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A cosmology and the dynamics of the universe

A.1 Physics on cosmological scales

Modern cosmology is a highly interdisciplinary subject: It is concerned with the
dynamics of spacetime on the largest scales, processes in the early Universe such as
cosmic inflation and big bang nucleosynthesis, as well as processes in the late Universe
such as galaxy formation and evolution. It has introduced the concepts of dark matter
and dark energy to explain new gravitational phenomena, and offers a view on
fundamental physics on the largest scales in one of the few exactly solvable cases of
the gravitational field equation. There are many links to the physics of elementary
particles as possible explanations for dark matter. Cosmology joins seemingly separate
areas of general relativity as the theory of gravity with (relativistic) fluid mechanics
for the motion of matter and radiation, thermodynamics for systems in which thermal
equilibria is established and statistics for a description of fluctuations in the matter
distribution. Observables in cosmology are very diverse, ranging from fluctuations
in the radiation backgrounds to the large-scale distribution of galaxies, peculiar
astronomical objects like supernovæ and shape distortions due to gravitational light
deflection.

Typical scales involved in cosmology are defined through the realisation that
distant galaxies seem to be in a recession motion away from us as observers in the
Milky Way. This recession motion can be measured as a redshift in the spectra of these
galaxies and the recession velocity υ increases as a function of distance r, summarised
in the Hubble-law:

υ = H0r (A.1)

with the Hubble-Lemaı̂tre-constant H0. Inspecting the units in eqn. A.1 shows that
1/H0 is a time scale, so we can define:

• tH = 1/H0 ≈ 1017 s is the Hubble-time, which is a good time scale for the age of
the Universe, all known objects are younger than 1/H0.

• χH = c/H0 ≈ 1025 m is the Hubble-distance, which corresponds to the size of
the observable Universe. With the definition of a parsec we get that χH ≃ 3 Gpc.

• Together with the gravitational constant G one can define a density scale ρcrit =
3H2

0/(8πG) ≈ 10−26 kg/m3. This again is the typical density of matter in the
Universe, and corresponds to a galaxy per cubic Mpc or a few atoms per cubic
meter.

Astronomers are famous for choosing weird units and for defining everything
in counter-intuitive ways, and the Hubble-Lemaı̂tre-constant H0 is no exception: A
galaxy at a distance of a Mpc has a recession velocity of about 100 km/s, implying

H0 =
100 km/s

Mpc
=

105 m/s
Mpc

, (A.2)

which in fact is an inverse time scale, with 1 Mpc = 3.0857 × 1022 m. The common
basis for cosmology are Friedmann-Lemaı̂tre-Robertson-Walker models, in which
the dynamics of spacetime and the distribution of matter fulfils the cosmological
principle: Homogeneity, as observations from every position would yield the same re-
sult, and isotropy, as observations into different directions are equivalent. Specifically
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a. cosmology and the dynamics of the universe

this implies, that the the same Hubble-law would be derived from observations with
the same Hubble-Lemaı̂tre-constant H0 from any position in the Universe and for
every direction (at the current time, observations at earlier or later times might yield
a different H0, depending on the cosmological model). As a consequence, the matter
distribution and the spacetime properties on large scales do not show any spatial
gradients, neither radially nor tangentially, and changes as a function of time only.
This in turn implies, that spherical coordinates should be chosen as an embodiment of
isotropy, and that the coordinate origin can be set to any position due to homogeneity,
most conveniently though to be coinciding with the Milky Way as the galaxy from
which we carry out our observations. As the cosmological principle only holds for the
matter distribution and the properties of spacetime on large scales, and as galaxies
such as the Milky Way show motion relative to the large-scale averaged matter distri-
bution, the idea of a fundamental FLRW-observer is quite abstract, effectively being
at rest relative to the large-scale averaged matter distribution.

A.2 Newtonian gravity

The first section of this script is concerned with Newtonian gravity and Newtonian
cosmology, before turning to general relativity in the subsequent sections: It is il-
lustrative and educating to see how far one can actually get with a classical theory
of gravity! Newtonian gravity is linear, so the superposition principle holds, and
typically one postulates the Poisson-equation

∆Φ = 4πGρ (A.3)

as the field equation for the potential Φ being sourced by the matter density ρ.
One could argue that the reasoning behind the Poisson-equation is the gravitational
acceleration g i = −∂iΦ as the field strength, which follows a Gauß-law similar to
electrodynamics: ∂ig

i = −4πGρ. This can be interpreted pictorially by the Gauß-
theorem∫

V

d3x ∂ig
i =

∫
∂V

dSi g
i = 4πr2 gr = −4πG

∫
V

d3x ρ = −4πGM → gr = −GM
r2

(A.4)

with the mass M, such that the field strength in radial direction gr follows a Coulomb-
like law, and the quadratic decrease in acceleration is a direct consequence of the
quadratic increase of surfaces of spheres in three dimensions.

A better argument for deriving the Poisson-equation is a variational principle: A
good starting point could be a Lagrange-density L which would depend on the field
Φ and its first derivatives ∂iΦ:

L(Φ, ∂iΦ) =
1
2
γij∂iΦ∂jΦ + 4πGρΦ (A.5)

with the Euclidian metric γij : We use it to form a rotationally invariant quantity as a
square of first derivatives; as an expression of the rotational invariance of Euclidean
space. The integral over the Lagrange-density over the domain where the field is
defined defines the action S

S =
∫

d3x L(Φ, ∂iΦ) (A.6)

2
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a.2. newtonian gravity

and the Hamilton principle supposes that δS = 0 leads to the field equation deter-
mining the relation between potential and charge, in our case the matter density:

δS =
∫

d3x
∂L
∂Φ

δΦ +
∂L

∂(∂iΦ)
δ(∂iΦ)︸ ︷︷ ︸
∂i (δΦ)

=
∫

d3x

(
∂L
∂Φ
− ∂i

∂L
∂∂iΦ

)
δΦ = 0 (A.7)

where in the second step an integration by parts has been carried out, with the
assumption of vanishing variations on the boundary of the domain. The integral can
only be universally zero if the term in the brackets is zero: This is the well-known
Euler-Lagrange-equation

∂L
∂Φ
− ∂i

∂L
∂∂iΦ

= 0 (A.8)

From the particular Lagrange-density eqn. A.5 we can first derive

∂L
∂Φ

= 4πGρ (A.9)

and then take care of the second derivative, where it’s always a good idea to rename
the indices:

∂L
∂∂iΦ

=
∂

∂∂iΦ

(
γab∂aΦ∂bΦ

)
= γab

 ∂∂aΦ

∂∂iΦ︸︷︷︸
δia

∂bΦ + ∂aΦ
∂∂bΦ

∂∂iΦ︸︷︷︸
δib

 = γab

δia∂bΦ + δib∂aΦ


(A.10)

followed by a further differentiation ∂i as required by the Euler-Lagrange equa-
tion A.8:

∂i
∂L

∂(∂iΦ)
=

1
2
γab

(
∂iδ

i
a∂bΦ + ∂iδ

i
b∂aΦ

)
= ∆Φ (A.11)

with ∆ = γab∂a∂b, leading to the classical Poisson-equation:

∆Φ = 4πGρ (A.12)

The Lagrange-density is the ideal expression to generalise the theory: If we restrict
ourselves to linear theories that can fulfil the superposition principle and have at
most field equations of second order, the most general expression would be

L(Φ, ∂iΦ) =
1
2
γij∂iΦ∂jΦ + 4πGρΦ + λΦ +

m2

2
Φ2 (A.13)

with m and λ as new constants, neither of the new terms would violate linearity.
Variation of the action S =

∫
d3x L suggests as the field equation

(∆ −m2)Φ = 4πGρ + λ. (A.14)

λ is the (classical) cosmological constant, even if ρ = 0 the potential Φ would be
sourced ∆Φ = λ with the solution Φ = λr2/6:

3
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a. cosmology and the dynamics of the universe

∆Φ =
1
r2∂r

(
r2∂rΦ

)
= λ (A.15)

such that there are gravitational effects even in empty space, as there is an acceleration
gr = −∂rΦ = −λr/3. The parameter m introduces a screening of the gravitational
potential at large distances: Φ would fall off more rapidly than 1/r as the solution for
Φ would be Φ ∝ exp(−mr)/r (in 3 dimensions). The field equation (∆ − m2)Φ = 4πGρ
is the Yukawa-field equation and 1/m plays the role of a screening length, keeping Φ
from propagating to large distances.

When Albert Einstein worked on general relativity there were only weak indica-
tions from experiment that Newtonian gravity was not the correct theory of gravity,
for instance the tiny perihelion advance of the planet Mercury, which does not follow
an exact closed Kepler-ellipse. Conceptually, one weird issue is that the changes to
the gravitational potential would be instantaneous, as the Poisson-equation does not
include any dynamical description of the field Φ. But with some intuition about rela-
tivity one could make the replacements ∂i → ∂µ and γij → ηµν such that a dynamical
linear gravitational theory would be:

L(Φ, ∂µΦ) =
1
2
ηµν∂µΦ∂νΦ − 4πGρΦ − λΦ − m2

2
Φ2 (A.16)

which, after variation, suggests a wave equation for the potential Φ:

(□ + m2)Φ = −4πGρ − λ (A.17)

with the d’Alembert-operator □ = ηµν∂µ∂ν = ∂2
ct − ∆ replacing the Laplace-operator

∆ = γij∂i∂j . The wave equation is of course solved by plane waves,

Φ ∼ exp(±ikµx
µ) = exp(±iηµνk

µxµ) → □Φ = −kµkµΦ =
(
−
(
ω

c

)2
+ k2

)
Φ (A.18)

with a wave vector kµ = (ω/c, ki)t , which leads to a vacuum solution (for ρ = 0):

(□ + m2)Φ = (−kµkµ + m2)Φ = λΦ with υ(k) =
dω
dk

=
±ck

√
k2 + m2 − λ

(A.19)

such that m > 0 causes the waves to travel at sub-luminal speeds (if λ = 0 always):
This suggests the interpretation of the Yukawa-screening length 1/m as a mass!
General relativity suggests that the term m is exactly zero already from theoretical
arguments (we’ll come to that!), and it is in fact measured through the propagation
velocity of gravitational waves to be near vanishing.

Jumping ahead to Friedmann-cosmologies, where matter is uniformly distributed
throughout space and where the gravitational potential does not change along the
spatial coordinates (∂iΦ = 0) and only evolves with time (∂ctΦ , 0), one can get very
close to the second Friedmann equation, as

∂2
ct
Φ

c2 = −
4πGρc2

c4 +
λ

c2 bears similarities to
ä
a

= −
4πGρc2

c4 +
Λ

3c2 (A.20)

4

https://en.wikipedia.org/wiki/Albert_Einstein


a.3. newtonian cosmology

Table 1: Compilation of the simplest solutions of general relativity together with their sym-
metries and peculiar physical properties. It should be emphasised that a coordinate choice
has been taken which is particularly suited to the symmetry of the respective spacetimes.

black holes grav. waves FLRW-cosmologies white dwarfs
homogeneous t r ± ct r t
isotropic yes no yes yes
varies along r r,t t r
gravity strong weak strong weak...strong

scales rS = 2GM
c2 linear physics ρcrit = 3H2

0
8πG eqn. of state

curvature Weyl Weyl Ricci Weyl + Ricci
sources vacuum solution vacuum solution p, ρ (ideal fluid) p, ρ (ideal fluid)

Table 2: Regimes of general relativity and physical systems as examples
strong weak

static black holes Newton gravity
dynamic FLRW-cosmologies gravitational waves

Hence, we could motivate the second Friedmann-equation by using Newtonian
gravity and some aspects of relativity. Clearly, we need to worry about the dynamics of
the gravitational field and about the conservation law of the source of the gravitational
field.

In (nearly) every textbook on general relativity the following four (highly symmet-
ric) solutions of systems with gravity are discussed: black holes, gravitational waves,
FLRW-cosmologies and white dwarfs, which are listed in Table A.2.

Sections B and F of this script will illustrate all aspects of relativistic gravity in
cosmology, most importantly how gravity can be dynamical, how it can be strong as
opposed to Newtonian gravity, and how the equation of state of the gravity-sourcing
substances in the Universe matters. The different regimes of gravity are juxtaposed in
Table A.2: In cosmology we are dealing with a system of strong, time-varying gravity.

