
B gravity and concepts of relativity

B.1 Metric structure of spacetime

Spacetime is first of all a topological space, where the points are given coordinates by
a continuous coordinate mapping (the system of open sets allows specifically to define
continuity of a mapping), where the coordinates are arranged in a coordinate tuple,
for instance xµ = (ct, xi)t . Unlike in vector spaces, differences between coordinates
as distances have no meaning, but one needs a metric tensor to compute the line
element ds2 from an infinitesimal coordinate difference dxµ: As the metric tensor can
change across the manifold, all definitions are only made in a local way.

Starting with a Euclidean manifold with a metric γij one would write down for
the line element

ds2 = dxidx
i = γijdx

idxj = dx2 + dy2 + dz2 (B.30)

where the last equality is true for Cartesian coordinates as a particular coordinate
choice, where γij = δij . Euclidian space is a flat space with no curvature, and there
is invariance of ds2 under rotations. Generalising to Minkowskian space, we get the
line-element

ds2 = dxµdxµ = ηµνdx
µdxν = c2dt2 − dx2 − dy2 − dz2 (B.31)

again with the last equality being applicable if Cartesian coordinates have been
chosen. Minkowskian space is flat, too, there is no curvature and it is invariant under
Lorentz-transformations. In opposite to the Euclidian line-element, the line-element
is no longer positive definite, which means that there can be negative distances. In
practice, this is never an actual issue, as only events with positive distances ds2 > 0
are causally related to each other. At the same time, ds2 = 0 defines a light cone
structure for the manifold. Both examples are (pseudo-)Riemannian manifolds where
the line element is given by a quadratic form

ds2 = gµνdx
µdxν (B.32)

with a general metric tensor gµν. In 4 dimensions there are 10 independent entries
of gµν due to the symmetry gµν = gνµ: Any anti-symmetric part would not be able
to influence the value of ds2 as dxµdxν is fully symmetric. On a manifold we will
establish invariance of line elements as general scalars under arbitrary coordinate
transforms, generalising the idea of the invariance of the Euclidean line element under
rotations and the invariance of the Minkowski-line element under Lorentz-transforms.
To make this specific, we have for an invertible and differentiable coordinate change (a
so-called diffeomorphism):

x′ρ = x′ρ(xµ) → dx′ρ =
∂x′ρ

∂xµ
dxµ (B.33)

as well as the inverse

xµ = xµ(x′ρ) → dxµ =
∂xµ

∂x′ρ
dx′ρ (B.34)
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b. gravity and concepts of relativity

If the line element is to be invariant as a scalar, the metric gµν needs to transform
inversely to dxµ:

ds2 = gµνdx
µdxν = gµν

∂xµ

∂x′ρ
∂xν

∂x′σ
dx′ρdx′σ = g ′ρσdx′ρdx′σ (B.35)

i.e.

gµν
∂xµ

∂x′ρ
∂xν

∂x′σ
= g ′ρσ (B.36)

and the general picture emerges that contravariant (superscript) indices transform
with Jacobians ∂x′ρ

∂xµ whereas covariant (subscript) indices transform with inverse
Jacobians ∂xµ

∂x′ρ .

B.2 Metric and inner products

Picking up this idea lets us write for a vector υµ with contravariant indices

υµ → υ′ρ =
∂x′ρ

∂xµ
υµ (B.37)

with a Jacobian ∂x′ρ

∂xµ and for a linear form wµ with covariant indices

wµ → w′ρ =
∂xµ

∂x′ρ
wµ (B.38)

with an inverse Jacobian ∂xµ

∂x′ρ , such that inner products stay invariant:

wµυ
µ = gµνw

µυν → w′µυ
′µ = g ′µνw

′µυ′ν =
∂xρ

∂x′µ
∂x′µ

∂xσ︸     ︷︷     ︸
δ
ρ
µ

wρυ
σ = wσυ

σ (B.39)

as Jacobian cancels with the inverse Jacobian and simply a renaming of the indices is
taking place.

The index shift carried out by the metric υµ = gµρυ
ρ is undone by the inverse

metric υσ = gσµυµ = gσµgµρυ
ρ = δσρυ

ρ, such that the inverse metric fulfils

gσµgµρ = δσρ (B.40)

Please keep in mind that
gµνgµν = δ

µ
µ = 4 (B.41)

in 4 dimensions, and not equal to 2, as on might (naively) think.
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b.3. vectors and covariant derivatives

B.3 Vectors and covariant derivatives

Considering a curve xµ(λ) with parameter λ cutting through a field ϕ(xµ): How would
ϕ change along the curve as λ changes? The chain rule suggests that

dϕ
dλ

=
d

dλ
ϕ(xµ(λ)) =

dxµ

dλ︸︷︷︸
tangent

∂ϕ

∂xµ
= uµ

∂ϕ

∂xµ
(B.42)

with the tangent uµ = dxµ/dλ, such that the rate of change of ϕ along the curve
xµ(λ) is given as a projection of the gradient field ∂ϕ/∂xµ = ∂µϕ onto the tangent uµ.
From this we recognise that uµ as well as dxµ are vectors, and ∂µϕ is a linear form. It
is possible to run curves through a point A in all possible directions and construct
vectors dxµ tangent to them, and the minimal collection of dxµ would constitute the
basis of a tangent space TAM of the manifold M at A, relative to which all tensor of
vector fields can be expressed in components. Most sensibly, one would run these
curves through A by changing a single coordinate at a time: But this implies that
the construction of the basis for TAM would depend on the coordinate choice and
could be different at another point B! That has in fact profound implications when
considering changes to a vector or tensor field across the manifold: The components
of the field can become different because the basis has changed going from TAM to
TBM, or there could be a genuine change in the field, and the two cases would need to
be distinguished.

