
A cosmology and the dynamics of the universe

A.1 Physics on cosmological scales

Modern cosmology is a highly interdisciplinary subject: It is concerned with the
dynamics of spacetime on the largest scales, processes in the early Universe such as
cosmic inflation and big bang nucleosynthesis, as well as processes in the late Universe
such as galaxy formation and evolution. It has introduced the concepts of dark matter
and dark energy to explain new gravitational phenomena, and offers a view on
fundamental physics on the largest scales in one of the few exactly solvable cases of
the gravitational field equation. There are many links to the physics of elementary
particles as possible explanations for dark matter. Cosmology joins seemingly separate
areas of general relativity as the theory of gravity with (relativistic) fluid mechanics
for the motion of matter and radiation, thermodynamics for systems in which thermal
equilibria is established and statistics for a description of fluctuations in the matter
distribution. Observables in cosmology are very diverse, ranging from fluctuations
in the radiation backgrounds to the large-scale distribution of galaxies, peculiar
astronomical objects like supernovæ and shape distortions due to gravitational light
deflection.

Typical scales involved in cosmology are defined through the realisation that
distant galaxies seem to be in a recession motion away from us as observers in the
Milky Way. This recession motion can be measured as a redshift in the spectra of these
galaxies and the recession velocity υ increases as a function of distance r, summarised
in the Hubble-law:

υ = H0r (A.1)

with the Hubble-Lemaı̂tre-constant H0. Inspecting the units in eqn. A.1 shows that
1/H0 is a time scale, so we can define:

• tH = 1/H0 ≈ 1017 s is the Hubble-time, which is a good time scale for the age of
the Universe, all known objects are younger than 1/H0.

• χH = c/H0 ≈ 1025 m is the Hubble-distance, which corresponds to the size of
the observable Universe. With the definition of a parsec we get that χH ≃ 3 Gpc.

• Together with the gravitational constant G one can define a density scale ρcrit =
3H2

0/(8πG) ≈ 10−26 kg/m3. This again is the typical density of matter in the
Universe, and corresponds to a galaxy per cubic Mpc or a few atoms per cubic
meter.

Astronomers are famous for choosing weird units and for defining everything
in counter-intuitive ways, and the Hubble-Lemaı̂tre-constant H0 is no exception: A
galaxy at a distance of a Mpc has a recession velocity of about 100 km/s, implying

H0 =
100 km/s

Mpc
=

105 m/s
Mpc

, (A.2)

which in fact is an inverse time scale, with 1 Mpc = 3.0857 × 1022 m. The common
basis for cosmology are Friedmann-Lemaı̂tre-Robertson-Walker models, in which
the dynamics of spacetime and the distribution of matter fulfils the cosmological
principle: Homogeneity, as observations from every position would yield the same re-
sult, and isotropy, as observations into different directions are equivalent. Specifically
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this implies, that the the same Hubble-law would be derived from observations with
the same Hubble-Lemaı̂tre-constant H0 from any position in the Universe and for
every direction (at the current time, observations at earlier or later times might yield
a different H0, depending on the cosmological model). As a consequence, the matter
distribution and the spacetime properties on large scales do not show any spatial
gradients, neither radially nor tangentially, and changes as a function of time only.
This in turn implies, that spherical coordinates should be chosen as an embodiment of
isotropy, and that the coordinate origin can be set to any position due to homogeneity,
most conveniently though to be coinciding with the Milky Way as the galaxy from
which we carry out our observations. As the cosmological principle only holds for the
matter distribution and the properties of spacetime on large scales, and as galaxies
such as the Milky Way show motion relative to the large-scale averaged matter distri-
bution, the idea of a fundamental FLRW-observer is quite abstract, effectively being
at rest relative to the large-scale averaged matter distribution.

A.2 Newtonian gravity

The first section of this script is concerned with Newtonian gravity and Newtonian
cosmology, before turning to general relativity in the subsequent sections: It is il-
lustrative and educating to see how far one can actually get with a classical theory
of gravity! Newtonian gravity is linear, so the superposition principle holds, and
typically one postulates the Poisson-equation

∆Φ = 4πGρ (A.3)

as the field equation for the potential Φ being sourced by the matter density ρ.
One could argue that the reasoning behind the Poisson-equation is the gravitational
acceleration g i = −∂iΦ as the field strength, which follows a Gauß-law similar to
electrodynamics: ∂ig

i = −4πGρ. This can be interpreted pictorially by the Gauß-
theorem∫

V

d3x ∂ig
i =

∫
∂V

dSi g
i = 4πr2 gr = −4πG

∫
V

d3x ρ = −4πGM → gr = −GM
r2

(A.4)

with the mass M, such that the field strength in radial direction gr follows a Coulomb-
like law, and the quadratic decrease in acceleration is a direct consequence of the
quadratic increase of surfaces of spheres in three dimensions.