A.3 Newtonian cosmology

It is surprising how many features of proper, relativistic cosmology can be recovered
and in fact understood on the basis of Newtonian gravity. Imagine two point particles
embedded into an infinitely extended homogeneous medium, which changes its
density as a function of time as a result of gravity sourced by the medium. The
relative motion of the two test particles separated by r follows, by application of
Birkhoff’s theorem, from the gravitational effect of the matter inside a sphere centered
around the first particle, with the second particle residing on the surface of the sphere.
The specific total energy E would be given by

E = T + V =
ṙ2

2
− GM

r
=

ṙ2

2
− 4π

3
Gρr2 (A.21)

where the potential energy is straightforwardly given by a Coulomb-type potential,
as all matter inside the sphere acts as if it was concentrated at the centre. Introducing
a comoving radius x, which is related to the physical radius by r(t) = a(t)x and which

5



a. cosmology and the dynamics of the universe

does not depend itself on time, then gives

E =
ȧ2x2

2
− 4π

3
Gρa2x2 (A.22)

which would be conserved in the course of time evolution. Solving for the Hubble-
function ȧ/a, defined as the normalised velocity, gives( ȧ

a

)2
= H2 =

8πG
3

ρ − c2k

a2 (A.23)

with the constant c2k = −2E/x2. Already in this formula, which will correspond to the
first Friedmann-equation, one can see that with the value H0 for the Hubble-function
today one obtains a scale for the density,

ρcrit =
3H2

0
8πG

(A.24)

Differentiation of the first Friedmann-equation with respect to t yields

2H
( ä
a
− H2

)
=

8πG
3

ρ̇ + 2
c2k
a

H (A.25)

but for continuing it would be necessary to know ρ̇. The energy density of matter
inside the sphere changes as the sphere expands, but depends also on work being
performed:

dU + pdV = TdS (A.26)

according to the first law of thermodynamics. If there are no heat flows and no heat
generation by nuclear or chemical processes, then the expansion is adiabatic with
dS = 0. If then in addition the medium is pressureless dust, then pdV = 0 in addition,
leaving only the first term. The energy content of the medium would just be the
energy associated with rest mass

U =
4π
3

a3ρc2 → dU = U̇dt = 0 with U̇ = 4πa2ȧρc2 +
4π
3

a3ρ̇c2 (A.27)

invoking energy conservation. Then,

ρ̇ + 3
ȧ
a
ρ = 0 or ρ̇ + 3Hρ = 0 (A.28)

By substitution into eqn. A.25 then yields the second Friedmann-equation

ä
a

= −4πG
3

ρ (A.29)

implying that there is a gravitational effect on the expansion dynamics of the Universe,
as positive matter densities slow down the expansion.

6
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B gravity and concepts of relativity

B.1 Metric structure of spacetime

Spacetime is first of all a topological space, where the points are given coordinates by
a continuous coordinate mapping (the system of open sets allows specifically to define
continuity of a mapping), where the coordinates are arranged in a coordinate tuple,
for instance xµ = (ct, xi)t . Unlike in vector spaces, differences between coordinates
as distances have no meaning, but one needs a metric tensor to compute the line
element ds2 from an infinitesimal coordinate difference dxµ: As the metric tensor can
change across the manifold, all definitions are only made in a local way.

Starting with a Euclidean manifold with a metric γij one would write down for
the line element

ds2 = dxidx
i = γijdx

idxj = dx2 + dy2 + dz2 (B.30)

where the last equality is true for Cartesian coordinates as a particular coordinate
choice, where γij = δij . Euclidian space is a flat space with no curvature, and there
is invariance of ds2 under rotations. Generalising to Minkowskian space, we get the
line-element

ds2 = dxµdxµ = ηµνdx
µdxν = c2dt2 − dx2 − dy2 − dz2 (B.31)

again with the last equality being applicable if Cartesian coordinates have been
chosen. Minkowskian space is flat, too, there is no curvature and it is invariant under
Lorentz-transformations. In opposite to the Euclidian line-element, the line-element
is no longer positive definite, which means that there can be negative distances. In
practice, this is never an actual issue, as only events with positive distances ds2 > 0
are causally related to each other. At the same time, ds2 = 0 defines a light cone
structure for the manifold. Both examples are (pseudo-)Riemannian manifolds where
the line element is given by a quadratic form

ds2 = gµνdx
µdxν (B.32)

with a general metric tensor gµν. In 4 dimensions there are 10 independent entries
of gµν due to the symmetry gµν = gνµ: Any anti-symmetric part would not be able
to influence the value of ds2 as dxµdxν is fully symmetric. On a manifold we will
establish invariance of line elements as general scalars under arbitrary coordinate
transforms, generalising the idea of the invariance of the Euclidean line element under
rotations and the invariance of the Minkowski-line element under Lorentz-transforms.
To make this specific, we have for an invertible and differentiable coordinate change (a
so-called diffeomorphism):

x′ρ = x′ρ(xµ) → dx′ρ =
∂x′ρ

∂xµ
dxµ (B.33)

as well as the inverse

xµ = xµ(x′ρ) → dxµ =
∂xµ

∂x′ρ
dx′ρ (B.34)
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b. gravity and concepts of relativity

If the line element is to be invariant as a scalar, the metric gµν needs to transform
inversely to dxµ:

ds2 = gµνdx
µdxν = gµν

∂xµ

∂x′ρ
∂xν

∂x′σ
dx′ρdx′σ = g ′ρσdx′ρdx′σ (B.35)

i.e.

gµν
∂xµ

∂x′ρ
∂xν

∂x′σ
= g ′ρσ (B.36)

and the general picture emerges that contravariant (superscript) indices transform
with Jacobians ∂x′ρ

∂xµ whereas covariant (subscript) indices transform with inverse
Jacobians ∂xµ

∂x′ρ .

B.2 Metric and inner products

Picking up this idea lets us write for a vector υµ with contravariant indices

υµ → υ′ρ =
∂x′ρ

∂xµ
υµ (B.37)

with a Jacobian ∂x′ρ

∂xµ and for a linear form wµ with covariant indices

wµ → w′ρ =
∂xµ

∂x′ρ
wµ (B.38)

with an inverse Jacobian ∂xµ

∂x′ρ , such that inner products stay invariant:

wµυ
µ = gµνw

µυν → w′µυ
′µ = g ′µνw

′µυ′ν =
∂xρ

∂x′µ
∂x′µ

∂xσ︸     ︷︷     ︸
δ
ρ
µ

wρυ
σ = wσυ

σ (B.39)

as Jacobian cancels with the inverse Jacobian and simply a renaming of the indices is
taking place.

The index shift carried out by the metric υµ = gµρυ
ρ is undone by the inverse

metric υσ = gσµυµ = gσµgµρυ
ρ = δσρυ

ρ, such that the inverse metric fulfils

gσµgµρ = δσρ (B.40)

Please keep in mind that
gµνgµν = δ

µ
µ = 4 (B.41)

in 4 dimensions, and not equal to 2, as on might (naively) think.
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b.3. vectors and covariant derivatives

B.3 Vectors and covariant derivatives

Considering a curve xµ(λ) with parameter λ cutting through a field ϕ(xµ): How would
ϕ change along the curve as λ changes? The chain rule suggests that

dϕ
dλ

=
d

dλ
ϕ(xµ(λ)) =

dxµ

dλ︸︷︷︸
tangent

∂ϕ

∂xµ
= uµ

∂ϕ

∂xµ
(B.42)

with the tangent uµ = dxµ/dλ, such that the rate of change of ϕ along the curve
xµ(λ) is given as a projection of the gradient field ∂ϕ/∂xµ = ∂µϕ onto the tangent uµ.
From this we recognise that uµ as well as dxµ are vectors, and ∂µϕ is a linear form. It
is possible to run curves through a point A in all possible directions and construct
vectors dxµ tangent to them, and the minimal collection of dxµ would constitute the
basis of a tangent space TAM of the manifold M at A, relative to which all tensor of
vector fields can be expressed in components. Most sensibly, one would run these
curves through A by changing a single coordinate at a time: But this implies that
the construction of the basis for TAM would depend on the coordinate choice and
could be different at another point B! That has in fact profound implications when
considering changes to a vector or tensor field across the manifold: The components
of the field can become different because the basis has changed going from TAM to
TBM, or there could be a genuine change in the field, and the two cases would need to
be distinguished.

But before we investigate that in detail, we should try out a remapping of the
coordinates in equation B.42. Writing xµ(x′α) we can introduce a ”one” δνµ = ∂xν/∂xµ

in the form of two mutually annihilating Jacobians,

dϕ
dλ

=
dxµ

dλ
∂ϕ

∂xµ
=

dxµ

dλ
δνµ

∂ϕ

∂xν
=

dxµ

dλ
∂x′α

∂xµ
∂xν

∂x′α︸      ︷︷      ︸
δνµ

∂ϕ

∂xν
=

dx′α

dλ
∂ϕ

∂x′α
(B.43)

suggesting that vectors such as uµ transform with the Jacobian ∂x′α

∂xµ while linear
forms like ∂µϕ transform with the inverse Jacobian ∂xν

∂x′α .
We need the concept of a parallel transport to quantify changes in a vector field

υµ across the manifold M. The components of the vector are given in terms of a local
coordinate frame which is the basis of TAM, and which might differ from the frame
at TBM, implying that the same abstract vector υ could have different components at
A and B: We need to disentangle changes of the tangent space from genuine changes
in the vector field! For this purpose, one introduces parallel transport, which moves a
vector perfectly from A to B and tracks only the change in tangent space. If the two
points are separated by δx, the parallel-transported, perfect copy υµ∥ at the point B
with coordinates x + δx of the original vector υµ at point A with coordinates x is given
at linear order

υ
µ

∥ (x + δx) = υµ(x) − Γ µαβ υ
α(x)δxβ + ... (B.44)

where the minus-sign is chosen by convention. The coefficients Γ µαβ form the
Christoffel-symbol. A vector field would now change genuinely if it differs at position
x + δx from the parallel-transported vector field. We are now only comparing two
vector fields υµ(x + δx) and υµ∥ (x + δx) at the same point within the same tangent space
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b. gravity and concepts of relativity

TBM, as opposed to a direct comparison of υµ(x + δx) with υµ(x) which is senseless
as the tangent spaces TAM and TBM are in general different and the component
expansion of υ exists in two different bases:

lim
δxβ→0

υµ(x + δx) − υµ∥ (x + δx)

δxβ
=

lim
δxβ→0

υµ(x + δx) − υµ(x)
δxβ

+ Γ µαβ υ
α(x)

δxβ

δxβ
=

∂βυ
µ + Γ µαβ υ

α ≡ ∇βυα (B.45)

Here, we have identified a straightforward index-by-index change of the vector field
over the shift δx as the partial differentiation ∂βυ

µ, which gets corrected by the
Christoffel-symbol tracking the change of the tangent spaces.

It is important to realise that the covariant differentiation becomes only relevant
for fields that have internal degrees of freedom, whose decomposition in components
depend on the change in tangent space moving from TAM to TBM. Scalar fields are
oblivious to these changes, and therefore the covariant differentiation falls back on
the conventional partial differentiation:

∇βϕ = ∂βϕ (B.46)

For higher-order tensorial fields one needs a Christoffel-symbol for each index: You
can imagine that the basis for such an object is the Cartesian product, and that the
differentiation fulfils a Leibnitz-rule, such that we get

∇βTµν = ∂βTµν + Γ µβα Tαν + Γ νβα Tµα (B.47)

Let’s now have a look at the differentiation of a covariant vector or, equivalently, a
linear form. A contraction between the vector υµ and the linear form wµ is scalar, so
the covariant differentiation falls back onto the partial one:

∇β(υµwµ) = ∂β(υ
µwµ) = ∂βυ

µ · wµ + υµ∂wµ (B.48)

If, on the other side, the covariant differentiation comes with a Leibnitz-rule for
dealing with products we would write

∇β(υµwµ) = ∇βυµ · wµ + υµ∇wµ = (∂βυ
µ + Γ µαβ υ

α)︸              ︷︷              ︸
∂βυµ from above

wµ + υµ ∇βwµ︸︷︷︸
isolate this term

(B.49)

Isolating the covariant derivative ∇βwµ of the linear form wµ we get:

υµ∇βwµ = υµ∂βw
µ − Γ µαβ υ

αwµ = υµ∂βw
µ − Γ αµβ υ

µwα (B.50)

after renaming indices and finally

∇βwµ = ∂βwµ − Γ αµβ wα (B.51)
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b.3. vectors and covariant derivatives

implying that a linear form needs a negative Christoffel-symbol, as opposed to a
vector with a positive Christoffel-term.

With this definition the covariant derivative depends completely on the choice
of the connection coefficients Γ αµν , but we should be guided by the idea that the
two structures that exist on the manifold, (i) the metric structure which allows the
measurements of angles between vectors and determinations of their lengths, and
(ii) the differential structure which quantifies rates of change of vectors, should be
compatible with each other. Specifically, if two vectors are parallel-transported, their
length and relative orientation should not change, and as a consequence their scalar
product should be unaffected. With the covariant derivative

∇βυµ = lim
δxβ→0

υµ(x + δx) − υµ∥ (x + δx)

δxβ
(B.52)

based on the parallel transport

υ
µ

∥ (x + δx) = υµ(x) + Γ µαβ υ
αδxβ (B.53)

we can reformulate parallel transport in an operator notation: The vector υµ(x + δx)
must be equal to υµ∥ (x+ δx) + δxβ∇βυµ. Perfect parallel transport means that the vector

υµ(x + δx) at TBM and υµ∥ (x + δx) transported from TAM to TBM by the shift δx are

now identical, and in this case δxβ∇βυµ must be zero. This shifting operator δxβ∇β
can be applied to scalar quantities as well, such as in particular the scalar product
gµνυ

µwν:

δxβ∇β(gµνυµwν) = δxβ(∇βgµν ·υµwν+gµν ∇βυµ︸︷︷︸
=0

·wν+gµνυ
µ ∇βwν︸︷︷︸

=0

) = δxβ∇βgµν ·υµwν = 0

(B.54)

as a consequence of the Leibnitz rule, with a single term remaining:

∇βgµν = 0 (B.55)

which is referred to as the metric compatibility condition: If it is true, the scalar
product over perfectly parallel transported vectors does not change across the mani-
fold. As the metric itself is a tensor with covariant indices, the covariant derivative is
computed as

∇βgµν = ∂βgµν − Γ αβµ gαν − Γ
α
βν gµα (B.56)

If in addition we assume that the parallel transport is torsion-free the Christoffel-
symbol is symmetric in the lower two indices,

Γ αµν = Γ ανµ . (B.57)

This implies that we write out the combination ∇µgβν + ∇νgµβ − ∇βgµν = 0 (metric
compatibility ensures that the terms vanish already individually!) and solve for the
Christoffel-symbol Γ αµν , which comes out as
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b. gravity and concepts of relativity

Γ αµν =
gαβ

2
(∂µgβν + ∂νgµβ − ∂βgµν) (B.58)

A connection Γ αµν which is metric-compatible (∇αgµν = 0) and torsion free (Γ αµν =
Γ ανµ ) is called a Levi-Civita connection; it is uniquely compatible with the metric
structure on the manifold, as the connection can be computed from the metric
and its derivatives alone. A metric manifold with a Levi-Civita connection and the
corresponding covariant derivative defines Riemannian geometry.