But before we investigate that in detail, we should try out a remapping of the
coordinates in equation B.42. Writing xµ(x′α) we can introduce a ”one” δνµ = ∂xν/∂xµ

in the form of two mutually annihilating Jacobians,

dϕ
dλ

=
dxµ

dλ
∂ϕ

∂xµ
=

dxµ

dλ
δνµ

∂ϕ

∂xν
=

dxµ

dλ
∂x′α

∂xµ
∂xν

∂x′α︸      ︷︷      ︸
δνµ

∂ϕ

∂xν
=

dx′α

dλ
∂ϕ

∂x′α
(B.43)

suggesting that vectors such as uµ transform with the Jacobian ∂x′α

∂xµ while linear
forms like ∂µϕ transform with the inverse Jacobian ∂xν

∂x′α .
We need the concept of a parallel transport to quantify changes in a vector field

υµ across the manifold M. The components of the vector are given in terms of a local
coordinate frame which is the basis of TAM, and which might differ from the frame
at TBM, implying that the same abstract vector υ could have different components at
A and B: We need to disentangle changes of the tangent space from genuine changes
in the vector field! For this purpose, one introduces parallel transport, which moves a
vector perfectly from A to B and tracks only the change in tangent space. If the two
points are separated by δx, the parallel-transported, perfect copy υµ∥ at the point B
with coordinates x + δx of the original vector υµ at point A with coordinates x is given
at linear order

υ
µ

∥ (x + δx) = υµ(x) − Γ µαβ υ
α(x)δxβ + ... (B.44)

where the minus-sign is chosen by convention. The coefficients Γ µαβ form the
Christoffel-symbol. A vector field would now change genuinely if it differs at position
x + δx from the parallel-transported vector field. We are now only comparing two
vector fields υµ(x + δx) and υµ∥ (x + δx) at the same point within the same tangent space
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b. gravity and concepts of relativity

TBM, as opposed to a direct comparison of υµ(x + δx) with υµ(x) which is senseless
as the tangent spaces TAM and TBM are in general different and the component
expansion of υ exists in two different bases:

lim
δxβ→0

υµ(x + δx) − υµ∥ (x + δx)

δxβ
=

lim
δxβ→0

υµ(x + δx) − υµ(x)
δxβ

+ Γ µαβ υ
α(x)

δxβ

δxβ
=

∂βυ
µ + Γ µαβ υ

α ≡ ∇βυα (B.45)

Here, we have identified a straightforward index-by-index change of the vector field
over the shift δx as the partial differentiation ∂βυ

µ, which gets corrected by the
Christoffel-symbol tracking the change of the tangent spaces.

It is important to realise that the covariant differentiation becomes only relevant
for fields that have internal degrees of freedom, whose decomposition in components
depend on the change in tangent space moving from TAM to TBM. Scalar fields are
oblivious to these changes, and therefore the covariant differentiation falls back on
the conventional partial differentiation:

∇βϕ = ∂βϕ (B.46)

For higher-order tensorial fields one needs a Christoffel-symbol for each index: You
can imagine that the basis for such an object is the Cartesian product, and that the
differentiation fulfils a Leibnitz-rule, such that we get

∇βTµν = ∂βTµν + Γ µβα Tαν + Γ νβα Tµα (B.47)

Let’s now have a look at the differentiation of a covariant vector or, equivalently, a
linear form. A contraction between the vector υµ and the linear form wµ is scalar, so
the covariant differentiation falls back onto the partial one:

∇β(υµwµ) = ∂β(υ
µwµ) = ∂βυ

µ · wµ + υµ∂wµ (B.48)

If, on the other side, the covariant differentiation comes with a Leibnitz-rule for
dealing with products we would write

∇β(υµwµ) = ∇βυµ · wµ + υµ∇wµ = (∂βυ
µ + Γ µαβ υ

α)︸              ︷︷              ︸
∂βυµ from above

wµ + υµ ∇βwµ︸︷︷︸
isolate this term

(B.49)

Isolating the covariant derivative ∇βwµ of the linear form wµ we get:

υµ∇βwµ = υµ∂βw
µ − Γ µαβ υ

αwµ = υµ∂βw
µ − Γ αµβ υ

µwα (B.50)

after renaming indices and finally

∇βwµ = ∂βwµ − Γ αµβ wα (B.51)
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b.3. vectors and covariant derivatives

implying that a linear form needs a negative Christoffel-symbol, as opposed to a
vector with a positive Christoffel-term.

With this definition the covariant derivative depends completely on the choice
of the connection coefficients Γ αµν , but we should be guided by the idea that the
two structures that exist on the manifold, (i) the metric structure which allows the
measurements of angles between vectors and determinations of their lengths, and
(ii) the differential structure which quantifies rates of change of vectors, should be
compatible with each other. Specifically, if two vectors are parallel-transported, their
length and relative orientation should not change, and as a consequence their scalar
product should be unaffected. With the covariant derivative

∇βυµ = lim
δxβ→0

υµ(x + δx) − υµ∥ (x + δx)

δxβ
(B.52)

based on the parallel transport

υ
µ

∥ (x + δx) = υµ(x) + Γ µαβ υ
αδxβ (B.53)

we can reformulate parallel transport in an operator notation: The vector υµ(x + δx)
must be equal to υµ∥ (x+ δx) + δxβ∇βυµ. Perfect parallel transport means that the vector

υµ(x + δx) at TBM and υµ∥ (x + δx) transported from TAM to TBM by the shift δx are

now identical, and in this case δxβ∇βυµ must be zero. This shifting operator δxβ∇β
can be applied to scalar quantities as well, such as in particular the scalar product
gµνυ

µwν:

δxβ∇β(gµνυµwν) = δxβ(∇βgµν ·υµwν+gµν ∇βυµ︸︷︷︸
=0

·wν+gµνυ
µ ∇βwν︸︷︷︸

=0

) = δxβ∇βgµν ·υµwν = 0

(B.54)

as a consequence of the Leibnitz rule, with a single term remaining:

