
C flrw-cosmologies

C.1 Dynamics of spacetime

Over hundert years ago, E. Hubble did research on spectral lines of distant galaxies.
He discovered that the spectral lines are shifted towards longer wave lengths, which
he interpreted as a Doppler shift caused by the motion of galaxies away from us as
observers. This recession motion increases proportionally to distance:

υ = H0r (C.156)

with the Hubble-Lemaı̂tre constant H0 = 105h m/s/Mpc, and the Hubble-parameter
h = 0.68 . . . 0.72, depending on the measurement method. For a galaxy 10 Mpc away
from the Milky Way, the recession velocity would be β = υ/c ≃ 0.003, which is easily
measurable through spectroscopy. While the interpretation of a recession motion is
absolutely valid in Newtonian cosmology, general relativity brings in a new concept,
namely that the laws of Nature, in particular gravity, are fully covariant, i.e. that
coordinate choice does not matter, and that different coordinate choices require
different physical interpretations.

If one adopts physical coordinates, consisting of a static coordinate grid, through
which the galaxies move isotropically as the Universe expands, one obtains for the
relation between velocity and distance

υ(r, t) = H(t)r (C.157)

which can only depend on time in fulfilment of the cosmological principle: Including
any nonlinear dependence of r causes a violation of homogeneity: Starting from the
continuity equation for the matter density ρ

ρ̇ + ∂i ȷ
i = 0 (C.158)

with the momentum density ȷi = ρυi . If the velocity fulfils the Hubble-law υi = H0r
i

it would imply for the divergence

∂i ȷ
i isotropy

=
1
r2∂r (r

2ρυr ) =
ρH
r2 ∂r (r

3) = 3Hρ (C.159)

if one in addition assumes isotropy such that the velocity has only a radial dependence
and using spherical coordinates to formulate the divergence. If ρ does not depend
on r, as used in the last step, its time evolution will make sure that it will stay
homogeneous. The situation would be fundamentally different if for instance υ = rα,
with α , 1. Then,

∂i ȷ
i =

1
r2∂r (r

2ρυr ) =
ρH
r2 ∂r (r

2+α) = (2 + α)Hρrα−1 (C.160)

such that the time evolution of ρ depends on r, and the continuity equation can not
uphold homogeneity, in violation of the cosmological principle.

In comoving coordinates the picture is different: The coordinate grid expands
along with the flow of matter, and all particles stay at their comoving coordinate. We
therefore differentiate between comoving coordinates xi and physical coordinates
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c. flrw-cosmologies

r i = a(t)xi , which are related through the scale factor a(t), which itself is only a
function of time t. The coordinate change of the physical coordinate with time is
given by

dr i

dt
= υi = ȧxi + aẋi = H(t)r i + aυipec (C.161)

with two possible contributions of the spectroscopically measured velocity υi : The
cosmological part due to a nonzero H(t) = ȧ/a and a peculiar motion υipec relative to
the (comoving) coordinate grid: When considering truly fundamental observers and
test particles, the peculiar velocity would be zero.

The FLRW-metric of a flat space is usually given in terms of the line element
ds2 = gµνdxµdxν, which reads in comoving coordinates

ds2 = c2dt2 − a2(t)γijdx
idxj = c2dt2 − a2(t)

(
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
(C.162)

so that the spatial part of the metric (here written down in Cartesian and in spherical
coordinates) is scaled by the scale factor a(t)2. The choice of comoving coordinates
is uniquely suited to the symmetries of a FLRW-spacetime: Neither does the metric
depend on position, nor does it single out any particular direction.

This form of the line element, however, is not the most general possible compatible
with the cosmological principle: The spatial part of the spacetime can have a constant
curvature such that the scaling of surfaces of spheres with their radii differs from the
Euclidean prediction. Introducing a curvature parameter k we can write

ds2 = c2dt2 − a2(t)
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdϕ2
)

(C.163)

There is a peculiarity of the FLRW-spacetime that concerns the passage of time:
While it is perfectly normal that time passes at a different rate at different locations
in a gravitational potential, this is not the case in FLRW-cosmologies. In fact, the line
element ds is perceived as the elapsed proper time dτ by an observer,

c2dτ2 = ds2 (C.164)

such that according to homogeneity, dτ = dt for the FLRW-spacetime: Every observer
sees the same passage of time and the coordinate time t is equal to proper time τ.
This has profound consequences, as it enables a universal definition of the age of the
Universe, which necessarily needs to be equal for every observer.