At this point, a beautiful conceptual picture emerges: Spacetime is a manifold
with, first of all, a topological structure, which allows a continuous mapping of coor-
dinates onto spacetime. Then, there is in addition a metric structure, which allows
measurements of lengths and angles in vector fields on the manifold: As other fields,
the metric tensor may vary across the manifold. We’ve introduced a differentiable
structure on the manifold, in addition, by defining parallel transport and the co-
variant derivative. This differentiable structure has to be compatible with the metric
structure, which is made sure by metric compatibility. Later in this course, we’ll see
that there is a second notion of derivation, called a Lie-derivative, which is needed to
describe symmetries: Those are made compatible with covariant derivative by the
requirement of torsion-free connections, giving further support to Levi-Civita connec-
tions. A physical motivation for choosing torsion-free connections is the compatibility
of covariant derivatives with Lie-derivatives which are used for characterising sym-
metries of spacetimes.

B.4 Geodesics and autoparallelity

A particle drifting through spacetime follows a trajectory xµ(λ) in a given coordinate
choice, parameterised by the affine parameter λ. Then, the rate of change of the
coordinates with λ would be the velocity uµ,

uµ =
dxµ

dλ
= ẋµ (B.59)

or equivalently the tangent to the trajectory xµ(λ). The velocity uµ and the coordinate
differential dxµ are vectors, in contrast to the coordinate tuple xµ itself. With the idea
the operator for parallel transport we might construct a curve whose tangent uµ = ẋµ

stays parallel to itself, exactly through the autoparallelity condition

ẋµ∇µẋν = 0 (B.60)

i.e. uµ = ẋµ is always a parallel-transported version of itself. It is suggestive to imagine
that these curves describe inertial motion through spacetime, as no accelerations are
felt, because the velocity u as an abstract vector does not change, only its components
uµ can be different as there can be different tangent spaces along the curve. Taking this
thought a little further leads us to the realisation that there is actually no difference
between inertial motion and freely falling motion, as both cases are characterised by
the absence of physical accelerations.
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b.4. geodesics and autoparallelity

Surely, duµ/dλ can be nonzero, but the abstract vector u is conserved.

ẋµ∇µẋν = ẋµ∂µẋ
ν + Γ νµα ẋ

µẋα = ẍν + Γ ναµ ẋ
µẋα = 0 (B.61)

using

ẍν =
dẋν

dλ
=

dxµ

dλ
∂ẋν

∂xµ
= ẋµ∂µẋ

ν (B.62)

to obtain the second derivative ẍν. The result is the geodesic equation, reading

duα

dλ
+ Γ αµν u

µuν = 0, or
d2xα

dλ2 + Γ αµν
dxµ

dλ
dxν

dλ
= 0. (B.63)

if formulated in terms of the tangent vector uµ. It is a fun realisation that the tangent
vector of the Earth’s orbit in 4 dimensions is autoparallel, in a spacetime which is
non-Minkowskian with a very slight curvature introduced by the Sun.

It is possible to tease out the geodesic equation from Newton’s equation of motion.
In fact,

ẍi + ∂iΦ = 0 (B.64)

describes the freely falling motion of a test particle in the gravitational potential
Φ. It follows a force-free trajectory, which is straight according to the inertial law
formulated by Newton. Surely, we don’t make a mistake by writing

ẍi + ∂i Φ

c2 · c · c = 0 (B.65)

where now c2 provides a scale for the potential Φ: Because c has no particular
relevance for Galilean physics one would think that the division by c2 just makes
the potential dimensionless. In the slow-motion limit of relativity particles follow
trajectories with ẋt = c, so the formula becomes

ẍi + ∂i Φ

c2 ẋ
t ẋt = 0 (B.66)

But the terms ẋt are just the t-components of the velocities, which in the slow-motion
limit ẋµ = (c, υi)t , where proper time and coordinate time are identical, t = τ identical
and consequently γ = 1. Then,

ẍα + ∂α
Φ

c2 ẋ
t ẋt = 0, suggesting that Γ αtt ∼ ∂α

Φ

c2 (B.67)

by identifying the derivative of the potential with the Christoffel-symbol, consoli-
dating the idea that Newton’s equation of motion is the weak-field and slow-motion
limit of the geodesic equation,

ẍα + Γ αµν ẋ
µẋν = 0 (B.68)

13

https://en.wikipedia.org/wiki/Geodesic


b. gravity and concepts of relativity

If we try out an extremal principle for the trajectory as in classical mechanics and
impose Hamilton’s principle δS = 0 on an action integral

S =
∫

dt L with L =
1
2
ẋi ẋ

i − Φ (B.69)

we end up with the Euler-Lagrange equation

ẍi + ∂iΦ = 0 (B.70)

from classical mechanics. In a similar calculation δs = 0 of the line-element

ds2 = gµνdx
µdxν = gµν

dxµ

dλ
dxν

dλ
dλ2 → ds =

√
gµνẋµẋνdλ and s =

∫
ds (B.71)

provides the geodesic equation: Straight lines in the sense of autoparallelity are at
the same time extremal in their arc length.

The affine parameter λ can be chosen arbitrarily as the geodesic equation is
invariant under affine transforms of λ, λ → aλ + b, but there are two practical
choices: In the case of a massive particle which follows a time-like geodesic with
gµνẋ

µẋν > 0 one can choose proper time λ = τ, such that the normalisation is given
by gµνẋ

µẋν = c2. Photons, on the other hand, follow null-geodesics with gµνẋ
µẋν = 0,

which is incompatible with proper time as an affine parameter. As parallel transport
is with Levi-Civita connection is constructed to conserve norms, we can conclude that
in both cases the normalisation of the tangent uµ = ẋµ for both τ or λ is conserved.

B.5 Spacetime curvature

The geodesic equation
ẍα + Γ αµν ẋ

µẋν = 0 (B.72)

is unable to differentiate between inertial motion in the absence of gravity or freely-
falling motion in a gravitational field: This is absolutely sensible because in both cases
one would not feel or measure any acceleration, so the two situations are physically
equivalent. This has profound implications which we should clarify: The Christoffel-
symbol has 40 entries (For every choice of α, 4 in total, there are because of the
symmetry 10 different choices in the index pair µ, ν), which are all measurable
through the acceleration ẍα for a given choice of ẋµẋν, for both cases of massive
and massless particles. Acceleration in this context is a non-uniform passage of the
coordinates along the path of the particle, which should not be interpreted as a
physical acceleration. In this sense, the geodesic equation only takes care of the non-
uniformity of the coordinate choice and does not contain information about gravity
or curvature! A good example might be inertial motion through Euclidean space in
polar coordinates r,ϕ, and a situation where the particle moves off-centre relative
to origin of the coordinate frame. There, the velocities ṙ and ϕ̇ are not constant and
show accelerations r̈ , 0 , ϕ̈, but clearly, there are no physical accelerations present.
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b.5. spacetime curvature

To summarise this important point: Neither the metric, nor the geodesic equation,
nor the covariant derivative and nor the Christoffel-symbols contain information
about gravity, Γ αµν = 0 does not imply the absence of gravity, and neither does∇µ = ∂µ.
All these things are consequences of the coordinate choice. That is in fact sensible, as
there is always a coordinate choice that sets locally gµν to ηµν and ∂αgµν = 0, i.e. the
metric becomes Minkowskian and the Christoffel-symbol vanishes.

Information about the gravitational field is contained in curvature, which is in
Riemannian-geometry ultimately computed from the second derivatives of the metric
and which can not be set to zero by a suitable coordinate transform in the general
case. Curvature is present if covariant derivatives ∇µ into different directions do not
commute, or equivalently, if shifts δxµ∇µ into different directions carried out after
each other, affect the internal degrees of a vector or tensor. The non-commutativity of
covariant derivatives directly defines the Riemann-curvature,[

∇µ∇ν
]
υα = (∇µ∇ν − ∇ν∇µ)υα = Rαβµνυ

β (B.73)

It can be shown that the effect of parallel-transport around a loop would be a rotated
vector Rαβµνυ

β relative to υα, where parallel-transport conserves the norm of the
vector υα due to metric compatibility. This is in fact the best way to visualise the effect
of Rαβµν as an operator and to memorise the index structure. By definition, Rαβµν is
antisymmetric for every choice of µ, ν, and in the index pair α, β is is an antisymmetric
rotation matrix. In 4 dimensions, Rαβµν has 20 entries, as opposed to the 40 entries of
Γ αµν .

The Riemann-curvature vanishes in flat spaces

Rαβµν = 0 (B.74)

in every coordinate choice, even though the Christoffel-symbols Γ αµν only vanish
in Cartesian coordinates. Following the formal definition of curvature as the non-
commutativity of shifts in different coordinate directions leads us to

υµ(x + δx) = υµ(x) − Γ µαβ (x)υαδxβ (B.75)

and in a second step to

υµ((x + δx̄) + δx) = υµ(x + δx̄) − Γ αµν (x + δx̄)υα(x + δx̄)δxβ =

υµ(x) − Γ αµν v(x)υα(x)δx̄β − (Γ αµν (x) + ∂γΓ
µ

αβ δx̄
γ︸      ︷︷      ︸

Taylor

)(υα(x) − Γ αγδ υ
γδxγ)δxβ (B.76)

and therefore the order of the shifts matters:

υµ((x + δx) + δx̄) , υµ((x + δx̄) + δx) (B.77)

Computing the difference shows that

υµ((x + δx̄) + δx) − υµ((x + δx) + δx̄) = Rµαβνυ
αδxβδx̄ν (B.78)

with the Riemann-curvature-tensor Rµαβν
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b. gravity and concepts of relativity

Rµαβν = ∂βΓ
µ
αν − ∂νΓ

µ

αβ + Γ µ
δβ
Γ δαν − Γ

µ

δν
Γ δαβ (B.79)

which depends, as expected on the derivatives of the Christoffel-symbols as well as
their ”squares”. But ultimately, due to the choice of a (pseudo-)Riemannian geometry,
the curvature tensor can be computed from the metric and its first and second
derivatives.

B.6 Covariant divergence

The idea of using the divergence for expressing conserved quantities like gαµ∇αȷµ = 0
for the electric charge or gαµ∇αTµν = 0 for the energy-momentum tensor is very
central to physics. Formulated in a covariant way, it behaves properly as a tensor under
coordinate transforms. The covariant divergence needs a pecular index-combination
in the Christoffel-symbol, where two of the indices become equal.

∇µυµ = ∂µυ
µ + Γ µµα υα (B.80)

In particular, a Levi-Civita connection would have

Γ
µ
µα =

gµβ

2
·
[
∂µ gβα + ∂α gµβ − ∂β gµα

]
=

1
2

[
gµβ ∂µ gβα + gµβ ∂α gµβ − gµβ ∂β gµα

]
(B.81)

i.e. essentially

Γ
µ
µα =

1
2
gµβ ∂α gµβ (B.82)

Curiously, there is a relation between the covariant divergence and the covolume
g = det(gµν). My third most favourite formula in theoretical physics says that

g = det(gµν) = exp ln det(gµν) = exp tr ln(gµν) (B.83)

relating the logarithm of the determinant with the trace of the matrix-valued loga-
rithm, which is easily checked in the principal axis frame. Then,

∂α g = g · ∂αtr ln(gµν) = g · tr ∂α ln(gµν) = g · tr
(
g−1 · ∂α gµν

)
= g · gµν · ∂α gµν (B.84)

using the linearity of the derivative as well as the inverse metric. With the derivative
of the square root one then obtains

gµν ∂α gµν =
1
g
∂α g, and therefore

1
2
gµν ∂α gµν =

1
√−g

∂α
√−g. (B.85)

With this result one can write for the contracted Christoffel-symbol

Γ
µ
µα =

1
√−g

∂α
√−g (B.86)
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b.7. geodesic deviation: experiencing curvature

and finally for the covariant divergence

∇µ υµ = ∂µ υ
µ + Γ µµα υα = ∂µ υ

µ +
1
√−g

∂α
√−g · υα

µ↔α
= ∂µυ

µ +
1
√−g

∂µ
√−g · υµ =

1
√−g

∂µ
(√−g υµ) (B.87)

using the Leibnitz-rule. An interesting application of the covariant divergence is the
wave equation

gµν ∇µ∇ν φ =
1
√−g

∂µ
(√−g ∂µ φ

)
= 0 (B.88)

which is obviously not just ∂µ∂µφ = 0; there is clearly an influence from the back-
ground onto wave propagation. For our particular case of FLRW-cosmologies, the
covolume is quickly computed in comoving coordinates to be√

−detg = ca3 (B.89)

with physical time t, and as √
−detg = ca4 (B.90)

with conformal time η.