∇βgµν = 0 (B.55)

which is referred to as the metric compatibility condition: If it is true, the scalar
product over perfectly parallel transported vectors does not change across the mani-
fold. As the metric itself is a tensor with covariant indices, the covariant derivative is
computed as

∇βgµν = ∂βgµν − Γ αβµ gαν − Γ
α
βν gµα (B.56)

If in addition we assume that the parallel transport is torsion-free the Christoffel-
symbol is symmetric in the lower two indices,

Γ αµν = Γ ανµ . (B.57)

This implies that we write out the combination ∇µgβν + ∇νgµβ − ∇βgµν = 0 (metric
compatibility ensures that the terms vanish already individually!) and solve for the
Christoffel-symbol Γ αµν , which comes out as
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b. gravity and concepts of relativity

Γ αµν =
gαβ

2
(∂µgβν + ∂νgµβ − ∂βgµν) (B.58)

A connection Γ αµν which is metric-compatible (∇αgµν = 0) and torsion free (Γ αµν =
Γ ανµ ) is called a Levi-Civita connection; it is uniquely compatible with the metric
structure on the manifold, as the connection can be computed from the metric
and its derivatives alone. A metric manifold with a Levi-Civita connection and the
corresponding covariant derivative defines Riemannian geometry.

At this point, a beautiful conceptual picture emerges: Spacetime is a manifold
with, first of all, a topological structure, which allows a continuous mapping of coor-
dinates onto spacetime. Then, there is in addition a metric structure, which allows
measurements of lengths and angles in vector fields on the manifold: As other fields,
the metric tensor may vary across the manifold. We’ve introduced a differentiable
structure on the manifold, in addition, by defining parallel transport and the co-
variant derivative. This differentiable structure has to be compatible with the metric
structure, which is made sure by metric compatibility. Later in this course, we’ll see
that there is a second notion of derivation, called a Lie-derivative, which is needed to
describe symmetries: Those are made compatible with covariant derivative by the
requirement of torsion-free connections, giving further support to Levi-Civita connec-
tions. A physical motivation for choosing torsion-free connections is the compatibility
of covariant derivatives with Lie-derivatives which are used for characterising sym-
metries of spacetimes.

B.4 Geodesics and autoparallelity

A particle drifting through spacetime follows a trajectory xµ(λ) in a given coordinate
choice, parameterised by the affine parameter λ. Then, the rate of change of the
coordinates with λ would be the velocity uµ,

uµ =
dxµ

dλ
= ẋµ (B.59)

or equivalently the tangent to the trajectory xµ(λ). The velocity uµ and the coordinate
differential dxµ are vectors, in contrast to the coordinate tuple xµ itself. With the idea
the operator for parallel transport we might construct a curve whose tangent uµ = ẋµ

stays parallel to itself, exactly through the autoparallelity condition

ẋµ∇µẋν = 0 (B.60)

i.e. uµ = ẋµ is always a parallel-transported version of itself. It is suggestive to imagine
that these curves describe inertial motion through spacetime, as no accelerations are
felt, because the velocity u as an abstract vector does not change, only its components
uµ can be different as there can be different tangent spaces along the curve. Taking this
thought a little further leads us to the realisation that there is actually no difference
between inertial motion and freely falling motion, as both cases are characterised by
the absence of physical accelerations.
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b.4. geodesics and autoparallelity

Surely, duµ/dλ can be nonzero, but the abstract vector u is conserved.

ẋµ∇µẋν = ẋµ∂µẋ
ν + Γ νµα ẋ

µẋα = ẍν + Γ ναµ ẋ
µẋα = 0 (B.61)

using

ẍν =
dẋν

dλ
=

dxµ

dλ
∂ẋν

∂xµ
= ẋµ∂µẋ

ν (B.62)

to obtain the second derivative ẍν. The result is the geodesic equation, reading

duα

dλ
+ Γ αµν u

µuν = 0, or
d2xα

dλ2 + Γ αµν
dxµ

dλ
dxν

dλ
= 0. (B.63)

if formulated in terms of the tangent vector uµ. It is a fun realisation that the tangent
vector of the Earth’s orbit in 4 dimensions is autoparallel, in a spacetime which is
non-Minkowskian with a very slight curvature introduced by the Sun.

It is possible to tease out the geodesic equation from Newton’s equation of motion.
In fact,

ẍi + ∂iΦ = 0 (B.64)

describes the freely falling motion of a test particle in the gravitational potential
Φ. It follows a force-free trajectory, which is straight according to the inertial law
formulated by Newton. Surely, we don’t make a mistake by writing

ẍi + ∂i Φ

c2 · c · c = 0 (B.65)

where now c2 provides a scale for the potential Φ: Because c has no particular
relevance for Galilean physics one would think that the division by c2 just makes
the potential dimensionless. In the slow-motion limit of relativity particles follow
trajectories with ẋt = c, so the formula becomes

ẍi + ∂i Φ

c2 ẋ
t ẋt = 0 (B.66)

But the terms ẋt are just the t-components of the velocities, which in the slow-motion
limit ẋµ = (c, υi)t , where proper time and coordinate time are identical, t = τ identical
and consequently γ = 1. Then,

ẍα + ∂α
Φ

c2 ẋ
t ẋt = 0, suggesting that Γ αtt ∼ ∂α

Φ

c2 (B.67)

by identifying the derivative of the potential with the Christoffel-symbol, consoli-
dating the idea that Newton’s equation of motion is the weak-field and slow-motion
limit of the geodesic equation,

ẍα + Γ αµν ẋ
µẋν = 0 (B.68)
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b. gravity and concepts of relativity

If we try out an extremal principle for the trajectory as in classical mechanics and
impose Hamilton’s principle δS = 0 on an action integral

S =
∫

dt L with L =
1
2
ẋi ẋ

i − Φ (B.69)

we end up with the Euler-Lagrange equation

ẍi + ∂iΦ = 0 (B.70)

from classical mechanics. In a similar calculation δs = 0 of the line-element

ds2 = gµνdx
µdxν = gµν

dxµ

dλ
dxν

dλ
dλ2 → ds =

√
gµνẋµẋνdλ and s =

∫
ds (B.71)

provides the geodesic equation: Straight lines in the sense of autoparallelity are at
the same time extremal in their arc length.