C.2 Light propagation on a FLRW-spacetime and redshift

As the coordinate choice is arbitrary rates of change of coordinates should not be
assigned any physical meaning, in particular if these velocities are compared to the
speed of light c. Whether a cosmological object is visible or not depends on whether
a geodesic line between that object and an observer exists or not, specifically for
photons this must be a null-geodesic with a normalisation ds2 = gµνk

µkν = 0 of the
wave vector kµ = dxµ/dλ.
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c.2. light propagation on a flrw-spacetime and redshift

The null-property of the wave vector ensures that photons propagate dispersion-
free in vacuum. In fact, writing kµ in components

kµ =
(
ω/c
ki

)
(C.165)

with the angular frequency ω and the spatial wave vector ki leads to the norm

gµνk
µkν =

(
ω

c

)2
− kiki = 0 (C.166)

leads to a linear relation between angular frequency and wave number

ω(k) = ±ck (C.167)

and in consequence to equal phase and group velocities,

υgroup =
dω
dk

= c and υphase =
ω

k
= c. (C.168)

Dispersion-free propagation of photons υgroup = υphase is encoded by the fact that
their wave vector kµ is a null-vector.

The null-condition ds2 = 0 has a very intricate connection to FLRW-spacetimes,
as they are conformally flat: The full Riemann-curvature decomposes into two con-
tributions: Weyl-curvature and Ricci-curvature, and the FLRW-symmetries in fact
make sure that cosmological solutions are of pure Ricci-curvature, as the Weyl-tensor
vanishes identically. Spacetimes, in which this is the case, are conformally flat, as
their metric can be written as a rescaled Minkowksi-metric with a conformal factor
Ω(xµ)2 > 0, which is strictly positive,

gµν = Ω(xµ)2 ηµν (C.169)

as conformal transformations leave they Weyl-tensor Cαβµν invariant and conserve
in the FLRW-case its value of zero. Applied to cosmology, we would write for the line
element

ds2 = c2dt2 − a2γijdx
idxj = a2(t)

(
c2 dt2

a2 γijdx
idxj

)
= a2(t)

(
c2dη2 − γijdxidxj

)
(C.170)

with a new time coordinate dη, which is called conformal time:

dη =
dt
a

(C.171)

and the scale-factor a(t) is in fact the conformal factor Ω(xµ) which in our case only
depends on time and not on the spatial coordinates.

In fact, dη is not uniformly passing unlike dt. Only today with a = 1 time intervals
in η and t are identical, and as a < 1 in the past, intervals in η have been larger than
those in t.
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c. flrw-cosmologies

This has two interesting consequences: Firstly, light-propagation in a conformally
flat spacetime proceeds in a perfectly Minkowskian way as the conformal factor drops
out in the null-condition:

ds2 = a2(t)
(
c2dη2 − γijdxidxj

)
= 0 (C.172)

Secondly, the conformal age of the Universe is in fact infinite even if the actual age of
the Universe (defined as the physical time passing since the instant a = 0) is finite, as
the coordinate axes of Minkowski-space stretch out to infinity. Because homogeneity
of the FLRW-spacetime allow always to place the origin of the coordinate frame at
the observer, all photons are radially moving, so one can write for the line element

ds2 =
(
c2dη2 − dχ2

)
= (cdη+ dχ) (cdη− dχ) = dυdw = 0 (C.173)

and define light cone coordinates dυ = cdη+ dχ and dw = cdη− dχ, reminiscent of
Kruskal-coordinates.

