
D observations of flrw-dynamics

In this chapter we should have a look at possible observations in FLRW-Universes in
which the expansion velocity is proportional to the distance (υ = H(t)r), specifically
how the Hubble-Lemaı̂tre constant H0 can be determined, and how the dynamic
evolution of the Hubble-function due to the gravitational interaction can be observed.

D.1 Hubble-Lemaı̂tre constant H0

The Hubble-Lemaı̂tre constant H0 can be determined in observations of Cepheid
variable stars: Those stars have (i) a known relation between their pulsation period
and their intrinsic brightness, and (ii) are bright enough to be seen in distant galax-
ies. Combining the estimate of the intrinsic brightness with the observed apparent
brightness one can estimate the distance, which scales with H0, or equivalently, h.
Similar methods based on luminosity estimates of galaxies with the Tully-Fisher or
Faber-Jackson relation are superseeded in their accuracy by Cepheids.

D.2 Spatial curvature ΩK

By using the angular diameter distance of an object with known physical size, we
can determine whether there is curvature in our universe, as this would influence
the observed angular diameter. From observations of CMB-fluctuations or baryon
acoustic oscillation features in the distribution of galaxies, for which very precise
models exist and whose comoving distance is known, one can predict their angular
size and compare to the measured angular size. Measurements point towards very
small values for curvature, Ωk < 0.01.

D.3 Supernova measurements and acceleration q

By comparing the apparent luminosity with a prediction of the intrinsic luminosity
(supernovae of type Ia are very suitable for this purpose, as the released energy is
almost constant) and a measurement of redshift one can determine the evolution of
luminosity distance dL with redshift z or scale factor a = 1/(1 + z):

dL = ca

1∫
a

da
a2H(a)

(D.231)

for a spatially flat FLRW-cosmology. For a standard form of the Hubble-function

H = H0a
− 3(1+w)

2 (D.232)

the above integral becomes divergent at the lower boundary if w < −1
3 , correspond-

ing to acceleration, and a supernova appears systematically darker. Typically, one
would determine in for a model with two FLRW-fluids the matter density Ωm and
the equation of state w of the remaining dark energy fluid with density 1 − Ωm,
assuming a critical universe. The fact that supernovae appear systematically darker
in accelerating universes is illustrated in Fig. 4, where models for the luminosity
distance (and therefore, the distance modulus) for different Ωm are compared to data.
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Figure 4: Supernova data and three different theoretical models for the distance modulus

acceleration and the cosmological constant. The actual fit is shown in Fig. 5.

D.4 (Finite) age of the Universe t0
The age of very old objects, for instance white dwarfs, one can put an lower bound on
the age of the Universe,

t0 =

1∫
0

da
aH

(D.233)

which requires a period of decelerated expansion in the past to remain finite. Clearly,
the magnitude of the integral is set by the inverse Hubble-Lemaı̂tre constant 1/H0.
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The supernova data can be used to carry out a fit for Ωm in a ΛCDM-cosmology,
arriving at a value of Ωm = 0.2785 ± 0.013, providing support for the existence of
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Figure 5: Supernova data and the best fitting ΛCDM-model
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