The affine parameter λ can be chosen arbitrarily as the geodesic equation is
invariant under affine transforms of λ, λ → aλ + b, but there are two practical
choices: In the case of a massive particle which follows a time-like geodesic with
gµνẋ

µẋν > 0 one can choose proper time λ = τ, such that the normalisation is given
by gµνẋ

µẋν = c2. Photons, on the other hand, follow null-geodesics with gµνẋ
µẋν = 0,

which is incompatible with proper time as an affine parameter. As parallel transport
is with Levi-Civita connection is constructed to conserve norms, we can conclude that
in both cases the normalisation of the tangent uµ = ẋµ for both τ or λ is conserved.

B.5 Spacetime curvature

The geodesic equation
ẍα + Γ αµν ẋ

µẋν = 0 (B.72)

is unable to differentiate between inertial motion in the absence of gravity or freely-
falling motion in a gravitational field: This is absolutely sensible because in both cases
one would not feel or measure any acceleration, so the two situations are physically
equivalent. This has profound implications which we should clarify: The Christoffel-
symbol has 40 entries (For every choice of α, 4 in total, there are because of the
symmetry 10 different choices in the index pair µ, ν), which are all measurable
through the acceleration ẍα for a given choice of ẋµẋν, for both cases of massive
and massless particles. Acceleration in this context is a non-uniform passage of the
coordinates along the path of the particle, which should not be interpreted as a
physical acceleration. In this sense, the geodesic equation only takes care of the non-
uniformity of the coordinate choice and does not contain information about gravity
or curvature! A good example might be inertial motion through Euclidean space in
polar coordinates r,ϕ, and a situation where the particle moves off-centre relative
to origin of the coordinate frame. There, the velocities ṙ and ϕ̇ are not constant and
show accelerations r̈ , 0 , ϕ̈, but clearly, there are no physical accelerations present.
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b.5. spacetime curvature

To summarise this important point: Neither the metric, nor the geodesic equation,
nor the covariant derivative and nor the Christoffel-symbols contain information
about gravity, Γ αµν = 0 does not imply the absence of gravity, and neither does∇µ = ∂µ.
All these things are consequences of the coordinate choice. That is in fact sensible, as
there is always a coordinate choice that sets locally gµν to ηµν and ∂αgµν = 0, i.e. the
metric becomes Minkowskian and the Christoffel-symbol vanishes.

Information about the gravitational field is contained in curvature, which is in
Riemannian-geometry ultimately computed from the second derivatives of the metric
and which can not be set to zero by a suitable coordinate transform in the general
case. Curvature is present if covariant derivatives ∇µ into different directions do not
commute, or equivalently, if shifts δxµ∇µ into different directions carried out after
each other, affect the internal degrees of a vector or tensor. The non-commutativity of
covariant derivatives directly defines the Riemann-curvature,[

∇µ∇ν
]
υα = (∇µ∇ν − ∇ν∇µ)υα = Rαβµνυ

β (B.73)

It can be shown that the effect of parallel-transport around a loop would be a rotated
vector Rαβµνυ

β relative to υα, where parallel-transport conserves the norm of the
vector υα due to metric compatibility. This is in fact the best way to visualise the effect
of Rαβµν as an operator and to memorise the index structure. By definition, Rαβµν is
antisymmetric for every choice of µ, ν, and in the index pair α, β is is an antisymmetric
rotation matrix. In 4 dimensions, Rαβµν has 20 entries, as opposed to the 40 entries of
Γ αµν .

The Riemann-curvature vanishes in flat spaces

Rαβµν = 0 (B.74)

in every coordinate choice, even though the Christoffel-symbols Γ αµν only vanish
in Cartesian coordinates. Following the formal definition of curvature as the non-
commutativity of shifts in different coordinate directions leads us to

υµ(x + δx) = υµ(x) − Γ µαβ (x)υαδxβ (B.75)

and in a second step to

υµ((x + δx̄) + δx) = υµ(x + δx̄) − Γ αµν (x + δx̄)υα(x + δx̄)δxβ =

υµ(x) − Γ αµν v(x)υα(x)δx̄β − (Γ αµν (x) + ∂γΓ
µ

αβ δx̄
γ︸      ︷︷      ︸

Taylor

)(υα(x) − Γ αγδ υ
γδxγ)δxβ (B.76)

and therefore the order of the shifts matters:

υµ((x + δx) + δx̄) , υµ((x + δx̄) + δx) (B.77)

Computing the difference shows that

υµ((x + δx̄) + δx) − υµ((x + δx) + δx̄) = Rµαβνυ
αδxβδx̄ν (B.78)

with the Riemann-curvature-tensor Rµαβν
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b. gravity and concepts of relativity

Rµαβν = ∂βΓ
µ
αν − ∂νΓ

µ

αβ + Γ µ
δβ
Γ δαν − Γ

µ

δν
Γ δαβ (B.79)

which depends, as expected on the derivatives of the Christoffel-symbols as well as
their ”squares”. But ultimately, due to the choice of a (pseudo-)Riemannian geometry,
the curvature tensor can be computed from the metric and its first and second
derivatives.

B.6 Covariant divergence

The idea of using the divergence for expressing conserved quantities like gαµ∇αȷµ = 0
for the electric charge or gαµ∇αTµν = 0 for the energy-momentum tensor is very
central to physics. Formulated in a covariant way, it behaves properly as a tensor under
coordinate transforms. The covariant divergence needs a pecular index-combination
in the Christoffel-symbol, where two of the indices become equal.