C.3 Evolution of the Hubble-expansion with time

Initially, the Hubble function H(t) was introduced for parameterising the linear
relationship between the recessional velocity υ and distance r, υ = H(t)r, and with the
definition H(t) = ȧ/a we relate it to a Taylor-expansion of a(t) at the current cosmic
epoch t0,

a(t) − a(t0) =
da
dt

(t − t0) +
d2a

dt2
(t − t0)2

2
± . . . (C.174)

which can be rewritten as

a(t) = a(t0)
(
1 + H(t0)(t − t0) − q(t0)H2(t0)

(t − t0)2

2

)
(C.175)

by renormalising everything with a(t0). Taking every function to be evaluated at
t0, ȧ/a becomes the Hubble function and ä/a = aä/a2 × ȧ2/ ȧ2 = −qH2 brings in the
deceleration parameter, usually defined with a minus-sign:

q = − äa
ȧ2 (C.176)

despite the fact that the Universe is currently accelerating, so ä > 0 causes q to be
negative, as both a and ȧ2 are positive; this is in fact a historical remnant. In summary,
H determines the current rate at which the scale factor changes as a function of time,
and q states by how much that rate changes with time. It is interesting to realise
that the Hubble-relation is valid at every instance in time simultaneously for every
distance, but of course we do not observe the recession velocity of a distant galaxy at
the time that the light was emitted - so as we look out into the distance along the past
light cone, we see a record of the recession velocities.
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c.4. field equation: coupling gravity to matter

C.4 Field equation: coupling gravity to matter

The curvature of spacetime is determined by the energy momentum tensor by means
of the field equation

Rµν −
R
2
gµν︸        ︷︷        ︸

Gµν

= −8πG
c4 Tµν − Λgµν (C.177)

which equates the Einstein-tensor Gµν to the energy momentum tensor Tµν with New-
ton’s gravitational constant G as a coupling constant, but there is an effect of gravity
of empty space, too: Even if Tµν ≡ 0, the curvature is nonzero due to the presence
of the cosmological constant Λ. Actually, this result is not totally surprising as the
cosmological constant was already present in the most general linear field theory for
a scalar field on a Minkowski-background in the first chapter. The gravitational field
equation is unique, as shown by David Lovelock, as the most general (i) second-order
partial differential equation in (ii) 4 dimensions, with (iii) covariant energy mo-
mentum conservation ∇µTµν = 0, which establishes a (iv) local relationship between
curvature and the source of gravitational field and lastly, if (v) the metric is the only
dynamical degree of freedom, from which the curvature is derived. In particular,
Lovelock’s result makes sure that there are only two tensors, the Einstein-tensor Gµν

and the metric gµν, that have vanishing divergences, the first as a consequence of the
Bianichi-identity and metric due to metric compatibility. The field equation can be
derived by a variation of the Einstein-Hilbert-Lagrange density

S =
∫

d4x
√
−det g(R − 2Λ) (C.178)

with respect to the (inverse) metric: The choice of this Lagrange-density is unique,
again according to Lovelock’s theorem.

Within the highly symmetric solutions of general relativity discussed in every
textbook cosmology plays a central role: FLRW-spacetimes are, due to the cosmologi-
cal principle, systems of pure Ricci-curvature (with a vanishing Weyl-tensor); and as
such they do not show any propagation effects of gravity. Because of the small value
of the cosmological constant, its effect on the dynamics of spacetimes becomes only
dominant on scales comparable to the observable Universe.

C.5 FLRW-spacetimes and their dynamics

FLRW-cosmologies are a solution to the gravitational field equation with homo-
geneity and isotropy as symmetries restricting the complexity of the solution, and
for ideal fluids as sources. As the only degree of freedom left after imposing the
FLRW-symmetries is the scale factor a(t), one effectively ends up at ordinary (albeit
nonlinear) differential equations: In fact, the Friedmann equations relate a(t) and
its first and second derivatives ȧ and ä to the properties of the fluid, i.e. density ρ
and pressure p, which have to be constant across spactime at a fixed time, in order to
fulfil the cosmological principle, too.