A better argument for deriving the Poisson-equation is a variational principle: A
good starting point could be a Lagrange-density L which would depend on the field
Φ and its first derivatives ∂iΦ:

L(Φ, ∂iΦ) =
1
2
γij∂iΦ∂jΦ + 4πGρΦ (A.5)

with the Euclidian metric γij : We use it to form a rotationally invariant quantity as a
square of first derivatives; as an expression of the rotational invariance of Euclidean
space. The integral over the Lagrange-density over the domain where the field is
defined defines the action S

S =
∫

d3x L(Φ, ∂iΦ) (A.6)
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and the Hamilton principle supposes that δS = 0 leads to the field equation deter-
mining the relation between potential and charge, in our case the matter density:

δS =
∫

d3x
∂L
∂Φ

δΦ +
∂L

∂(∂iΦ)
δ(∂iΦ)︸ ︷︷ ︸
∂i (δΦ)

=
∫

d3x

(
∂L
∂Φ
− ∂i

∂L
∂∂iΦ

)
δΦ = 0 (A.7)

where in the second step an integration by parts has been carried out, with the
assumption of vanishing variations on the boundary of the domain. The integral can
only be universally zero if the term in the brackets is zero: This is the well-known
Euler-Lagrange-equation

∂L
∂Φ
− ∂i

∂L
∂∂iΦ

= 0 (A.8)

From the particular Lagrange-density eqn. A.5 we can first derive

∂L
∂Φ

= 4πGρ (A.9)

and then take care of the second derivative, where it’s always a good idea to rename
the indices:

∂L
∂∂iΦ

=
∂

∂∂iΦ

(
γab∂aΦ∂bΦ

)
= γab

 ∂∂aΦ

∂∂iΦ︸︷︷︸
δia

∂bΦ + ∂aΦ
∂∂bΦ

∂∂iΦ︸︷︷︸
δib

 = γab

δia∂bΦ + δib∂aΦ


(A.10)

followed by a further differentiation ∂i as required by the Euler-Lagrange equa-
tion A.8:

∂i
∂L

∂(∂iΦ)
=

1
2
γab

(
∂iδ

i
a∂bΦ + ∂iδ

i
b∂aΦ

)
= ∆Φ (A.11)

with ∆ = γab∂a∂b, leading to the classical Poisson-equation:

∆Φ = 4πGρ (A.12)

The Lagrange-density is the ideal expression to generalise the theory: If we restrict
ourselves to linear theories that can fulfil the superposition principle and have at
most field equations of second order, the most general expression would be

L(Φ, ∂iΦ) =
1
2
γij∂iΦ∂jΦ + 4πGρΦ + λΦ +

m2

2
Φ2 (A.13)

with m and λ as new constants, neither of the new terms would violate linearity.
Variation of the action S =

∫
d3x L suggests as the field equation

(∆ −m2)Φ = 4πGρ + λ. (A.14)

λ is the (classical) cosmological constant, even if ρ = 0 the potential Φ would be
sourced ∆Φ = λ with the solution Φ = λr2/6:
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∆Φ =
1
r2∂r

(
r2∂rΦ

)
= λ (A.15)

such that there are gravitational effects even in empty space, as there is an acceleration
gr = −∂rΦ = −λr/3. The parameter m introduces a screening of the gravitational
potential at large distances: Φ would fall off more rapidly than 1/r as the solution for
Φ would be Φ ∝ exp(−mr)/r (in 3 dimensions). The field equation (∆ − m2)Φ = 4πGρ
is the Yukawa-field equation and 1/m plays the role of a screening length, keeping Φ
from propagating to large distances.

When Albert Einstein worked on general relativity there were only weak indica-
tions from experiment that Newtonian gravity was not the correct theory of gravity,
for instance the tiny perihelion advance of the planet Mercury, which does not follow
an exact closed Kepler-ellipse. Conceptually, one weird issue is that the changes to
the gravitational potential would be instantaneous, as the Poisson-equation does not
include any dynamical description of the field Φ. But with some intuition about rela-
tivity one could make the replacements ∂i → ∂µ and γij → ηµν such that a dynamical
linear gravitational theory would be:

L(Φ, ∂µΦ) =
1
2
ηµν∂µΦ∂νΦ − 4πGρΦ − λΦ − m2

2
Φ2 (A.16)

which, after variation, suggests a wave equation for the potential Φ:

(□ + m2)Φ = −4πGρ − λ (A.17)

with the d’Alembert-operator □ = ηµν∂µ∂ν = ∂2
ct − ∆ replacing the Laplace-operator

∆ = γij∂i∂j . The wave equation is of course solved by plane waves,

Φ ∼ exp(±ikµx
µ) = exp(±iηµνk

µxµ) → □Φ = −kµkµΦ =
(
−
(
ω

c

)2
+ k2

)
Φ (A.18)

with a wave vector kµ = (ω/c, ki)t , which leads to a vacuum solution (for ρ = 0):

(□ + m2)Φ = (−kµkµ + m2)Φ = λΦ with υ(k) =
dω
dk

=
±ck

√
k2 + m2 − λ

(A.19)

such that m > 0 causes the waves to travel at sub-luminal speeds (if λ = 0 always):
This suggests the interpretation of the Yukawa-screening length 1/m as a mass!
General relativity suggests that the term m is exactly zero already from theoretical
arguments (we’ll come to that!), and it is in fact measured through the propagation
velocity of gravitational waves to be near vanishing.