∇µυµ = ∂µυ
µ + Γ µµα υα (B.80)

In particular, a Levi-Civita connection would have

Γ
µ
µα =

gµβ

2
·
[
∂µ gβα + ∂α gµβ − ∂β gµα

]
=

1
2

[
gµβ ∂µ gβα + gµβ ∂α gµβ − gµβ ∂β gµα

]
(B.81)

i.e. essentially

Γ
µ
µα =

1
2
gµβ ∂α gµβ (B.82)

Curiously, there is a relation between the covariant divergence and the covolume
g = det(gµν). My third most favourite formula in theoretical physics says that

g = det(gµν) = exp ln det(gµν) = exp tr ln(gµν) (B.83)

relating the logarithm of the determinant with the trace of the matrix-valued loga-
rithm, which is easily checked in the principal axis frame. Then,

∂α g = g · ∂αtr ln(gµν) = g · tr ∂α ln(gµν) = g · tr
(
g−1 · ∂α gµν

)
= g · gµν · ∂α gµν (B.84)

using the linearity of the derivative as well as the inverse metric. With the derivative
of the square root one then obtains

gµν ∂α gµν =
1
g
∂α g, and therefore

1
2
gµν ∂α gµν =

1
√−g

∂α
√−g. (B.85)

With this result one can write for the contracted Christoffel-symbol

Γ
µ
µα =

1
√−g

∂α
√−g (B.86)
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b.7. geodesic deviation: experiencing curvature

and finally for the covariant divergence

∇µ υµ = ∂µ υ
µ + Γ µµα υα = ∂µ υ

µ +
1
√−g

∂α
√−g · υα

µ↔α
= ∂µυ

µ +
1
√−g

∂µ
√−g · υµ =

1
√−g

∂µ
(√−g υµ) (B.87)

using the Leibnitz-rule. An interesting application of the covariant divergence is the
wave equation

gµν ∇µ∇ν φ =
1
√−g

∂µ
(√−g ∂µ φ

)
= 0 (B.88)

which is obviously not just ∂µ∂µφ = 0; there is clearly an influence from the back-
ground onto wave propagation. For our particular case of FLRW-cosmologies, the
covolume is quickly computed in comoving coordinates to be√

−detg = ca3 (B.89)

with physical time t, and as √
−detg = ca4 (B.90)

with conformal time η.

B.7 Geodesic deviation: experiencing curvature

A freely falling particle experiences perfect weightlessness and spacetime appears
to be locally Minkowskian, gµν = ηµν with a vanishing first derivative ∂αgµν = 0,
which enables the local choice of Cartesian coordinates. But that does not imply that
a second particle, likewise in a state of perfect free fall, moves at constant velocities
relative to the first particle: This is exactly the idea of geodesic deviation. The relative
distance δµ of two freely falling particles, each one following its geodesic, obeys

d2δµ

dτ2 = Rµαβν
dxα

dτ
dxβ

dτ
δν (B.91)

which follows from expanding Γ (x̄) for the second particle in the geodesic equation in
terms of Γ (x) for the first geodesic. Only if the manifold is flat, the Riemann curvature
Rαβµν = 0 vanishes, resulting in

d2

dτ2 δ
µ = 0 → d

dτ
δµ = aµ → δµ = aµτ + bµ (B.92)

with two integration constants aµ and bµ: The particles would drift apart at a constant
rate, and accelerations δ̈µ only appear if there is curvature. Please keep in mind, that
this also applies for time component, as we use 4d coordinates. Classically we would
get an analogous statement

d2

dt2 δ
i = − ∂i∂jΦ︸︷︷︸

tidal tensor

δj = ∂igjδ
j (B.93)
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with no velocity dependence of the gravitational force and universal time instead
of proper time. This underlines the idea that the tidal field tensor ∂i∂jΦ is the
Newtonian analogue of the Riemann curvature.

B.8 Curvature invariants and curvature tensors

The Riemann-curvature contains the complete information about curvature if the
connection is chosen to be torsion-free and metric compatible, otherwise one would
need the torsion tensor and the non-metricity scalar in addition. From the Riemann-
curvature, one can compute further measures of curvature, which are physically
relevant, such as the Ricci-tensor Rβν

Rβν = Rαβαν = gαµRαβµν (B.94)

and curvature scalars by complete contraction, for instance the Ricci-scalar R

R = Rαα = gβνRβν (B.95)

or the Kretschmann-scalar K

K = RαβγδRαβγδ = gαµgβνgγρgδσRαβγδRµνρσ (B.96)

which are both coordinate-invariant measures of curvature.
Let’s apply these ideas to a flat FLRW-cosmology, where the line element has the

form
ds2 = c2dt2 − a2(t)(dr2 + r2(dθ2 + sin2(θ)dϕ2)) (B.97)

in terms of comoving coordinates and physical time. The trivial derivatives of the
metric are

∂tgtt = 0, gtα = gαt = 0 (B.98)

and the non-trivial derivatives can be summarised in the Christoffel-symbols

Γ tαβ =
1
2
∂tgαβ → Γ tij =

1
2

d
dt

a2 = ȧa = a2H (B.99)

with H = ȧ/a, and

Γ iαβ =
1

2a2

(
∂βgiα + ∂αgβi

)
→ Γ iit = Γ iti =

1
2a2 2∂tgii =

ȧ
a

= H (B.100)

For the Ricci-scalar of a flat FLRW-spacetime we get, by contracting gαµgβνRαβµν

R = 6a
(H
c

)2
(1 − q) with q = − äa

ȧ2 (B.101)

The metric usually has no units (since ds2 = gµνdxµdxν and coordinates are
usually chosen to have units of length, and consequently would ds have units of
length, but please keep in mind that this is purely conventional), whereas curvature
as composed of second derivatives (with respect to xµ) have units of a inverse length
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b.9. raychaudhuri-equation

squared, which results in the curvature scale

1
√

R
=

c
H

(B.102)

ignoring pre-factors of order one: The curvature scale of a FLRW-cosmology R−1/2 is
the Hubble-scale c/H, implying that on scales larger than c/H one can see effects of
strong gravity, whereas on scales smaller than c/H spacetime can be approximated to
be Minkowksian. In fact, light propagation effects associated with horizons appear on
this scale.