Starting from the FLRW-metric gµν and its inverse gµν (determined through the
defining property gµνg

να = δαµ) one computes the Christoffel-symbols

Γ αµν =
gαβ

2

(
∂µgβν + ∂νgµβ − ∂βgµν

)
(C.179)
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c. flrw-cosmologies

under the choice of a metric compatible and torsion-free connection. Then, the
Riemann-curvature Rαβµν follows from derivatives and squares of the Christoffel-
symbols, and the Ricci-curvature Rβν = gαµRαβµν

Rtt = 3
ä
a

(C.180)

Rrr =
−c2

1 − kr2

(
aä + 2ȧ2 + 2c2k

)
(C.181)

Rθθ = − c
r2

(
aä + 2ȧ2 + 2c2k

)
(C.182)

Rφφ = Rθθ · sin2 θ (C.183)

such that contraction gµνRµν = R yields the Ricci-scalar,

R(t) =
6
c2

[ ä
a

+
( ȧ
a

)2
+

ck
a2

]
. (C.184)

Substituting the Ricci-tensor and Ricci-scalar into the field equation for an ideal
fluid gives the two Friedmann-equations, first from the spatial part of the field
equation,

H2(a) =
( ȧ
a

)2
=

8πG
3

ρ +
Λc2

3
− c2a

a2 (C.185)

as well as from the temporal part,

ä
a

= −4πG
3

(
ρ +

p

c2

)
+
Λc2

3
(C.186)

The combination of Newton’s gravitational constant G and the Hubble-constant H0
provides naturally a density scale

ρcrit =
3H2

8πG
(C.187)

which helps to re-express the densities of all fluids by dimensionless density parame-
ters

Ωi =
ρi

ρcrit
(C.188)

such that the first Friedmann-equation can be written as( ȧ
a

)2
= H2

0

(
Ωm

a3 + ΩΛ

)
(C.189)

by using ρ ∝ a−3 for matter. This can easily be extended to further fluids, charac-
terised by their equation of state parameters w = p/(ρc2).

We therefore can assign an Ω to k, for consistency

1 = Ωk +
∑
i

Ωi (C.190)
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c.6. gravitating fluids and their associated dynamics

as otherwise H(1) , H0. The curvature ΩK vanishes if
∑
i
Ωi = 1, in this limit the

spatial part of spacetime would be a flat, Euclidean space.

C.6 Gravitating fluids and their associated dynamics

By coupling the dynamics of spacetime its energy-momentum content through the
field equation, we can predict the time evolution of the scale factor a(t) for a given
density and equation of state parameter. While it is obvious that high matter or
radiation densities should have a decelerating effect on spacetime, we should have
a more detailed look into the effect of the equation of state. Setting up a spatially
flat FLRW-cosmology with a single fluid (ρ = ρcrit) and a constant equation of state
parameter w leads to the realisation that equation of state w and deceleration q are
connected by

3(1 + w) = 2(1 + q) (C.191)

Clearly, a sign change in q takes place at w = −1/3: While decelerated universes
q < 0 need to have equations of state of w > −1/3, accelerated universes q > 0 are
characterised by very negative equations of state w < −1/3. Interestingly, a fully
curved, empty universe with q = 0 has an effective equation of state of w = −1/3,
in accordance with the a2-scaling of ΩK. It expands at a constant ȧ as there are no
gravitating substances to change the state of motion.

It might be surprising that the deceleration is stronger for photons than for non-
relativistic matter, but it is the case that photons on the other hand are more strongly
affected by gravitational fields, too: That’s the famous factor 2 in gravitational lensing
by which the accelerating effect of a gravitational field on a photon is larger compared
to a non-relativistic test particle.

Whether the FLRW-spacetime has a finite age depends on whether substances
with w > −1/3 have been dominating the expansion at early times. Curvature and
all substances with more negative equations of state tend to lead to infinitely old
universes. As the Universe expands, densities scale proprotional to a−3((1+w), so it is
the case that the more negative an equation of state is, the slower the fluid dilutes
in the course of the Hubble-expansion, the ultimate example being cosmological
constant Λ with w = −1, leading to a constant energy density.