Jumping ahead to Friedmann-cosmologies, where matter is uniformly distributed
throughout space and where the gravitational potential does not change along the
spatial coordinates (∂iΦ = 0) and only evolves with time (∂ctΦ , 0), one can get very
close to the second Friedmann equation, as

∂2
ct
Φ

c2 = −
4πGρc2

c4 +
λ

c2 bears similarities to
ä
a

= −
4πGρc2

c4 +
Λ

3c2 (A.20)
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Table 1: Compilation of the simplest solutions of general relativity together with their sym-
metries and peculiar physical properties. It should be emphasised that a coordinate choice
has been taken which is particularly suited to the symmetry of the respective spacetimes.

black holes grav. waves FLRW-cosmologies white dwarfs
homogeneous t r ± ct r t
isotropic yes no yes yes
varies along r r,t t r
gravity strong weak strong weak...strong

scales rS = 2GM
c2 linear physics ρcrit = 3H2

0
8πG eqn. of state

curvature Weyl Weyl Ricci Weyl + Ricci
sources vacuum solution vacuum solution p, ρ (ideal fluid) p, ρ (ideal fluid)

Table 2: Regimes of general relativity and physical systems as examples
strong weak

static black holes Newton gravity
dynamic FLRW-cosmologies gravitational waves

Hence, we could motivate the second Friedmann-equation by using Newtonian
gravity and some aspects of relativity. Clearly, we need to worry about the dynamics of
the gravitational field and about the conservation law of the source of the gravitational
field.

In (nearly) every textbook on general relativity the following four (highly symmet-
ric) solutions of systems with gravity are discussed: black holes, gravitational waves,
FLRW-cosmologies and white dwarfs, which are listed in Table A.2.

Sections B and F of this script will illustrate all aspects of relativistic gravity in
cosmology, most importantly how gravity can be dynamical, how it can be strong as
opposed to Newtonian gravity, and how the equation of state of the gravity-sourcing
substances in the Universe matters. The different regimes of gravity are juxtaposed in
Table A.2: In cosmology we are dealing with a system of strong, time-varying gravity.

A.3 Newtonian cosmology

It is surprising how many features of proper, relativistic cosmology can be recovered
and in fact understood on the basis of Newtonian gravity. Imagine two point particles
embedded into an infinitely extended homogeneous medium, which changes its
density as a function of time as a result of gravity sourced by the medium. The
relative motion of the two test particles separated by r follows, by application of
Birkhoff’s theorem, from the gravitational effect of the matter inside a sphere centered
around the first particle, with the second particle residing on the surface of the sphere.
The specific total energy E would be given by

E = T + V =
ṙ2

2
− GM

r
=

ṙ2

2
− 4π

3
Gρr2 (A.21)

where the potential energy is straightforwardly given by a Coulomb-type potential,
as all matter inside the sphere acts as if it was concentrated at the centre. Introducing
a comoving radius x, which is related to the physical radius by r(t) = a(t)x and which

5



a. cosmology and the dynamics of the universe

does not depend itself on time, then gives

E =
ȧ2x2

2
− 4π

3
Gρa2x2 (A.22)

which would be conserved in the course of time evolution. Solving for the Hubble-
function ȧ/a, defined as the normalised velocity, gives( ȧ

a

)2
= H2 =

8πG
3

ρ − c2k

a2 (A.23)

with the constant c2k = −2E/x2. Already in this formula, which will correspond to the
first Friedmann-equation, one can see that with the value H0 for the Hubble-function
today one obtains a scale for the density,

ρcrit =
3H2

0
8πG

(A.24)

Differentiation of the first Friedmann-equation with respect to t yields

2H
( ä
a
− H2

)
=

8πG
3

ρ̇ + 2
c2k
a

H (A.25)

but for continuing it would be necessary to know ρ̇. The energy density of matter
inside the sphere changes as the sphere expands, but depends also on work being
performed:

dU + pdV = TdS (A.26)

according to the first law of thermodynamics. If there are no heat flows and no heat
generation by nuclear or chemical processes, then the expansion is adiabatic with
dS = 0. If then in addition the medium is pressureless dust, then pdV = 0 in addition,
leaving only the first term. The energy content of the medium would just be the
energy associated with rest mass

U =
4π
3

a3ρc2 → dU = U̇dt = 0 with U̇ = 4πa2ȧρc2 +
4π
3

a3ρ̇c2 (A.27)

invoking energy conservation. Then,

ρ̇ + 3
ȧ
a
ρ = 0 or ρ̇ + 3Hρ = 0 (A.28)

By substitution into eqn. A.25 then yields the second Friedmann-equation

ä
a

= −4πG
3

ρ (A.29)

implying that there is a gravitational effect on the expansion dynamics of the Universe,
as positive matter densities slow down the expansion.
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