B.9 Raychaudhuri-equation

The Riemann-tensor as a complete characterisation of spacetime curvature decom-
poses into two distinct types of curvature: The Ricci-curvature contained in Rµν
and the Weyl-curvature Cαβµν, both tensors having 10 entries in 4 dimensions. The
Ricci-tensor Rµν at one point in spacetime reflects the energy momentum tensor Tµν
at the same point, as a consequence of the field equation, and is necessarily only a
function of time. As there are no spatial derivatives in a FLRW-geometry, we are not
concerned with propagation effects of gravity, so the Weyl-tensor Cαβµν is zero, and
we’re dealing in FLRW-cosmologies with a system of pure Ricci-curvature.

The effects of Ricci- and Weyl-curvature on test particles can be understood in
an extension to geodesic equation, which is known as the Raychaudhuri-equation.
Here, one considers not a pair, but an entire cloud of freely falling test particles and
monitors the change of volume or the change in shape of that cloud. Ricci-curvature,
which FLRW-spacetimes carry exclusively, induce a pure change in volume while
conserving shape, while Weyl-curvature does the opposite: It causes a cloud of test
particles to change its shape while conserving the volume.

The idea of the Raychaudhuri-equation is to have a look at the time evolution
of the area enclosed by a bundle of geodesics. The Riemann-curvature splits in two
different parts:

· The Ricci-curvature changes the volume enclosed by a bundle of geodesics but
keeps the shape (typical for FLRW-cosmologies)

· The Weyl-curvature changes shape but conserves the volume (typical for gravi-
tational waves)

Let’s try a classical approach: Two test particles at coordinates x′i and xi have a
relative motion at velocity υi

x′i = xi + υi∆t (B.103)

The relative coordinate mapping is encapsulated in the Jacobian

∂x′i

∂xj
= δij +

∂υi

∂xj
∆t (B.104)

which we could think of as the first-order Taylor expansion of of a matrix-valued
exponential

∂x′i

∂xj
= exp

(
∂υi

∂xj
∆t

)
(B.105)
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b. gravity and concepts of relativity

The coordinate mapping would introduce a change in volume elements given by the
functional determinant

d3x′ = det
(
∂x′

∂x

)
d3x (B.106)

where we can write for the logarithmic change

ln d3x′ = ln det
(
∂x′

∂x

)
+ln d3x = ln d3x′ = tr ln exp

(
∂υi

∂xj
∆t

)
+ln d3x = ∆ttr

∂υi

∂xj
+ln d3x

(B.107)

In this relation, one can identify tr(∂υi /∂xj ) with the divergence of the velocity field:
Intuitively, if this divergence is nonzero, the volume should change.

The Newton equation of motion for small time differences ∆t is

υi = −∂iΦ∆t (B.108)

which suggests for the velocity divergence

∂iυ
i = −∂i∂

iΦ∆t = −∆Φ∆t (B.109)

with the Laplace-operator ∆ = ∂i∂
i , and therefore

ln d3x′ − ln d3x = −∆Φ(∆t)2 ≈ 8πGρ
(∆t)2

2
(B.110)

Therefore, the logarithmic volume change is proportional to the density inside the
volume and ∆Φ ∝ ρ from Poisson’s equation. The volume change measures effectively
the enclosed mass, and suggests that Riemann curvature and tidal field are analogous
quantities, as well as the Ricci-curvature (as the trace of the Riemann curvature) and
the Laplacian of the potential, and that both are coupled to the matter density as the
source of the gravitational field.

The proper relativistic Raychaudhuri-equation makes a statement about the ve-
locity divergence Θ,

Θ = ∇µuµ = gµν∇µuν (B.111)

and states that for the time evolution that

dΘ
dt

= −Θ
2

3
− σµνσ

µν︸ ︷︷ ︸
=0 in FLRW

+ ωµνω
µν︸  ︷︷  ︸

=0 in FLRW

−Rµνu
µuν + ∇µu̇µ. (B.112)

The terms in the Raychaudhuri-equation are the shear,

σµν = ∇µuν + ∇νuµ −
1
3
Θpµν − (u̇µuν + uµu̇ν) (B.113)

and the vorticity
ωµν = ∇µuν − ∇νuµ − (u̇µuν + uµu̇ν) (B.114)
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b.9. raychaudhuri-equation

and finally the proper acceleration

u̇µ = uν∇νuµ (B.115)

which vanishes, if uµ is tangent to the geodesic (from geodesic equation), i.e. with no
non-gravitational accelerations.

FLRW-cosmologies have no preferred axis due to the isotropy postulate, resulting
in vanishing vorticity ω and vanishing shear σ = 0 and therefore

dΘ
dt

= −Θ
2

3
− Rµνu

µuν (B.116)

for the evolution of the velocity divergence. By using comoving FLRW-coordinates
we see no expansion as all, all galaxies stay in their spatial coordinate and only move
in the time-direction. Consequently we choose uµ = (c, 0)t and can now compute the
covariant divergence as

Θ = ∇µuµ =
1√
−det g

∂µ
(√
−det guµ

)
∼ ∂t ln(volume) (B.117)

Specifically, with the FLRW-metric in comoving coordinates

gµν =


c2

−a2

−a2

−a2

 (B.118)

suggesting for the velocity divergence, or equivalently, the volume evolution√
−det g = ca3 (B.119)

and finally

Θ =
1
a3∂t

(
a3

)
= 3

ȧa2

a3 = 3
ȧ
a

= 3H(t) (B.120)

such when replacing proper time by coordinate or cosmic time (t = τ) as specifically
allowed by FLRW-cosmologies one obtains:

dΘ
dt

= −Θ
2

3
− Rµνu

µuν (B.121)

with
dΘ
dt

=
d
dt

ȧ
a

=
ä
a
−
( ȧ
a

)2
(B.122)