C.7 Redshift and the Hubble-expansion

We observe spectral lines of distant galaxies, which are shifted towards the red or
rather to lower energies. One should not think of the effect as a loss of energy, rather
than a transformation effect: Surely, there is a redshifting effect due to the motion
of a source relative to the observer already in special relativity, and in addition a
geometric effect due to changes in the metric in general relativity. The interpretation
of redshifting as a transformation effect can not depend on the choice of coordinates,
but of course the prediction has to be independent of a specifically adopted coordinate
choice, and in the following derivation we should illustrate this. Due to conformal
flatness of FLRW-universes it is best to work in conformal coordinates (cη, χ) which
illustrate the Minkowskian causal structure:

ds2 = a2(t)
(
c2dη2 − dχ2

)
= 0 (C.192)
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c. flrw-cosmologies

In these particular coordinates, the metric is the Minkowski-metric, preceeded by
a2(t) as the overall conformal factor,

gµν = a2(t)ηµν =


c2a2 0 0 0

0 −a2 0 0
0 0 −a2 0
0 0 0 −a2

 (C.193)

Motion of photons along the geodesic conserves the normalisation of the wave vector
kµ, so that gµνkµkν = 0 is maintained. A measurement of the frequency of a photon
takes place when the photon is intercepted by a timelike observer with a tangent uµ

to her or his world line xµ(τ). The resulting frequency ω is given by the projection

ω = gµνu
µkν (C.194)

and is, as a scalar product, a general scalar and invariant under coordinate transforms,
as requested for the result of measurement. Clearly, the observed frequency can be
affected by the relative orientation of kµ and uµ, which is the special relativistic
Doppler-effect, but also by a non-Minkowskian scalar product mediated by the
metric.

While the wave vector of a photon in conformal coordinates is oblivious to changes
in the geometry due to conformal flatness, and the normalisation of the wave vector
is conserved in geodesic motion,

gµνk
µkν = 0 (C.195)

the actual velocities of comoving observers are non-constant: The motion of a galaxy
is timelike with the normalisation

gµνu
µuν = c2 > 0 (C.196)

and even though the galaxy stays at its comoving coordinate, it moves non-uniformly
through spacetime with respect to conformal time! A galaxy at rest in the comoving
frame has only a nonzero t-component in its velocity,

gttu
tut = c2 implying ut =

c
√
gtt

=
c
a

(C.197)

which is, perhaps a bit surprisingly, changing as a(t) evolves, until it reaches c today:
But please keep in mind that in conformal coordinates we’re dealing with a non-
uniform passing time coordinate. Computing the projection between kµ and uµ for
the frequency gives

ω′ = gµνu
µkν = gttu

tkt = a2 c
a
ω

c
= aω (C.198)

which can be used to derive a relation for the shifted wave length, as ω = ck = c 2π
λ

:

λ′ =
1
a
λ (C.199)
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c.8. continuity equation and general relativity

and therefore define the redshift z according to

z =
λ′ − λ
λ

=
1
a
− 1 (C.200)

and vice versa
a =

1
1 + z

(C.201)

with the convention that a = 1 and z = 0 for today. Lastly, I’d like to point out that
the term redshift is perhaps not ideal: The entire spectrum of a source gets stretched
by the scale factor a, and we should think of a shifting of the logarithmic wave length:

ln λ = ln(λ′a) = ln λ′ + ln a = ln λ′ − ln(1 + z) (C.202)

C.8 Continuity equation and general relativity

Einstein’s field equation is prepared to conserve the energy-momentum-tensor

∇µTµν = 0 (C.203)

with the energy in the time and the momenta in the spatial components. We arrived
(using our covariant derivative) at

∂tρ + 3H(t)(1 + w)ρ = 0 (C.204)

if the equation of state parameter w is constant in time. Pay attention to the fact, the
a(t) appears in the continuity equation even if the fluid is at rest in the comoving
frame. In this continuity equation, the term H = ȧ/a takes care of gravity, which is
first of all surprising as there is no effect of Newtonian gravitational potentials on the
continuity of classical fluid mechanics, only on the Euler-equation as an accelerating
term. Clearly,