B.7 Geodesic deviation: experiencing curvature

A freely falling particle experiences perfect weightlessness and spacetime appears
to be locally Minkowskian, gµν = ηµν with a vanishing first derivative ∂αgµν = 0,
which enables the local choice of Cartesian coordinates. But that does not imply that
a second particle, likewise in a state of perfect free fall, moves at constant velocities
relative to the first particle: This is exactly the idea of geodesic deviation. The relative
distance δµ of two freely falling particles, each one following its geodesic, obeys

d2δµ

dτ2 = Rµαβν
dxα

dτ
dxβ

dτ
δν (B.91)

which follows from expanding Γ (x̄) for the second particle in the geodesic equation in
terms of Γ (x) for the first geodesic. Only if the manifold is flat, the Riemann curvature
Rαβµν = 0 vanishes, resulting in

d2

dτ2 δ
µ = 0 → d

dτ
δµ = aµ → δµ = aµτ + bµ (B.92)

with two integration constants aµ and bµ: The particles would drift apart at a constant
rate, and accelerations δ̈µ only appear if there is curvature. Please keep in mind, that
this also applies for time component, as we use 4d coordinates. Classically we would
get an analogous statement

d2

dt2 δ
i = − ∂i∂jΦ︸︷︷︸

tidal tensor

δj = ∂igjδ
j (B.93)
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b. gravity and concepts of relativity

with no velocity dependence of the gravitational force and universal time instead
of proper time. This underlines the idea that the tidal field tensor ∂i∂jΦ is the
Newtonian analogue of the Riemann curvature.

B.8 Curvature invariants and curvature tensors

The Riemann-curvature contains the complete information about curvature if the
connection is chosen to be torsion-free and metric compatible, otherwise one would
need the torsion tensor and the non-metricity scalar in addition. From the Riemann-
curvature, one can compute further measures of curvature, which are physically
relevant, such as the Ricci-tensor Rβν

Rβν = Rαβαν = gαµRαβµν (B.94)

and curvature scalars by complete contraction, for instance the Ricci-scalar R

R = Rαα = gβνRβν (B.95)

or the Kretschmann-scalar K

K = RαβγδRαβγδ = gαµgβνgγρgδσRαβγδRµνρσ (B.96)

which are both coordinate-invariant measures of curvature.
Let’s apply these ideas to a flat FLRW-cosmology, where the line element has the

form
ds2 = c2dt2 − a2(t)(dr2 + r2(dθ2 + sin2(θ)dϕ2)) (B.97)

in terms of comoving coordinates and physical time. The trivial derivatives of the
metric are

∂tgtt = 0, gtα = gαt = 0 (B.98)

and the non-trivial derivatives can be summarised in the Christoffel-symbols

Γ tαβ =
1
2
∂tgαβ → Γ tij =

1
2

d
dt

a2 = ȧa = a2H (B.99)

with H = ȧ/a, and

Γ iαβ =
1

2a2

(
∂βgiα + ∂αgβi

)
→ Γ iit = Γ iti =

1
2a2 2∂tgii =

ȧ
a

= H (B.100)

For the Ricci-scalar of a flat FLRW-spacetime we get, by contracting gαµgβνRαβµν

R = 6a
(H
c

)2
(1 − q) with q = − äa

ȧ2 (B.101)

The metric usually has no units (since ds2 = gµνdxµdxν and coordinates are
usually chosen to have units of length, and consequently would ds have units of
length, but please keep in mind that this is purely conventional), whereas curvature
as composed of second derivatives (with respect to xµ) have units of a inverse length
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b.9. raychaudhuri-equation

squared, which results in the curvature scale

1
√

R
=

c
H

(B.102)

ignoring pre-factors of order one: The curvature scale of a FLRW-cosmology R−1/2 is
the Hubble-scale c/H, implying that on scales larger than c/H one can see effects of
strong gravity, whereas on scales smaller than c/H spacetime can be approximated to
be Minkowksian. In fact, light propagation effects associated with horizons appear on
this scale.

B.9 Raychaudhuri-equation

The Riemann-tensor as a complete characterisation of spacetime curvature decom-
poses into two distinct types of curvature: The Ricci-curvature contained in Rµν
and the Weyl-curvature Cαβµν, both tensors having 10 entries in 4 dimensions. The
Ricci-tensor Rµν at one point in spacetime reflects the energy momentum tensor Tµν
at the same point, as a consequence of the field equation, and is necessarily only a
function of time. As there are no spatial derivatives in a FLRW-geometry, we are not
concerned with propagation effects of gravity, so the Weyl-tensor Cαβµν is zero, and
we’re dealing in FLRW-cosmologies with a system of pure Ricci-curvature.

The effects of Ricci- and Weyl-curvature on test particles can be understood in
an extension to geodesic equation, which is known as the Raychaudhuri-equation.
Here, one considers not a pair, but an entire cloud of freely falling test particles and
monitors the change of volume or the change in shape of that cloud. Ricci-curvature,
which FLRW-spacetimes carry exclusively, induce a pure change in volume while
conserving shape, while Weyl-curvature does the opposite: It causes a cloud of test
particles to change its shape while conserving the volume.

The idea of the Raychaudhuri-equation is to have a look at the time evolution
of the area enclosed by a bundle of geodesics. The Riemann-curvature splits in two
different parts:

· The Ricci-curvature changes the volume enclosed by a bundle of geodesics but
keeps the shape (typical for FLRW-cosmologies)

· The Weyl-curvature changes shape but conserves the volume (typical for gravi-
tational waves)

Let’s try a classical approach: Two test particles at coordinates x′i and xi have a
relative motion at velocity υi

x′i = xi + υi∆t (B.103)

The relative coordinate mapping is encapsulated in the Jacobian

∂x′i

∂xj
= δij +

∂υi

∂xj
∆t (B.104)

which we could think of as the first-order Taylor expansion of of a matrix-valued
exponential

∂x′i

∂xj
= exp

(
∂υi

∂xj
∆t

)
(B.105)
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b. gravity and concepts of relativity

The coordinate mapping would introduce a change in volume elements given by the
functional determinant

d3x′ = det
(
∂x′

∂x

)
d3x (B.106)

where we can write for the logarithmic change

ln d3x′ = ln det
(
∂x′

∂x

)
+ln d3x = ln d3x′ = tr ln exp

(
∂υi

∂xj
∆t

)
+ln d3x = ∆ttr

∂υi

∂xj
+ln d3x

(B.107)

In this relation, one can identify tr(∂υi /∂xj ) with the divergence of the velocity field:
Intuitively, if this divergence is nonzero, the volume should change.

The Newton equation of motion for small time differences ∆t is

υi = −∂iΦ∆t (B.108)

which suggests for the velocity divergence

∂iυ
i = −∂i∂

iΦ∆t = −∆Φ∆t (B.109)

with the Laplace-operator ∆ = ∂i∂
i , and therefore

ln d3x′ − ln d3x = −∆Φ(∆t)2 ≈ 8πGρ
(∆t)2

2
(B.110)

Therefore, the logarithmic volume change is proportional to the density inside the
volume and ∆Φ ∝ ρ from Poisson’s equation. The volume change measures effectively
the enclosed mass, and suggests that Riemann curvature and tidal field are analogous
quantities, as well as the Ricci-curvature (as the trace of the Riemann curvature) and
the Laplacian of the potential, and that both are coupled to the matter density as the
source of the gravitational field.

The proper relativistic Raychaudhuri-equation makes a statement about the ve-
locity divergence Θ,

Θ = ∇µuµ = gµν∇µuν (B.111)

and states that for the time evolution that

dΘ
dt

= −Θ
2

3
− σµνσ

µν︸ ︷︷ ︸
=0 in FLRW

+ ωµνω
µν︸  ︷︷  ︸

=0 in FLRW

−Rµνu
µuν + ∇µu̇µ. (B.112)

The terms in the Raychaudhuri-equation are the shear,

σµν = ∇µuν + ∇νuµ −
1
3
Θpµν − (u̇µuν + uµu̇ν) (B.113)

and the vorticity
ωµν = ∇µuν − ∇νuµ − (u̇µuν + uµu̇ν) (B.114)
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b.9. raychaudhuri-equation

and finally the proper acceleration

u̇µ = uν∇νuµ (B.115)

which vanishes, if uµ is tangent to the geodesic (from geodesic equation), i.e. with no
non-gravitational accelerations.

FLRW-cosmologies have no preferred axis due to the isotropy postulate, resulting
in vanishing vorticity ω and vanishing shear σ = 0 and therefore

dΘ
dt

= −Θ
2

3
− Rµνu

µuν (B.116)

for the evolution of the velocity divergence. By using comoving FLRW-coordinates
we see no expansion as all, all galaxies stay in their spatial coordinate and only move
in the time-direction. Consequently we choose uµ = (c, 0)t and can now compute the
covariant divergence as

Θ = ∇µuµ =
1√
−det g

∂µ
(√
−det guµ

)
∼ ∂t ln(volume) (B.117)

Specifically, with the FLRW-metric in comoving coordinates

gµν =


c2

−a2

−a2

−a2

 (B.118)

suggesting for the velocity divergence, or equivalently, the volume evolution√
−det g = ca3 (B.119)

and finally

Θ =
1
a3∂t

(
a3

)
= 3

ȧa2

a3 = 3
ȧ
a

= 3H(t) (B.120)

such when replacing proper time by coordinate or cosmic time (t = τ) as specifically
allowed by FLRW-cosmologies one obtains:

dΘ
dt

= −Θ
2

3
− Rµνu

µuν (B.121)

with
dΘ
dt

=
d
dt

ȧ
a

=
ä
a
−
( ȧ
a

)2
(B.122)

In summary, the volume evolution of a FLRW universe is expressed in terms of
the scale factor a and its derivatives, and depends on the term Rµνuµuν, which we
can provide through the field equation of gravity and which depends on the energy-
momentum content of spacetime: It acts as the source of the gravitational field and
introduces curvature, the Ricci-part of which affects the evolution of Θ. It is amazing
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b. gravity and concepts of relativity

to see how volume evolution of the FLRW-spacetime works in Newtonian gravity
and relativity alike, and that the Raychaudhuri-equation makes a sensible statement
about the evolution of the velocity divergence of comoving velocity (which one would
naively visualise as a perfectly parallel vector field in comoving coordinates). Progress
beyond this result is only possible if we assume a specific form of the field equation,
in order to relate the Ricci-tensor to the energy momentum-tensor. Surprising as
it may seem, the Raychaudhuri-equation is a purely geometric statement about
the divergence of a vector field, and does not assume anything specific about the
gravitational theory.

B.10 Energy-momentum tensor

The energy and momentum content of spacetime sources the gravitational field: Very
similar to the case of Maxwell-electrodynamics which is the theory of electric and
magnetic fields for charge-conserving systems, general relativity is the theory of
gravity for energy and momentum conserving systems (although that can be only
formulated locally in the form of gαµ∇αTµν = 0 with the energy-momentum tensor
Tµν). In a fluid picture, energy and momentum conservation would characterise the
dynamics of an ideal (i.e. inviscid) fluid, which can only have three properties: velocity
uµ, density ρ and pressure p, assembled into the energy momentum-tensor Tµν.

Tµν =
(
ρ +

p

c2

)
uµuν − pgµν (B.123)

In a frame where the fluid is at rest, uµ = (c, 0)t and adopting locally flat, Cartesian
coordinates one falls back on a diagonal form,

Tµν =


ρc2 0 0 0

0 p 0 0
0 0 p 0
0 0 0 p

 (B.124)

Ideal fluids are characterised by the conservation law

gαµ∇αTµν = 0 (B.125)

which is not straightforward to interpret, as it is a vectorial statement (in the in-
dex ν): This is in contrast to e.g. the law of charge conservation gαµ∇αȷµ = 0 in
electrodynamics, which is scalar.