In summary, the volume evolution of a FLRW universe is expressed in terms of
the scale factor a and its derivatives, and depends on the term Rµνuµuν, which we
can provide through the field equation of gravity and which depends on the energy-
momentum content of spacetime: It acts as the source of the gravitational field and
introduces curvature, the Ricci-part of which affects the evolution of Θ. It is amazing
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b. gravity and concepts of relativity

to see how volume evolution of the FLRW-spacetime works in Newtonian gravity
and relativity alike, and that the Raychaudhuri-equation makes a sensible statement
about the evolution of the velocity divergence of comoving velocity (which one would
naively visualise as a perfectly parallel vector field in comoving coordinates). Progress
beyond this result is only possible if we assume a specific form of the field equation,
in order to relate the Ricci-tensor to the energy momentum-tensor. Surprising as
it may seem, the Raychaudhuri-equation is a purely geometric statement about
the divergence of a vector field, and does not assume anything specific about the
gravitational theory.

B.10 Energy-momentum tensor

The energy and momentum content of spacetime sources the gravitational field: Very
similar to the case of Maxwell-electrodynamics which is the theory of electric and
magnetic fields for charge-conserving systems, general relativity is the theory of
gravity for energy and momentum conserving systems (although that can be only
formulated locally in the form of gαµ∇αTµν = 0 with the energy-momentum tensor
Tµν). In a fluid picture, energy and momentum conservation would characterise the
dynamics of an ideal (i.e. inviscid) fluid, which can only have three properties: velocity
uµ, density ρ and pressure p, assembled into the energy momentum-tensor Tµν.

Tµν =
(
ρ +

p

c2

)
uµuν − pgµν (B.123)

In a frame where the fluid is at rest, uµ = (c, 0)t and adopting locally flat, Cartesian
coordinates one falls back on a diagonal form,

Tµν =


ρc2 0 0 0

0 p 0 0
0 0 p 0
0 0 0 p

 (B.124)

Ideal fluids are characterised by the conservation law

gαµ∇αTµν = 0 (B.125)

which is not straightforward to interpret, as it is a vectorial statement (in the in-
dex ν): This is in contrast to e.g. the law of charge conservation gαµ∇αȷµ = 0 in
electrodynamics, which is scalar.

It might be intuitive to project the vector ∇µTµν onto the velocity uν and to a plane
perpendicular to it, as uµ is defining naturally a direction. Keeping in mind that the
covariant derivative fulfils a Leibnitz-rule one gets:

∇µTµν = ∇µ
(
ρ +

p

c2

)
uµuν +

(
ρ +

p

c2

)
∇µ(uµuν) − ∇µpgµν (B.126)

with
∇µ(uµuν) = uν∇µuµ + uµ∇µuν︸   ︷︷   ︸

=0 if uµ tangent to a geodesic

(B.127)
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b.11. equation of state for ideal fluids

while any covariant derivative of the metric (and its inverse) vanishes due to metric
compatibility. Carrying out the projection

uν∇µTµν = 0 (B.128)

we end up at

uν∇µTµν = ∇µ
(
ρ +

p

c2

)
uµ uνu

ν︸︷︷︸
c2

+
(
ρ +

p

c2

)
uνu

ν︸︷︷︸
c2

∇µuµ − ∇µp gµνuν︸︷︷︸
uµ

= 0 (B.129)

which can be further simplified to

uν∇µTµν = ∇µρuµc2 + ρ∇µuµc2 + p∇µuµ = ∇µ(ρuµ)c2 + p∇µuµ = 0. (B.130)

The projection of uνTµν = 0 onto a plane perpendicular to uν yields the Euler-
equation (

ρ +
p

c2

)
∇µuνuµ =

(
gµν − uµuν

c2

)
∇µp (B.131)

B.11 Equation of state for ideal fluids

Ideal fluids are characterised by just two quantities (apart from their velocity field
uµ): density ρ and pressure p, and often it is the case that the two are related by an
equation of state which reflects internal properties of the substance. Like in the case
of an ideal classical or relativistic gas there could be a proportionality

p = wρc2 (B.132)

with the equation of state parameter w, which in relativity is often assumed to be
constant (Please remember that energy density and pressure have identical units!). In
a frame where the fluid is at rest we would write uµ = (c,0)t and covariant energy
momentum conservation ∇µTµν = 0 becomes in the choice of comoving coordinates,

∇µ(ρuµ) +
p

c2∇µu
µ = 0 (B.133)

The first term ∇µ(ρuµ) can be taken apart with the Leibnitz-rule

∇µ(ρuµ) = ∇µρ · uµ + ρ∇µuµ = ∂µρ · uµ + ρ∇µuµ (B.134)

resulting in

∂µρ +
(
ρ +

p

c2

)
∇µuµ = 0 (B.135)

by substituting the equation of state p = wρc2. The covariant divergence of the
velocity uµ is

∇µuµ = ∂µu
µ︸︷︷︸

=0

+Γ µαµ uα = Γ iit︸︷︷︸
=H/c

ut = 3
ȧ
a

= 3H(t) (B.136)
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b. gravity and concepts of relativity

and using the fact that ρ is homogeneous and only a function of time, there is just a
single derivative left, ∂µρ = ∂tρ = ρ̇. With the argument we arrive at the continuity
equation

ρ̇ + 3
ȧ
a

(1 + w)ρ = 0 (B.137)

which reflects covariant energy momentum-conservation ∇µTµν = 0 in a FLRW-
spacetime.