∂tρ + ∂i(ρυ
i) = 0 (C.205)

does not depend on the gravitational potential Φ. In weak, static gravity on has the
line-element

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dxidx

i (C.206)

and see, that there are no gravitational effects whereas there are effects in the FLRW-
metric. In the weakly perturbed metric (C.206) there is time-dilatation (which for us
is not relevant, since t is the coordinate time). We have

∇µ(ρuµ) +
p

c2∇µu
µ = 0 (C.207)

which leaves us with the first term in the non-relativistic limit, as p ≪ ρc2. Comput-
ing the covariant divergence then gives

∇µ(ρuµ) = ∂µ(ρuµ) + Γ µµα (ρuα). (C.208)
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Wherein the prefactors for the largest component, which is ut , are 0 by construction,
since Γ µµt ∼ ∂tΦ = 0 for static fields, showing that there is no first-order influence
of static, weak gravitational fields on the continuity equation: This is one instance
where gravity really behaves differently than in a classical context.

C.9 Construction of FLRW-universes for ideal fluids

Gravity and the dynamical behaviour of the scale-factor a(t) in a FLRW universe
is sourced by an ideal fluid, at rest in the comoving frame: With the velocities of
the fluid elements given by uµ = (c,0)t , the two only properties of the fluid to be
specified are density ρ and pressure p, or equivalently, density ρ and equation of state
parameter w. In many cases, w is constant in time and a genuine property of the fluid,
such as w = 0 for nonrelativistic matter and w = 1/3 for photons. If there is just a
single fluid with a constant equation of state, the density evolution is determined by
the FLRW-background only and one obtains ρ ∝ a−3(1+w).

The field equation reduces to the two Friedmann-equations under the assumption
of the FLRW-symmetries, and as the field equation itself already respects covariant
energy-momentum conservation ∇µTµν = 0, is is automatically fulfilled. This implies
that of the two Friedmann-equations and the continuity equation only two relations
are truly independent. Commonly, such as in the ΛCDM-class of cosmological models
one assumes that (i) all fluids are independent (i.e. there is no direct coupling or
transition of energy from one fluid to another) and that (ii) the equation of state
parameter is fixed through the properties of the fluid (we will encounter different
examples later, such as quintessence) and governs the adiabatic, energy-momentum
conserving behaviour of the fluid. Then, the Hubble function can be assembled by
writing

H(a) = H0

√∑
i

Ωi

a3(1+wi )
+
ΩK

a2 (C.209)

with the sum over the individual densities fixing the global curvature,∑
i

Ωi = 1 −ΩK. (C.210)

Statements on acceleration as done by the second Friedmann-equation can be com-
puted by taking the derivative of H(a), leading to the deceleration parameter q. The
time evolution of the density parameters is determined from ρ(a) of the respective
fluids with their equation of state, and the time evolving critical density ρcrit(a),
determined through the Hubble-function H(a). Then,

Ωw(a)
Ωw

=
H2

0

a3(1+w)H2(a)
(C.211)

which is illustrated for Ωm (w = 0), Ωγ (w = +1/3) and ΩΛ (w = −1) in Figure 1,
clearly indicating phases, where the FLRW-dynamics is dominated by a single fluid,
in order of descending w.

Auxiliary to the last argument, we can compute Ωm(a) in its time evolution and
compare it to the Hubble-function H(a) for a range of dark energy models with
differing w. It is very practical for this type of plot to scale out the behaviour of H
in the matter-dominated phase, where it is ∝ a−3/2 and consider a3/2H(a). The result
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Figure 1: Density parameters Ω(a) for radiation, matter and the cosmological constant

is shown in Fig. 2, where the double logarithmic derivative d ln H/d ln a shows the
effective power law behaviour of H.