It might be intuitive to project the vector ∇µTµν onto the velocity uν and to a plane
perpendicular to it, as uµ is defining naturally a direction. Keeping in mind that the
covariant derivative fulfils a Leibnitz-rule one gets:

∇µTµν = ∇µ
(
ρ +

p

c2

)
uµuν +

(
ρ +

p

c2

)
∇µ(uµuν) − ∇µpgµν (B.126)

with
∇µ(uµuν) = uν∇µuµ + uµ∇µuν︸   ︷︷   ︸

=0 if uµ tangent to a geodesic

(B.127)
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b.11. equation of state for ideal fluids

while any covariant derivative of the metric (and its inverse) vanishes due to metric
compatibility. Carrying out the projection

uν∇µTµν = 0 (B.128)

we end up at

uν∇µTµν = ∇µ
(
ρ +

p

c2

)
uµ uνu

ν︸︷︷︸
c2

+
(
ρ +

p

c2

)
uνu

ν︸︷︷︸
c2

∇µuµ − ∇µp gµνuν︸︷︷︸
uµ

= 0 (B.129)

which can be further simplified to

uν∇µTµν = ∇µρuµc2 + ρ∇µuµc2 + p∇µuµ = ∇µ(ρuµ)c2 + p∇µuµ = 0. (B.130)

The projection of uνTµν = 0 onto a plane perpendicular to uν yields the Euler-
equation (

ρ +
p

c2

)
∇µuνuµ =

(
gµν − uµuν

c2

)
∇µp (B.131)

B.11 Equation of state for ideal fluids

Ideal fluids are characterised by just two quantities (apart from their velocity field
uµ): density ρ and pressure p, and often it is the case that the two are related by an
equation of state which reflects internal properties of the substance. Like in the case
of an ideal classical or relativistic gas there could be a proportionality

p = wρc2 (B.132)

with the equation of state parameter w, which in relativity is often assumed to be
constant (Please remember that energy density and pressure have identical units!). In
a frame where the fluid is at rest we would write uµ = (c,0)t and covariant energy
momentum conservation ∇µTµν = 0 becomes in the choice of comoving coordinates,

∇µ(ρuµ) +
p

c2∇µu
µ = 0 (B.133)

The first term ∇µ(ρuµ) can be taken apart with the Leibnitz-rule

∇µ(ρuµ) = ∇µρ · uµ + ρ∇µuµ = ∂µρ · uµ + ρ∇µuµ (B.134)

resulting in

∂µρ +
(
ρ +

p

c2

)
∇µuµ = 0 (B.135)

by substituting the equation of state p = wρc2. The covariant divergence of the
velocity uµ is

∇µuµ = ∂µu
µ︸︷︷︸

=0

+Γ µαµ uα = Γ iit︸︷︷︸
=H/c

ut = 3
ȧ
a

= 3H(t) (B.136)
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b. gravity and concepts of relativity

and using the fact that ρ is homogeneous and only a function of time, there is just a
single derivative left, ∂µρ = ∂tρ = ρ̇. With the argument we arrive at the continuity
equation

ρ̇ + 3
ȧ
a

(1 + w)ρ = 0 (B.137)

which reflects covariant energy momentum-conservation ∇µTµν = 0 in a FLRW-
spacetime.

Separation of the variables and assuming a constant equation of state parameter
w results in

dρ
ρ

= d ln ρ = −3(1 + w)
da
a

= −3(1 + w)d ln a (B.138)

which can be solved by
ρ ∝ a−3(1+w) (B.139)

In fact, non-relativistic matter with w = 0 would dilute ρ ∝ a−3 as it is simply
dispersed over a larger volume a3, but for relativistic matter with w = 1/3 there
would be an additional redshifting effect leading to ρ ∝ a−4.

Sometimes you find a reformulation of continuity in this way: Multiplying eqn. B.137
with the volume a3 yields

a3 dρ
da

+ 3a2
(
ρ +

p

c2

)
= 0 → d

da
(ρc2a3) = −p d

da
(a3) (B.140)

with the interpretation that the energy density ρc2 of the fluid changes if the volume
changes, performing work against pressure p, reminiscent of the first law of thermo-
dynamics, dU = −pdV: This is why the relation is sometimes called the adiabatic
law.

General relativity is prepared to provide gravity for both fields and fluids, as both
fields and fluids obey covariant conservation of energy and momentum, ∇µTµν = 0
or gµα∇µTαν = 0. But comparing the two cases fluids and fields, in the first case one
would speak of the Poynting-law, and in the second case about the fluid mechanical
equations: It is actually amazing that general relativity can provide gravity for such
different concepts of matter.

B.12 Relativistic fluid mechanics

Let’s start again at the expression for the energy-momentum tensor of an ideal fluid,

Tµν =
(
ρ +

p

c2

)
uµuν − gµνp (B.141)

of which one can directly compute the trace,

gµνTµν = ρc2 − 3p (B.142)

keeping in mind that gµνuµuν = c2 for material particles, which approaches p/(ρc2) =
1/3 for relativistic, massless particles, for which gµνTµν = 0.
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b.12. relativistic fluid mechanics

Computing the covariant divergence of Tµν one gets

∇µTµν = ∇µ(ρc2 + p) · uµuν + (ρc2 + p)∇µ(uµuν) − ∇µp · gµν (B.143)

keeping in mind that the covariant derivative of the metric vanishes for a metric-
compatible connection, in particular ∇µgµν = 0 as well for the inverse metric.

Let’s pursue this divergence and let’s make a deliberate mistake by assuming that
the fluid elements follow geodesics, i.e. that an autoparallelity condition applies to
the velocities uµ:

∇µ(uµuν) = ∇µuµ · uν + uµ∇µuν︸   ︷︷   ︸
=0

(B.144)

such that the divergence of the velocity field is the only contributing term, which
we’ve already encountered in the discussion of the Raychaudhuri-equation. Then,

∇µTµν = ∇µ(ρc2 + p) · uµuν + (ρc2 + p)∇µuµ · uν − ∇µp · gµν (B.145)

Now we are projecting (as mentioned above) on the observer’s world line with
uν = dxν/dτ, and by contraction

uν∇µTµν = ∇µ(ρc2 + p) · uµ uνu
ν︸︷︷︸

=1

+(ρc2 + p)∇µ uνu
ν︸︷︷︸

=1

−∇µp · gµνuν︸︷︷︸
=uµ

(B.146)

and arrive the relativistic continuity equation

uν∇µTµν = ∇µ(ρc2uµ) + p∇µuµ = 0 (B.147)

in which we used the covariant conservation in the last step. In the non-relativistic
limit with p ≪ ρc2 this leaves us with only the first summand ∇µ(ρc2uµ) = 0 left.

Furthermore, uµ is given by uµ = (1, βi)T with βi = υi

c and of course |β| ≪ 1 in the
slow motion limit. Lastly, ∇µ becomes ∂µ by adopting locally Cartesian coordinates,
so:

uν∇µTµν = 0 = ∇µ(ρc2uµ) = ∂ct(ρc
2) + ∂i(ρc

2βi) (B.148)

i.e. the classical continuity equation,

∂tρ + ∂i(ρυ
i) = 0. (B.149)

In the real world it turns out that there are incompressible fluids which are char-
acterised by ∂iυ

i = 0 (Please watch out: Incompressibility is a statement about the
velocity field and has little to do with pressure!) and therefore the continuity equation
becomes

∂tρ + ∂iρ · υi = 0 (B.150)

for incompressible fluids.
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b. gravity and concepts of relativity

We can substitute the relativistic continuity equation back into the conservation
law ∇µTµν = 0 to arrive at

∇µTµν = (∇µ(ρc2uµ) + p∇µuµ)︸                     ︷︷                     ︸
=0 continuity

uν+∇µpuµuν−∇µpgµν = ∇µp(uµuν− gµν) = 0 (B.151)

which states that there are no pressure gradients perpendicular to uµ as uµ is tangent
to a geodesic (or otherwise the fluid doesn’t follow a geodesic in equivalence to the
previous expression). This is particularly relevant for FLRW-cosmologies, as it implies
that there can not be any spatial gradients in pressure, ∇ip = ∂ip = 0, in accordance to
the Copernican-principle. If those gradient would exist, the motion of fluid elements
can not be inertial.

Let’s restart by imposing no condition on geodesic motion of fluid elements. Then,

∇µTµν = ∇µ(ρc2 + p) · uµuν + (ρc2 + p)∇µ(uµuν) − ∇µp · gµν = 0 (B.152)

A useful auxiliary statement can be obtained from the normalisation of uν, where

0 = ∇µ(uνuν︸︷︷︸
=1

) = uν∇µuν + ∇µuν · uν = 2uν∇µuν (B.153)

If one contracts the conservation law with uν, the second term uµ∇µuν becomes
uµuν∇µuν = 0. We therefore end up at

uνTµν = ∇µ(ρc2 + p) · uµ + (ρc2 + p)∇µuµ − ∇µpuµ = ∇µ(ρc2uµ) + p∇µuµ = 0 (B.154)

even if the fluid follows non-geodesic motion. If we resubstitute back into the full,
non-geodesic conservation equation we obtain

∇µTµν = (uµuν − gµν)∇µp + (ρc2 + p)uµ∇µuν = 0 (B.155)

with an additional term being present for non-geodesic motion caused by gradients
in pressure.
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C flrw-cosmologies

C.1 Dynamics of spacetime

Over hundert years ago, E. Hubble did research on spectral lines of distant galaxies.
He discovered that the spectral lines are shifted towards longer wave lengths, which
he interpreted as a Doppler shift caused by the motion of galaxies away from us as
observers. This recession motion increases proportionally to distance:

υ = H0r (C.156)

with the Hubble-Lemaı̂tre constant H0 = 105h m/s/Mpc, and the Hubble-parameter
h = 0.68 . . . 0.72, depending on the measurement method. For a galaxy 10 Mpc away
from the Milky Way, the recession velocity would be β = υ/c ≃ 0.003, which is easily
measurable through spectroscopy. While the interpretation of a recession motion is
absolutely valid in Newtonian cosmology, general relativity brings in a new concept,
namely that the laws of Nature, in particular gravity, are fully covariant, i.e. that
coordinate choice does not matter, and that different coordinate choices require
different physical interpretations.

If one adopts physical coordinates, consisting of a static coordinate grid, through
which the galaxies move isotropically as the Universe expands, one obtains for the
relation between velocity and distance

υ(r, t) = H(t)r (C.157)

which can only depend on time in fulfilment of the cosmological principle: Including
any nonlinear dependence of r causes a violation of homogeneity: Starting from the
continuity equation for the matter density ρ

ρ̇ + ∂i ȷ
i = 0 (C.158)

with the momentum density ȷi = ρυi . If the velocity fulfils the Hubble-law υi = H0r
i

it would imply for the divergence

∂i ȷ
i isotropy

=
1
r2∂r (r

2ρυr ) =
ρH
r2 ∂r (r

3) = 3Hρ (C.159)

if one in addition assumes isotropy such that the velocity has only a radial dependence
and using spherical coordinates to formulate the divergence. If ρ does not depend
on r, as used in the last step, its time evolution will make sure that it will stay
homogeneous. The situation would be fundamentally different if for instance υ = rα,
with α , 1. Then,

∂i ȷ
i =

1
r2∂r (r

2ρυr ) =
ρH
r2 ∂r (r

2+α) = (2 + α)Hρrα−1 (C.160)

such that the time evolution of ρ depends on r, and the continuity equation can not
uphold homogeneity, in violation of the cosmological principle.

In comoving coordinates the picture is different: The coordinate grid expands
along with the flow of matter, and all particles stay at their comoving coordinate. We
therefore differentiate between comoving coordinates xi and physical coordinates
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c. flrw-cosmologies

r i = a(t)xi , which are related through the scale factor a(t), which itself is only a
function of time t. The coordinate change of the physical coordinate with time is
given by

dr i

dt
= υi = ȧxi + aẋi = H(t)r i + aυipec (C.161)

with two possible contributions of the spectroscopically measured velocity υi : The
cosmological part due to a nonzero H(t) = ȧ/a and a peculiar motion υipec relative to
the (comoving) coordinate grid: When considering truly fundamental observers and
test particles, the peculiar velocity would be zero.

The FLRW-metric of a flat space is usually given in terms of the line element
ds2 = gµνdxµdxν, which reads in comoving coordinates

ds2 = c2dt2 − a2(t)γijdx
idxj = c2dt2 − a2(t)

(
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
(C.162)

so that the spatial part of the metric (here written down in Cartesian and in spherical
coordinates) is scaled by the scale factor a(t)2. The choice of comoving coordinates
is uniquely suited to the symmetries of a FLRW-spacetime: Neither does the metric
depend on position, nor does it single out any particular direction.

This form of the line element, however, is not the most general possible compatible
with the cosmological principle: The spatial part of the spacetime can have a constant
curvature such that the scaling of surfaces of spheres with their radii differs from the
Euclidean prediction. Introducing a curvature parameter k we can write

ds2 = c2dt2 − a2(t)
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdϕ2
)

(C.163)

There is a peculiarity of the FLRW-spacetime that concerns the passage of time:
While it is perfectly normal that time passes at a different rate at different locations
in a gravitational potential, this is not the case in FLRW-cosmologies. In fact, the line
element ds is perceived as the elapsed proper time dτ by an observer,

c2dτ2 = ds2 (C.164)

such that according to homogeneity, dτ = dt for the FLRW-spacetime: Every observer
sees the same passage of time and the coordinate time t is equal to proper time τ.
This has profound consequences, as it enables a universal definition of the age of the
Universe, which necessarily needs to be equal for every observer.