Separation of the variables and assuming a constant equation of state parameter
w results in

dρ
ρ

= d ln ρ = −3(1 + w)
da
a

= −3(1 + w)d ln a (B.138)

which can be solved by
ρ ∝ a−3(1+w) (B.139)

In fact, non-relativistic matter with w = 0 would dilute ρ ∝ a−3 as it is simply
dispersed over a larger volume a3, but for relativistic matter with w = 1/3 there
would be an additional redshifting effect leading to ρ ∝ a−4.

Sometimes you find a reformulation of continuity in this way: Multiplying eqn. B.137
with the volume a3 yields

a3 dρ
da

+ 3a2
(
ρ +

p

c2

)
= 0 → d

da
(ρc2a3) = −p d

da
(a3) (B.140)

with the interpretation that the energy density ρc2 of the fluid changes if the volume
changes, performing work against pressure p, reminiscent of the first law of thermo-
dynamics, dU = −pdV: This is why the relation is sometimes called the adiabatic
law.

General relativity is prepared to provide gravity for both fields and fluids, as both
fields and fluids obey covariant conservation of energy and momentum, ∇µTµν = 0
or gµα∇µTαν = 0. But comparing the two cases fluids and fields, in the first case one
would speak of the Poynting-law, and in the second case about the fluid mechanical
equations: It is actually amazing that general relativity can provide gravity for such
different concepts of matter.

B.12 Relativistic fluid mechanics

Let’s start again at the expression for the energy-momentum tensor of an ideal fluid,

Tµν =
(
ρ +

p

c2

)
uµuν − gµνp (B.141)

of which one can directly compute the trace,

gµνTµν = ρc2 − 3p (B.142)

keeping in mind that gµνuµuν = c2 for material particles, which approaches p/(ρc2) =
1/3 for relativistic, massless particles, for which gµνTµν = 0.
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Computing the covariant divergence of Tµν one gets

∇µTµν = ∇µ(ρc2 + p) · uµuν + (ρc2 + p)∇µ(uµuν) − ∇µp · gµν (B.143)

keeping in mind that the covariant derivative of the metric vanishes for a metric-
compatible connection, in particular ∇µgµν = 0 as well for the inverse metric.

Let’s pursue this divergence and let’s make a deliberate mistake by assuming that
the fluid elements follow geodesics, i.e. that an autoparallelity condition applies to
the velocities uµ:

∇µ(uµuν) = ∇µuµ · uν + uµ∇µuν︸   ︷︷   ︸
=0

(B.144)

such that the divergence of the velocity field is the only contributing term, which
we’ve already encountered in the discussion of the Raychaudhuri-equation. Then,

∇µTµν = ∇µ(ρc2 + p) · uµuν + (ρc2 + p)∇µuµ · uν − ∇µp · gµν (B.145)

Now we are projecting (as mentioned above) on the observer’s world line with
uν = dxν/dτ, and by contraction

uν∇µTµν = ∇µ(ρc2 + p) · uµ uνu
ν︸︷︷︸

=1

+(ρc2 + p)∇µ uνu
ν︸︷︷︸

=1

−∇µp · gµνuν︸︷︷︸
=uµ

(B.146)

and arrive the relativistic continuity equation

uν∇µTµν = ∇µ(ρc2uµ) + p∇µuµ = 0 (B.147)

in which we used the covariant conservation in the last step. In the non-relativistic
limit with p ≪ ρc2 this leaves us with only the first summand ∇µ(ρc2uµ) = 0 left.

Furthermore, uµ is given by uµ = (1, βi)T with βi = υi

c and of course |β| ≪ 1 in the
slow motion limit. Lastly, ∇µ becomes ∂µ by adopting locally Cartesian coordinates,
so:

uν∇µTµν = 0 = ∇µ(ρc2uµ) = ∂ct(ρc
2) + ∂i(ρc

2βi) (B.148)

i.e. the classical continuity equation,

∂tρ + ∂i(ρυ
i) = 0. (B.149)

In the real world it turns out that there are incompressible fluids which are char-
acterised by ∂iυ

i = 0 (Please watch out: Incompressibility is a statement about the
velocity field and has little to do with pressure!) and therefore the continuity equation
becomes

∂tρ + ∂iρ · υi = 0 (B.150)

for incompressible fluids.
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We can substitute the relativistic continuity equation back into the conservation
law ∇µTµν = 0 to arrive at

∇µTµν = (∇µ(ρc2uµ) + p∇µuµ)︸                     ︷︷                     ︸
=0 continuity

uν+∇µpuµuν−∇µpgµν = ∇µp(uµuν− gµν) = 0 (B.151)

which states that there are no pressure gradients perpendicular to uµ as uµ is tangent
to a geodesic (or otherwise the fluid doesn’t follow a geodesic in equivalence to the
previous expression). This is particularly relevant for FLRW-cosmologies, as it implies
that there can not be any spatial gradients in pressure, ∇ip = ∂ip = 0, in accordance to
the Copernican-principle. If those gradient would exist, the motion of fluid elements
can not be inertial.

Let’s restart by imposing no condition on geodesic motion of fluid elements. Then,

∇µTµν = ∇µ(ρc2 + p) · uµuν + (ρc2 + p)∇µ(uµuν) − ∇µp · gµν = 0 (B.152)

A useful auxiliary statement can be obtained from the normalisation of uν, where

0 = ∇µ(uνuν︸︷︷︸
=1

) = uν∇µuν + ∇µuν · uν = 2uν∇µuν (B.153)

If one contracts the conservation law with uν, the second term uµ∇µuν becomes
uµuν∇µuν = 0. We therefore end up at

uνTµν = ∇µ(ρc2 + p) · uµ + (ρc2 + p)∇µuµ − ∇µpuµ = ∇µ(ρc2uµ) + p∇µuµ = 0 (B.154)

even if the fluid follows non-geodesic motion. If we resubstitute back into the full,
non-geodesic conservation equation we obtain

∇µTµν = (uµuν − gµν)∇µp + (ρc2 + p)uµ∇µuν = 0 (B.155)

with an additional term being present for non-geodesic motion caused by gradients
in pressure.
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