C.10 Cosmological distance measures

Coordinate differences between objects are irrelevant, as the coordinate choice is
completely arbitrary: For defining actual distances on needs to go through the met-
ric which maps infinitesimal coordinate differences dxµ onto spacetime distances
ds2 = gµνdxµdxν. The result of this operation is only differential, so any macroscopic
distance measure involves an integration, and it would make a difference whether the
coordinate differentials dxµ are part of a timelike or lightlike geodesic, so one would
need to describe an actual experiment that defines the measurement of a distance on
a metric manifold.

Perhaps most intuitive is the proper distance p, where one derives the distance
from the light travel time, given infinitesimally by

dp = cdt with dt =
da

aH(a)
(C.212)

so that p can be determined by integration as

p = c

1∫
a

da
1

aH(a)
(C.213)

and is naturally related to the amount of time passing between a and 1. Next,
we define the comoving distance χ, which must never be confused with comoving
coordinates! The null-condition for FLRW-universes reads

ds2 = c2dt2 − a2dχ2 = 0 (C.214)

χ would be the comoving coordinate differential, and integrating this up along a
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Figure 2: Matter density parameter Ωm(a) and the logarithmic slope of the Hubble-function

null-geodesic yields

χ =
∫

dχ = c

∫
dt

1
a

= c

1∫
a

da
1

a2H(a)
(C.215)

An actually measurable distance indicator is the angular diameter distance dA, as it
incorporates an actual experimental setup: If one places an object of a known physical
size dA at the distance dA, it would subtend a (measurable) solid angle dΩ: In a
spatially flat universe the two can be related by writing

dΩ =
dA

d2
A

=
dQ
χ2 (C.216)

As physical size dA and comoving size dQ must be related by a factor of a2, so must
be dA and χ: For consistency we get da = aχ in a flat, Euclidean universe. With a
similar physical idea in mind, one can relate the apparent brightness of a source with
its intrinsic luminosity: Spreading out the luminosity L of an object over a sphere
with the luminosity distance dL as a radius defines the flux f ,

f =
L

4πd2
L

=
L

4πd2
A

a4 (C.217)

In metric spacetimes there is a general result between the angular sizes of objects
and their surface brightnesses, called the Etherington-relation,

dL =
dA

a2 (C.218)

which helps to reformulate the apparent flux from a source in terms of comoving
or angular diameter distance: The flux is distributed over a sphere with angular
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Figure 3: Luminosity distance, comoving distance, proper distance and angular diameter
distance for a ΛCDM-cosmology

diameter distance dA, but as we need to center this sphere on the source and not
the observer, the quantity determining the area needs to incorporate a factor of a2,
as the Universe has become larger by a. Additionally, the arrival time of photons is
stretched by a as well as their energies redshifted by the same factor. The distance
measures are compared to each other for a vanilla ΛCDM-cosmology in Fig. 3.

C.11 Age of FLRW-universes

It is only sensible to speak about the age of the Universe, defined as the elapsed time
between the instances a = 0 (possibly in the mathematical limit) and a = 1 (today), if
this time interval is identical for all fundamental observers: This is in fact made sure
by the FLRW-symmetries. Elapsed proper time τ of a fundamental observer who stays
at her or his comoving coordinate with dχ = 0 is given by τ =

∫
dτ =

∫
ds/c =

∫
dt = t,

and therefore equal to the universally equal coordinate time. With the definition of
the Hubble function H = ȧ/a, which implies that dt = da/(aH) one can compute this
time as

t =
∫

dt =

1∫
0

da
1
aH

(C.219)

with 1/H0 setting the scale of the integral to be about 1/H0 ≃ 1017 seconds. The exact
number, and whether the integral itself is finite or not, depends on the cosmological
model, i.e. the values of the density parameters Ωi and of the gravitating fluid’s
equation of state parameters wi . Let’s go through a couple of specific examples with a
single dominating fluid: A flat cosmology with only a cosmological constant ΩΛ = 1
and w = −1 has a constant Hubble-function, and consequently

t =

1∫
0

da
1
aH

=
1

H0

1∫
0

d ln a =
1

H0
ln a

∣∣∣∣∣1
0
→∞ (C.220)
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which is sensible as a(t) ∝ exp(H0t) is finite for all finite times and the instant a = 0
is never reached. A completely, fully hyperbolically curved universe with ΩK = 1 and
w = −1

