperature (T ∼ 1010.5K) is set by the electron rest-mass. With the knowledge
that the entropy of fermions Sfermion = 7

8 Sboson, S ∼ T3 and the assumption that the
entropy is conserved, one receives for the above process (E.265)

Sγ = S′γ + S′e+ + S′e− (E.266)

and with the entropy relations put in(
2

7
8

+ 1
)

T′3 = T3 (E.267)

one ends up at T = 1.4T′ which implies that Tγ = 2K for the today’s neutrino
background. We further can now have a look at the baryon to photon ration

nb =
ρb

mp
=

1
mp

Ωb
3H2

0
8πG︸︷︷︸
=ρcrit

(E.268)
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Ωb can be measured by X-ray observation of galaxy clusters and making use of the
virial theorem. One obtains from these measurements nb ≈ 1.1 · 10−5Ωbh

2cm−3 and
Ωb ≈ 0.04 or 10 atoms per cubic meter in the Universe today. Therefore the baryon to
photon ratio is

η =
nb
nγ
≈ 2.7 · 10−8Ωbh

2 ≈ 10−9 (E.269)

nγ in above’s equation is received from the CMB-temperature and the usage of ther-
mal equilibrium. With this result of approximate 109 more photons than atoms one
can also imagine the first light elements being destroyed again by photodissociation.
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