C.2 Light propagation on a FLRW-spacetime and redshift

As the coordinate choice is arbitrary rates of change of coordinates should not be
assigned any physical meaning, in particular if these velocities are compared to the
speed of light c. Whether a cosmological object is visible or not depends on whether
a geodesic line between that object and an observer exists or not, specifically for
photons this must be a null-geodesic with a normalisation ds2 = gµνk

µkν = 0 of the
wave vector kµ = dxµ/dλ.
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c.2. light propagation on a flrw-spacetime and redshift

The null-property of the wave vector ensures that photons propagate dispersion-
free in vacuum. In fact, writing kµ in components

kµ =
(
ω/c
ki

)
(C.165)

with the angular frequency ω and the spatial wave vector ki leads to the norm

gµνk
µkν =

(
ω

c

)2
− kiki = 0 (C.166)

leads to a linear relation between angular frequency and wave number

ω(k) = ±ck (C.167)

and in consequence to equal phase and group velocities,

υgroup =
dω
dk

= c and υphase =
ω

k
= c. (C.168)

Dispersion-free propagation of photons υgroup = υphase is encoded by the fact that
their wave vector kµ is a null-vector.

The null-condition ds2 = 0 has a very intricate connection to FLRW-spacetimes,
as they are conformally flat: The full Riemann-curvature decomposes into two con-
tributions: Weyl-curvature and Ricci-curvature, and the FLRW-symmetries in fact
make sure that cosmological solutions are of pure Ricci-curvature, as the Weyl-tensor
vanishes identically. Spacetimes, in which this is the case, are conformally flat, as
their metric can be written as a rescaled Minkowksi-metric with a conformal factor
Ω(xµ)2 > 0, which is strictly positive,

gµν = Ω(xµ)2 ηµν (C.169)

as conformal transformations leave they Weyl-tensor Cαβµν invariant and conserve
in the FLRW-case its value of zero. Applied to cosmology, we would write for the line
element

ds2 = c2dt2 − a2γijdx
idxj = a2(t)

(
c2 dt2

a2 γijdx
idxj

)
= a2(t)

(
c2dη2 − γijdxidxj

)
(C.170)

with a new time coordinate dη, which is called conformal time:

dη =
dt
a

(C.171)

and the scale-factor a(t) is in fact the conformal factor Ω(xµ) which in our case only
depends on time and not on the spatial coordinates.

In fact, dη is not uniformly passing unlike dt. Only today with a = 1 time intervals
in η and t are identical, and as a < 1 in the past, intervals in η have been larger than
those in t.
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c. flrw-cosmologies

This has two interesting consequences: Firstly, light-propagation in a conformally
flat spacetime proceeds in a perfectly Minkowskian way as the conformal factor drops
out in the null-condition:

ds2 = a2(t)
(
c2dη2 − γijdxidxj

)
= 0 (C.172)

Secondly, the conformal age of the Universe is in fact infinite even if the actual age of
the Universe (defined as the physical time passing since the instant a = 0) is finite, as
the coordinate axes of Minkowski-space stretch out to infinity. Because homogeneity
of the FLRW-spacetime allow always to place the origin of the coordinate frame at
the observer, all photons are radially moving, so one can write for the line element

ds2 =
(
c2dη2 − dχ2

)
= (cdη+ dχ) (cdη− dχ) = dυdw = 0 (C.173)

and define light cone coordinates dυ = cdη+ dχ and dw = cdη− dχ, reminiscent of
Kruskal-coordinates.

C.3 Evolution of the Hubble-expansion with time

Initially, the Hubble function H(t) was introduced for parameterising the linear
relationship between the recessional velocity υ and distance r, υ = H(t)r, and with the
definition H(t) = ȧ/a we relate it to a Taylor-expansion of a(t) at the current cosmic
epoch t0,

a(t) − a(t0) =
da
dt

(t − t0) +
d2a

dt2
(t − t0)2

2
± . . . (C.174)

which can be rewritten as

a(t) = a(t0)
(
1 + H(t0)(t − t0) − q(t0)H2(t0)

(t − t0)2

2

)
(C.175)

by renormalising everything with a(t0). Taking every function to be evaluated at
t0, ȧ/a becomes the Hubble function and ä/a = aä/a2 × ȧ2/ ȧ2 = −qH2 brings in the
deceleration parameter, usually defined with a minus-sign:

q = − äa
ȧ2 (C.176)

despite the fact that the Universe is currently accelerating, so ä > 0 causes q to be
negative, as both a and ȧ2 are positive; this is in fact a historical remnant. In summary,
H determines the current rate at which the scale factor changes as a function of time,
and q states by how much that rate changes with time. It is interesting to realise
that the Hubble-relation is valid at every instance in time simultaneously for every
distance, but of course we do not observe the recession velocity of a distant galaxy at
the time that the light was emitted - so as we look out into the distance along the past
light cone, we see a record of the recession velocities.
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C.4 Field equation: coupling gravity to matter

The curvature of spacetime is determined by the energy momentum tensor by means
of the field equation

Rµν −
R
2
gµν︸        ︷︷        ︸

Gµν

= −8πG
c4 Tµν − Λgµν (C.177)

which equates the Einstein-tensor Gµν to the energy momentum tensor Tµν with New-
ton’s gravitational constant G as a coupling constant, but there is an effect of gravity
of empty space, too: Even if Tµν ≡ 0, the curvature is nonzero due to the presence
of the cosmological constant Λ. Actually, this result is not totally surprising as the
cosmological constant was already present in the most general linear field theory for
a scalar field on a Minkowski-background in the first chapter. The gravitational field
equation is unique, as shown by David Lovelock, as the most general (i) second-order
partial differential equation in (ii) 4 dimensions, with (iii) covariant energy mo-
mentum conservation ∇µTµν = 0, which establishes a (iv) local relationship between
curvature and the source of gravitational field and lastly, if (v) the metric is the only
dynamical degree of freedom, from which the curvature is derived. In particular,
Lovelock’s result makes sure that there are only two tensors, the Einstein-tensor Gµν

and the metric gµν, that have vanishing divergences, the first as a consequence of the
Bianichi-identity and metric due to metric compatibility. The field equation can be
derived by a variation of the Einstein-Hilbert-Lagrange density

S =
∫

d4x
√
−det g(R − 2Λ) (C.178)

with respect to the (inverse) metric: The choice of this Lagrange-density is unique,
again according to Lovelock’s theorem.

Within the highly symmetric solutions of general relativity discussed in every
textbook cosmology plays a central role: FLRW-spacetimes are, due to the cosmologi-
cal principle, systems of pure Ricci-curvature (with a vanishing Weyl-tensor); and as
such they do not show any propagation effects of gravity. Because of the small value
of the cosmological constant, its effect on the dynamics of spacetimes becomes only
dominant on scales comparable to the observable Universe.

C.5 FLRW-spacetimes and their dynamics

FLRW-cosmologies are a solution to the gravitational field equation with homo-
geneity and isotropy as symmetries restricting the complexity of the solution, and
for ideal fluids as sources. As the only degree of freedom left after imposing the
FLRW-symmetries is the scale factor a(t), one effectively ends up at ordinary (albeit
nonlinear) differential equations: In fact, the Friedmann equations relate a(t) and
its first and second derivatives ȧ and ä to the properties of the fluid, i.e. density ρ
and pressure p, which have to be constant across spactime at a fixed time, in order to
fulfil the cosmological principle, too.

Starting from the FLRW-metric gµν and its inverse gµν (determined through the
defining property gµνg

να = δαµ) one computes the Christoffel-symbols

Γ αµν =
gαβ

2

(
∂µgβν + ∂νgµβ − ∂βgµν

)
(C.179)
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c. flrw-cosmologies

under the choice of a metric compatible and torsion-free connection. Then, the
Riemann-curvature Rαβµν follows from derivatives and squares of the Christoffel-
symbols, and the Ricci-curvature Rβν = gαµRαβµν

Rtt = 3
ä
a

(C.180)

Rrr =
−c2

1 − kr2

(
aä + 2ȧ2 + 2c2k

)
(C.181)

Rθθ = − c
r2

(
aä + 2ȧ2 + 2c2k

)
(C.182)

Rφφ = Rθθ · sin2 θ (C.183)

such that contraction gµνRµν = R yields the Ricci-scalar,

R(t) =
6
c2

[ ä
a

+
( ȧ
a

)2
+

ck
a2

]
. (C.184)

Substituting the Ricci-tensor and Ricci-scalar into the field equation for an ideal
fluid gives the two Friedmann-equations, first from the spatial part of the field
equation,

H2(a) =
( ȧ
a

)2
=

8πG
3

ρ +
Λc2

3
− c2a

a2 (C.185)

as well as from the temporal part,

ä
a

= −4πG
3

(
ρ +

p

c2

)
+
Λc2

3
(C.186)

The combination of Newton’s gravitational constant G and the Hubble-constant H0
provides naturally a density scale

ρcrit =
3H2

8πG
(C.187)

which helps to re-express the densities of all fluids by dimensionless density parame-
ters

Ωi =
ρi

ρcrit
(C.188)

such that the first Friedmann-equation can be written as( ȧ
a

)2
= H2

0

(
Ωm

a3 + ΩΛ

)
(C.189)

by using ρ ∝ a−3 for matter. This can easily be extended to further fluids, charac-
terised by their equation of state parameters w = p/(ρc2).

We therefore can assign an Ω to k, for consistency

1 = Ωk +
∑
i

Ωi (C.190)
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as otherwise H(1) , H0. The curvature ΩK vanishes if
∑
i
Ωi = 1, in this limit the

spatial part of spacetime would be a flat, Euclidean space.

C.6 Gravitating fluids and their associated dynamics

By coupling the dynamics of spacetime its energy-momentum content through the
field equation, we can predict the time evolution of the scale factor a(t) for a given
density and equation of state parameter. While it is obvious that high matter or
radiation densities should have a decelerating effect on spacetime, we should have
a more detailed look into the effect of the equation of state. Setting up a spatially
flat FLRW-cosmology with a single fluid (ρ = ρcrit) and a constant equation of state
parameter w leads to the realisation that equation of state w and deceleration q are
connected by

3(1 + w) = 2(1 + q) (C.191)

Clearly, a sign change in q takes place at w = −1/3: While decelerated universes
q < 0 need to have equations of state of w > −1/3, accelerated universes q > 0 are
characterised by very negative equations of state w < −1/3. Interestingly, a fully
curved, empty universe with q = 0 has an effective equation of state of w = −1/3,
in accordance with the a2-scaling of ΩK. It expands at a constant ȧ as there are no
gravitating substances to change the state of motion.

It might be surprising that the deceleration is stronger for photons than for non-
relativistic matter, but it is the case that photons on the other hand are more strongly
affected by gravitational fields, too: That’s the famous factor 2 in gravitational lensing
by which the accelerating effect of a gravitational field on a photon is larger compared
to a non-relativistic test particle.

Whether the FLRW-spacetime has a finite age depends on whether substances
with w > −1/3 have been dominating the expansion at early times. Curvature and
all substances with more negative equations of state tend to lead to infinitely old
universes. As the Universe expands, densities scale proprotional to a−3((1+w), so it is
the case that the more negative an equation of state is, the slower the fluid dilutes
in the course of the Hubble-expansion, the ultimate example being cosmological
constant Λ with w = −1, leading to a constant energy density.

C.7 Redshift and the Hubble-expansion

We observe spectral lines of distant galaxies, which are shifted towards the red or
rather to lower energies. One should not think of the effect as a loss of energy, rather
than a transformation effect: Surely, there is a redshifting effect due to the motion
of a source relative to the observer already in special relativity, and in addition a
geometric effect due to changes in the metric in general relativity. The interpretation
of redshifting as a transformation effect can not depend on the choice of coordinates,
but of course the prediction has to be independent of a specifically adopted coordinate
choice, and in the following derivation we should illustrate this. Due to conformal
flatness of FLRW-universes it is best to work in conformal coordinates (cη, χ) which
illustrate the Minkowskian causal structure:

ds2 = a2(t)
(
c2dη2 − dχ2

)
= 0 (C.192)
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c. flrw-cosmologies

In these particular coordinates, the metric is the Minkowski-metric, preceeded by
a2(t) as the overall conformal factor,

gµν = a2(t)ηµν =


c2a2 0 0 0

0 −a2 0 0
0 0 −a2 0
0 0 0 −a2

 (C.193)

Motion of photons along the geodesic conserves the normalisation of the wave vector
kµ, so that gµνkµkν = 0 is maintained. A measurement of the frequency of a photon
takes place when the photon is intercepted by a timelike observer with a tangent uµ

to her or his world line xµ(τ). The resulting frequency ω is given by the projection

ω = gµνu
µkν (C.194)

and is, as a scalar product, a general scalar and invariant under coordinate transforms,
as requested for the result of measurement. Clearly, the observed frequency can be
affected by the relative orientation of kµ and uµ, which is the special relativistic
Doppler-effect, but also by a non-Minkowskian scalar product mediated by the
metric.