3 has a Hubble function H(a) = H0/a and from that we obtain

t =

1∫
0

da
1
aH

=
1

H0

1∫
0

da =
1

H0
(C.221)

and therefore a finite age! You can easily convince yourself that w = −1/3 is the
boundary for the age of the Universe to be finite: Lower equation of state parameters
make the integral diverge, and higher equation of state parameters cause the integral
to converge. In fact, a flat, matter-filled universe with Ωm = 1 and w = 0 would have
a Hubble-function with H(a) = H0a

−3/2 and therefore

t =

1∫
0

da
1
aH

=
1

H0

1∫
0

da
1

a−1/2
=

1
H0

2
3
a3/2

∣∣∣∣∣0
1

=
2
3

1
H0

, (C.222)

again with a finite age.

C.12 Causal structure of FLRW-spacetimes and cosmological horizons

It is immediately obvious that a flat FLRW-spacetime stretches infinitely into the
spatial directions but that, depending on the density parameters and the associated
equation of state, could have existed only for a finite time, which implies that light
from distant regions of the Universe could not yet have arrived at the location of an
observer.

The particle horizon is the limit of the past light cone, caused by a finite time
since a = 0. Working in conformal coordinates we compute the comoving distance as

χPH = c

η0∫
−∞

dη = c

t0∫
0

dt
1
a
, (C.223)

which is the maximum comoving distance from which a light signal could have
reached us over the finite age of the Universe. Similarly, the future light cone has
possibly a limit, corresponding to the maximum distance out to which we can send a
light signal in the future: This is called the event horizon, whose comoving distance
is given by

χEH = c

+∞∫
η0

dη =

tmax∫
t0

dt
1
a

(C.224)

where the physical age of the Universe is finite in certain cosmological models.
Neither particle nor event horizon should be confused with the Hubble-sphere,

which is defined by the physical distance rHubble at which the recession velocity υ
reaches the speed of light,

c = HrHubble → rHubble =
c
H

(C.225)
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which has today the value c/H0 ≃ 3 Gpc/h. We can perfectly see objects from beyond
the Hubble-radius; for instance the cosmic microwave background: All that matters
for the visibility of a cosmological object is whether a null-geodesic between the
object and observer can be drawn; uninterrupted by a horizon.

Of course, the integrals for particle and event horizon can be reformulated in
terms of the scale-factor a, which might be more intuitive and which allows an easier
judgement if the integrals converge or not. The expression for the Hubble-function
H(a)

H(a) = H0

√
Ωγ

a4 +
Ωm

a3 +
ΩK

a2 + ΩΛ = H0

√∑
i

Ωi

a3(1+wi )
(C.226)

suggest that, with the assumption of a monotonically increasing scale factor ȧ > 0
that the densities ρ ∼ a−3(1+w) decrease if w ≥ −1 and stay constant with w = −1.
Therefore, the Universe goes typically through all fluids in decreasing order in the
value of w in its evolution:

Ωγ → Ωm → ΩK → Ωϕ → ΩΛ (C.227)

Ωγ and Ωm are dominant at early times, resulting in decelerating expansion with
q > 0, whereas in later times dark energy with Ωϕ and the cosmological constant ΩΛ

are dominant, which leads to accelerating expansion with q < 0. For any constant
equation of state and a single dominating fluid at the critical density we would obtain

H = H0a
− 3(1+w)

2 =
ȧ
a

=
1
a

da
dt

(C.228)

such that the integrand for the event- or particle horizon would become

dt
a

=
da
a2 a

3(1+w)
2 (C.229)

and the integral would naturally depend on the equation of state as∫
dt
a

=
∫

da a
3(1+w)

2 −2 =
∫

da a
3(w−1)

2 ∼ a
3(w+1)

2 (C.230)

with a convergent solution at early times for w > −1/3 and at late times for w < −1/3.
Particular problems would occur if the equation of state is more negative than −1:
Then, a diverging scale factor a → +∞ is reached after a finite physical time. This
event is called big rip.
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