While the wave vector of a photon in conformal coordinates is oblivious to changes
in the geometry due to conformal flatness, and the normalisation of the wave vector
is conserved in geodesic motion,

gµνk
µkν = 0 (C.195)

the actual velocities of comoving observers are non-constant: The motion of a galaxy
is timelike with the normalisation

gµνu
µuν = c2 > 0 (C.196)

and even though the galaxy stays at its comoving coordinate, it moves non-uniformly
through spacetime with respect to conformal time! A galaxy at rest in the comoving
frame has only a nonzero t-component in its velocity,

gttu
tut = c2 implying ut =

c
√
gtt

=
c
a

(C.197)

which is, perhaps a bit surprisingly, changing as a(t) evolves, until it reaches c today:
But please keep in mind that in conformal coordinates we’re dealing with a non-
uniform passing time coordinate. Computing the projection between kµ and uµ for
the frequency gives

ω′ = gµνu
µkν = gttu

tkt = a2 c
a
ω

c
= aω (C.198)

which can be used to derive a relation for the shifted wave length, as ω = ck = c 2π
λ

:

λ′ =
1
a
λ (C.199)
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and therefore define the redshift z according to

z =
λ′ − λ
λ

=
1
a
− 1 (C.200)

and vice versa
a =

1
1 + z

(C.201)

with the convention that a = 1 and z = 0 for today. Lastly, I’d like to point out that
the term redshift is perhaps not ideal: The entire spectrum of a source gets stretched
by the scale factor a, and we should think of a shifting of the logarithmic wave length:

ln λ = ln(λ′a) = ln λ′ + ln a = ln λ′ − ln(1 + z) (C.202)

C.8 Continuity equation and general relativity

Einstein’s field equation is prepared to conserve the energy-momentum-tensor

∇µTµν = 0 (C.203)

with the energy in the time and the momenta in the spatial components. We arrived
(using our covariant derivative) at

∂tρ + 3H(t)(1 + w)ρ = 0 (C.204)

if the equation of state parameter w is constant in time. Pay attention to the fact, the
a(t) appears in the continuity equation even if the fluid is at rest in the comoving
frame. In this continuity equation, the term H = ȧ/a takes care of gravity, which is
first of all surprising as there is no effect of Newtonian gravitational potentials on the
continuity of classical fluid mechanics, only on the Euler-equation as an accelerating
term. Clearly,

∂tρ + ∂i(ρυ
i) = 0 (C.205)

does not depend on the gravitational potential Φ. In weak, static gravity on has the
line-element

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dxidx

i (C.206)

and see, that there are no gravitational effects whereas there are effects in the FLRW-
metric. In the weakly perturbed metric (C.206) there is time-dilatation (which for us
is not relevant, since t is the coordinate time). We have

∇µ(ρuµ) +
p

c2∇µu
µ = 0 (C.207)

which leaves us with the first term in the non-relativistic limit, as p ≪ ρc2. Comput-
ing the covariant divergence then gives

∇µ(ρuµ) = ∂µ(ρuµ) + Γ µµα (ρuα). (C.208)
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Wherein the prefactors for the largest component, which is ut , are 0 by construction,
since Γ µµt ∼ ∂tΦ = 0 for static fields, showing that there is no first-order influence
of static, weak gravitational fields on the continuity equation: This is one instance
where gravity really behaves differently than in a classical context.

C.9 Construction of FLRW-universes for ideal fluids

Gravity and the dynamical behaviour of the scale-factor a(t) in a FLRW universe
is sourced by an ideal fluid, at rest in the comoving frame: With the velocities of
the fluid elements given by uµ = (c,0)t , the two only properties of the fluid to be
specified are density ρ and pressure p, or equivalently, density ρ and equation of state
parameter w. In many cases, w is constant in time and a genuine property of the fluid,
such as w = 0 for nonrelativistic matter and w = 1/3 for photons. If there is just a
single fluid with a constant equation of state, the density evolution is determined by
the FLRW-background only and one obtains ρ ∝ a−3(1+w).

The field equation reduces to the two Friedmann-equations under the assumption
of the FLRW-symmetries, and as the field equation itself already respects covariant
energy-momentum conservation ∇µTµν = 0, is is automatically fulfilled. This implies
that of the two Friedmann-equations and the continuity equation only two relations
are truly independent. Commonly, such as in the ΛCDM-class of cosmological models
one assumes that (i) all fluids are independent (i.e. there is no direct coupling or
transition of energy from one fluid to another) and that (ii) the equation of state
parameter is fixed through the properties of the fluid (we will encounter different
examples later, such as quintessence) and governs the adiabatic, energy-momentum
conserving behaviour of the fluid. Then, the Hubble function can be assembled by
writing

H(a) = H0

√∑
i

Ωi

a3(1+wi )
+
ΩK

a2 (C.209)

with the sum over the individual densities fixing the global curvature,∑
i

Ωi = 1 −ΩK. (C.210)

Statements on acceleration as done by the second Friedmann-equation can be com-
puted by taking the derivative of H(a), leading to the deceleration parameter q. The
time evolution of the density parameters is determined from ρ(a) of the respective
fluids with their equation of state, and the time evolving critical density ρcrit(a),
determined through the Hubble-function H(a). Then,

Ωw(a)
Ωw

=
H2

0

a3(1+w)H2(a)
(C.211)

which is illustrated for Ωm (w = 0), Ωγ (w = +1/3) and ΩΛ (w = −1) in Figure 1,
clearly indicating phases, where the FLRW-dynamics is dominated by a single fluid,
in order of descending w.

Auxiliary to the last argument, we can compute Ωm(a) in its time evolution and
compare it to the Hubble-function H(a) for a range of dark energy models with
differing w. It is very practical for this type of plot to scale out the behaviour of H
in the matter-dominated phase, where it is ∝ a−3/2 and consider a3/2H(a). The result
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Figure 1: Density parameters Ω(a) for radiation, matter and the cosmological constant

is shown in Fig. 2, where the double logarithmic derivative d ln H/d ln a shows the
effective power law behaviour of H.

C.10 Cosmological distance measures

Coordinate differences between objects are irrelevant, as the coordinate choice is
completely arbitrary: For defining actual distances on needs to go through the met-
ric which maps infinitesimal coordinate differences dxµ onto spacetime distances
ds2 = gµνdxµdxν. The result of this operation is only differential, so any macroscopic
distance measure involves an integration, and it would make a difference whether the
coordinate differentials dxµ are part of a timelike or lightlike geodesic, so one would
need to describe an actual experiment that defines the measurement of a distance on
a metric manifold.

Perhaps most intuitive is the proper distance p, where one derives the distance
from the light travel time, given infinitesimally by

dp = cdt with dt =
da

aH(a)
(C.212)

so that p can be determined by integration as

p = c

1∫
a

da
1

aH(a)
(C.213)

and is naturally related to the amount of time passing between a and 1. Next,
we define the comoving distance χ, which must never be confused with comoving
coordinates! The null-condition for FLRW-universes reads

ds2 = c2dt2 − a2dχ2 = 0 (C.214)

χ would be the comoving coordinate differential, and integrating this up along a
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Figure 2: Matter density parameter Ωm(a) and the logarithmic slope of the Hubble-function

null-geodesic yields

χ =
∫

dχ = c

∫
dt

1
a

= c

1∫
a

da
1

a2H(a)
(C.215)

An actually measurable distance indicator is the angular diameter distance dA, as it
incorporates an actual experimental setup: If one places an object of a known physical
size dA at the distance dA, it would subtend a (measurable) solid angle dΩ: In a
spatially flat universe the two can be related by writing

dΩ =
dA

d2
A

=
dQ
χ2 (C.216)

As physical size dA and comoving size dQ must be related by a factor of a2, so must
be dA and χ: For consistency we get da = aχ in a flat, Euclidean universe. With a
similar physical idea in mind, one can relate the apparent brightness of a source with
its intrinsic luminosity: Spreading out the luminosity L of an object over a sphere
with the luminosity distance dL as a radius defines the flux f ,

f =
L

4πd2
L

=
L

4πd2
A

a4 (C.217)

In metric spacetimes there is a general result between the angular sizes of objects
and their surface brightnesses, called the Etherington-relation,

dL =
dA

a2 (C.218)

which helps to reformulate the apparent flux from a source in terms of comoving
or angular diameter distance: The flux is distributed over a sphere with angular
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Figure 3: Luminosity distance, comoving distance, proper distance and angular diameter
distance for a ΛCDM-cosmology

diameter distance dA, but as we need to center this sphere on the source and not
the observer, the quantity determining the area needs to incorporate a factor of a2,
as the Universe has become larger by a. Additionally, the arrival time of photons is
stretched by a as well as their energies redshifted by the same factor. The distance
measures are compared to each other for a vanilla ΛCDM-cosmology in Fig. 3.

C.11 Age of FLRW-universes

It is only sensible to speak about the age of the Universe, defined as the elapsed time
between the instances a = 0 (possibly in the mathematical limit) and a = 1 (today), if
this time interval is identical for all fundamental observers: This is in fact made sure
by the FLRW-symmetries. Elapsed proper time τ of a fundamental observer who stays
at her or his comoving coordinate with dχ = 0 is given by τ =

∫
dτ =

∫
ds/c =

∫
dt = t,

and therefore equal to the universally equal coordinate time. With the definition of
the Hubble function H = ȧ/a, which implies that dt = da/(aH) one can compute this
time as

t =
∫

dt =

1∫
0

da
1
aH

(C.219)

with 1/H0 setting the scale of the integral to be about 1/H0 ≃ 1017 seconds. The exact
number, and whether the integral itself is finite or not, depends on the cosmological
model, i.e. the values of the density parameters Ωi and of the gravitating fluid’s
equation of state parameters wi . Let’s go through a couple of specific examples with a
single dominating fluid: A flat cosmology with only a cosmological constant ΩΛ = 1
and w = −1 has a constant Hubble-function, and consequently

t =

1∫
0

da
1
aH

=
1

H0

1∫
0

d ln a =
1

H0
ln a

∣∣∣∣∣1
0
→∞ (C.220)
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which is sensible as a(t) ∝ exp(H0t) is finite for all finite times and the instant a = 0
is never reached. A completely, fully hyperbolically curved universe with ΩK = 1 and
w = −1

3 has a Hubble function H(a) = H0/a and from that we obtain

t =

1∫
0

da
1
aH

=
1

H0

1∫
0

da =
1

H0
(C.221)

and therefore a finite age! You can easily convince yourself that w = −1/3 is the
boundary for the age of the Universe to be finite: Lower equation of state parameters
make the integral diverge, and higher equation of state parameters cause the integral
to converge. In fact, a flat, matter-filled universe with Ωm = 1 and w = 0 would have
a Hubble-function with H(a) = H0a

−3/2 and therefore

t =

1∫
0

da
1
aH

=
1

H0

1∫
0

da
1

a−1/2
=

1
H0

2
3
a3/2

∣∣∣∣∣0
1

=
2
3

1
H0

, (C.222)

again with a finite age.

C.12 Causal structure of FLRW-spacetimes and cosmological horizons

It is immediately obvious that a flat FLRW-spacetime stretches infinitely into the
spatial directions but that, depending on the density parameters and the associated
equation of state, could have existed only for a finite time, which implies that light
from distant regions of the Universe could not yet have arrived at the location of an
observer.

The particle horizon is the limit of the past light cone, caused by a finite time
since a = 0. Working in conformal coordinates we compute the comoving distance as

χPH = c

η0∫
−∞

dη = c

t0∫
0

dt
1
a
, (C.223)

which is the maximum comoving distance from which a light signal could have
reached us over the finite age of the Universe. Similarly, the future light cone has
possibly a limit, corresponding to the maximum distance out to which we can send a
light signal in the future: This is called the event horizon, whose comoving distance
is given by

χEH = c

+∞∫
η0

dη =

tmax∫
t0

dt
1
a

(C.224)

where the physical age of the Universe is finite in certain cosmological models.
Neither particle nor event horizon should be confused with the Hubble-sphere,

which is defined by the physical distance rHubble at which the recession velocity υ
reaches the speed of light,

c = HrHubble → rHubble =
c
H

(C.225)
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which has today the value c/H0 ≃ 3 Gpc/h. We can perfectly see objects from beyond
the Hubble-radius; for instance the cosmic microwave background: All that matters
for the visibility of a cosmological object is whether a null-geodesic between the
object and observer can be drawn; uninterrupted by a horizon.

Of course, the integrals for particle and event horizon can be reformulated in
terms of the scale-factor a, which might be more intuitive and which allows an easier
judgement if the integrals converge or not. The expression for the Hubble-function
H(a)

H(a) = H0

√
Ωγ

a4 +
Ωm

a3 +
ΩK

a2 + ΩΛ = H0

√∑
i

Ωi

a3(1+wi )
(C.226)

suggest that, with the assumption of a monotonically increasing scale factor ȧ > 0
that the densities ρ ∼ a−3(1+w) decrease if w ≥ −1 and stay constant with w = −1.
Therefore, the Universe goes typically through all fluids in decreasing order in the
value of w in its evolution:

Ωγ → Ωm → ΩK → Ωϕ → ΩΛ (C.227)

Ωγ and Ωm are dominant at early times, resulting in decelerating expansion with
q > 0, whereas in later times dark energy with Ωϕ and the cosmological constant ΩΛ

are dominant, which leads to accelerating expansion with q < 0. For any constant
equation of state and a single dominating fluid at the critical density we would obtain

H = H0a
− 3(1+w)

2 =
ȧ
a

=
1
a

da
dt

(C.228)

such that the integrand for the event- or particle horizon would become

dt
a

=
da
a2 a

3(1+w)
2 (C.229)

and the integral would naturally depend on the equation of state as∫
dt
a

=
∫

da a
3(1+w)

2 −2 =
∫

da a
3(w−1)

2 ∼ a
3(w+1)

2 (C.230)

with a convergent solution at early times for w > −1/3 and at late times for w < −1/3.
Particular problems would occur if the equation of state is more negative than −1:
Then, a diverging scale factor a → +∞ is reached after a finite physical time. This
event is called big rip.
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In this chapter we should have a look at possible observations in FLRW-Universes in
which the expansion velocity is proportional to the distance (υ = H(t)r), specifically
how the Hubble-Lemaı̂tre constant H0 can be determined, and how the dynamic
evolution of the Hubble-function due to the gravitational interaction can be observed.

D.1 Hubble-Lemaı̂tre constant H0

The Hubble-Lemaı̂tre constant H0 can be determined in observations of Cepheid
variable stars: Those stars have (i) a known relation between their pulsation period
and their intrinsic brightness, and (ii) are bright enough to be seen in distant galax-
ies. Combining the estimate of the intrinsic brightness with the observed apparent
brightness one can estimate the distance, which scales with H0, or equivalently, h.
Similar methods based on luminosity estimates of galaxies with the Tully-Fisher or
Faber-Jackson relation are superseeded in their accuracy by Cepheids.

D.2 Spatial curvature ΩK

By using the angular diameter distance of an object with known physical size, we
can determine whether there is curvature in our universe, as this would influence
the observed angular diameter. From observations of CMB-fluctuations or baryon
acoustic oscillation features in the distribution of galaxies, for which very precise
models exist and whose comoving distance is known, one can predict their angular
size and compare to the measured angular size. Measurements point towards very
small values for curvature, Ωk < 0.01.

D.3 Supernova measurements and acceleration q

By comparing the apparent luminosity with a prediction of the intrinsic luminosity
(supernovae of type Ia are very suitable for this purpose, as the released energy is
almost constant) and a measurement of redshift one can determine the evolution of
luminosity distance dL with redshift z or scale factor a = 1/(1 + z):

dL = ca

1∫
a

da
a2H(a)

(D.231)

for a spatially flat FLRW-cosmology. For a standard form of the Hubble-function

H = H0a
− 3(1+w)

2 (D.232)

the above integral becomes divergent at the lower boundary if w < −1
3 , correspond-

ing to acceleration, and a supernova appears systematically darker. Typically, one
would determine in for a model with two FLRW-fluids the matter density Ωm and
the equation of state w of the remaining dark energy fluid with density 1 − Ωm,
assuming a critical universe. The fact that supernovae appear systematically darker
in accelerating universes is illustrated in Fig. 4, where models for the luminosity
distance (and therefore, the distance modulus) for different Ωm are compared to data.
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Figure 4: Supernova data and three different theoretical models for the distance modulus

acceleration and the cosmological constant. The actual fit is shown in Fig. 5.

D.4 (Finite) age of the Universe t0
The age of very old objects, for instance white dwarfs, one can put an lower bound on
the age of the Universe,

t0 =

1∫
0

da
aH

(D.233)

which requires a period of decelerated expansion in the past to remain finite. Clearly,
the magnitude of the integral is set by the inverse Hubble-Lemaı̂tre constant 1/H0.
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The supernova data can be used to carry out a fit for Ωm in a ΛCDM-cosmology,
arriving at a value of Ωm = 0.2785 ± 0.013, providing support for the existence of
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E thermodynamics and cosmology

The thermal history of the Universe combines three aspects: Firstly, the decrease of
temperature of the cosmic photon bath with increasing scale factor, which is mediated
by the recession motion of particles at which scattering processes take place or as a
straightforward transformation effect, secondly, the decrease in the corresponding
energy scale at which particle processes take place such as the formation of light
nuclei in the early Universe and the formation of atoms, and lastly the equilibration
of particle ensembles.

E.1 Temperature evolution and FLRW-dynamics

The subject of this chapter is the relationship between the temperature of cosmologi-
cal fluids, in particular photons, and the geometry of the Universe, i.e. the scale factor
a. In physics it is a common approach that a new phenomenon is traced back to the
most fundamental measurements we can take, time intervals and distances. In this
spirit the effect of fields on charges in electrodynamics is explained by considering
the acceleration of a test charge and general relativity itself is a theory of how the
measurements of time intervals and distances is affected by the presence of gravita-
tional fields. Likewise, temperature as a phenomenon can traced back to mechanical
measurements by means of a Carnot-engine. A Carnot-engine is a cyclic engine which
operates between two heat reservoirs at different temperature and converts heat into
mechanical energy at a fixed efficiency which only depends on the ratio between the
two temperatures. It can be used as a thermometer to determine the temperature of
one reservoir relative to the other by determining the heat flux and the amount of
mechanical work. Mechanical work can be measured purely by measurements of time
intervals and distances, for instance, the mechanical work can be used to accelerate
a test object of a given mass. From this point of view it is perhaps not surprising
that temperatures are affected by changes in the metric, as they influence the basic
measurements of distances and time-intervals.

The Universe is filled with a photon background in which the photons outnumber
baryons by a factor of about 109, implying that the photon temperature governs many
of the particle reactions until they can decouple from the photons under certain
conditions. The photons are in thermal equilibrium and their temperature decreases
while the Universe expands, in face the relationship between photon temperature T
and the scale factor a is T ∝ a. It is very important to realise, however, that photons can
neither equilibrate nor make transitions to a new equilibrium temperature without
interacting with matter: This is a direct consequence of electrodynamics, which is
linear and does not include direct scattering processes between photons. The change
in temperature of the photons is caused in emission and absorption processes or mere
scattering processes with charged particles taking place in an expanding space: Due
to the relative motion between e.g. atoms in which photon emission and absorption
processes one realises a decrease in photon wavelength with the Hubble expansion,
and therefore a decrease in energy due to a general relativistic Doppler-effect. This
mechanical picture can be viewed in a very abstract way: Due to the relative motion
between emitting and absorbing atoms the photon gas undergoes a thermodynamic
change of state and is relaxed, accompanied by a decrease in temperature T ∝ a.

Equilibration takes place in interactions of photons with matter in which the
photon number is not conserved. Photons (and in fact all relativistic ensembles
with massless particles) have the curious property that many properties including
their number in an ensemble at equilibrium is determined by the temperature (and
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the chemical potential). The number of photons changes if the system is brought
to a different temperature by a non-adiabatic process which is at contrast with an
ensemble of atoms, which can at fixed particle number assume any temperature. In
fact, the number of photons can fluctuate as interactions take place where single
photons are absorbed and more than one photon is emitted. This implies that a
grand-canonical description needs to be used for photons, where the particle number
is not fixed and photons may be generated or destroyed.

For this chapter, keep in mind that the density ρ under the Hubble-expansion
with the scale factor a behaves according

ρ ∼ a−3(1+w) (E.234)

with an equation of state parameter w. In particular one gets for radiation with
w = +1/3 the scaling ρ ∝ a−4, which is commonly interpreted as a scaling of volume
which dilutes the number density by a−3 together with an additional redshifting by
another factor of a, as the photons are scaled to longer waverlength by increasing a.

At first, let’s have a look at the ’textbook derivation’ of the temperature evolution
T(a). From statistical mechanics we know that ideal, relativistic gases (photons) have
an adiabatic index of κ = 4/3. Further, the Hubble-expansion is adiabatic (because
there are no heat fluxes that would transport thermal energy away, as heat fluxes
would violate the cosmological principle and because there is no decay of particles
into photons which would effectively constitute a source of thermal energy) and
therefore the thermal energy content is unchanged δQ = 0. Using the adiabatic
invariant

T Vκ−1︸︷︷︸
V

1
3 =(a3)

1
3 =a

= const. (E.235)

we obtain the important result

Ta = const. or T ∼ 1
a
. (E.236)

As second approach, let’s try a (hopefully) more intuitive way: We start with the
thermal energy E = kBT and use the dispersion relation E = cp for relativistic particles
like photons (effectively, this is the point where this derivation becomes compatible
with the previous one: The dispersion relation is equivalent to the relativistic adiabatic
index). Now using the de Broglie-relation p = h

λ
, we end up using λ ∼ a from the

Hubble-expansion at

E = kBT = cp =
ch
λ
∼ 1

a
(E.237)

From both of the above derivations it can be concluded, that as the Universe increases
by a, the temperature drops by 1/a. The temperature T as a function of comoving
distance (or equivalently, conformal lookback time), is shown in Fig. 6, for different
cosmological models.

E.2 Cosmic microwave background

The Universe is filled with a thermal ensemble of photons, whose temperature drops
as the Universe expands. Depending on the physical picture one adopts, there are
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Figure 6: Temperature T as a function of comoving distance χ, for 3 different ΛCDM
cosmologies

different views on the dependence of temperature with redshift: Clearly, the wave-
length of each photon is redshifted with the Hubble-expansion and the photons are
measured to have longer wavelengths at later times, and the ratio between observed
wavelength to inital wavelength is proportional to 1/(1 + z) or, equivalently, to the
scale factor a. In order to link this change in wavelength to temperature, one can in-
voke three principes: Firstly, the momentum p of a photon in inversely proportional to
wavelength λ, p = h/λ, with the Planck-constant h as the constant of proportionality,
and secondly, the dispersion relation of photons is that of ultrarelativistic particles,
E = cp. If one then assign the thermal energy E = kBT to an ensemble of photons
in order to relate their typical energy to temperature, one obtains kBT = ch/λ. As
the wavelength λ is proportional to the scale factor, T must scale proportional to
1/a. Using the photon dispersion relation c = λν which relates wavelength λ and
frequency ν implies the inverse scaling of frequency, ν ∝ a−1 and therefore ν ∝ T.

The same result can be obtained in a very different physical picture: Consider-
ing the photon fluid as a thermodynamic substance and the Hubble-expansion as a
(reversible) change in volume by a factor a3, one would derive the change in tempera-
ture with the adiabatic relation. Adiabatic changes in state are characterised by the
absence of a heat flux, and clearly such a heat flux would violate the FLRW-symmetry
assumptions. For an adiabatic change in state the quantity TVκ−1 is constant, with
the volume V, the temperature T and the adiabatic index κ of the substance. Photons
as ultrarelativisitic particles have κ = 4/3, implying the relation T ∝ a−1 with V ∝ a3.

There is a nice consistency between both pictures: If the Universe was filled with
thermal non-relativistic particles, their adiabatic index of κ = 5/3 would imply a
dependence T ∝ a−2, which could likewise be derived by using a quadratic dispersion
relation E = p2/(2m): Together with the definition of thermal energy E = kBT and
the de Brogie-relation p = h/λ this suggests T ∝ a−2 as well. One should be careful in
generalising this result to other substances: The adiabatic index of κ = 5/3 applies to
non-relativistic particles with 3 translational degrees of freedom. If the Universe was
filled with a diatomic gas it would be wrong to derive a scaling T ∝ a−6/5 given its
adiabatic index of κ = 7/5 on the basis of the three translational and two rotational
degrees of freedom. Because only the translational degrees of freedom are affected
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(and the corresponding components of momentum redshifted), the gas would also
cool down ∝ a−2.

It should be kept in mind that a photon gas always needs interactions with
particles such as atoms to reach thermal equilibrium, because electrodynamics as
a linear theory has perfect superposition and no scattering between the photons
themselves (at least at the energies we are concerned with). Therefore, the increase in
volume due to the Hubble expansion needs to be thought of as the increase in distance
and the corresponding cosmological redshifting between emission and absorption of
a photon at two locations: The photons are coupled to the Hubble expansion through
scattering processes on advected particles.

The temperature of the photon background is sufficiently low at a scale factor of
a ≃ 10−3 to allow the formation of atoms from free nuclei and electrons. As the Uni-
verse becomes neutral scattering processes between photons and free electrons cease,
the Universe becomes transparent to light and photons can propagate freely along
straight lines: This corresponds to the release of the cosmic microwave background.
Although, due to the FLRW-symmetries, the formation of atoms takes place at the
same instant everywhere simultaneously, we perceive this process at a fixed distance
isotropically around us: The spherical surface, from which the photons of the cosmic
microwave background seem to emanate is called the surface of last scattering, or,
the photosphere of the cosmic microwave background.

An estimate of the formation temperature of hydrogen atoms from the ionisation
energy would correspond to about 104 Kelvin and not to the 3 × 103 Kelvin one finds
in cosmology: In fact, the formation of atoms and therefore the release of the cosmic
microwave background is delayed. The decoupling of the photons would be a very
slow process, in which the rate of formation of atoms and their destrucion by photons
with sufficient energy would slowly tilt towards the first process as the temperature
decreases. Instead, there is a forbidden, two-photon transition from the 2s-state to
the ground state, which allows the generation of a photon population at a lower
temperature along with a population of neutral atoms as they can not be reionised
due to a deficit in photon energy.

The incredibly accurate data taken by the FIRAS-instrument onboard the COBE-
satellite shows clearly that the CMB is described by a Planck-spectrum with proper
Bose-Einstein statistics and not by an analogously constructed Wien-spectrum with
Boltzmann-statistics, as illustrated by Fig. 7.

E.3 Into and out of equilibrium

Thermal equilibrium is maintained by collisions between particles, which implies a
competition between two time-scales: The collision time scale tc, at which particles ex-
change energy and momentum, and the Hubble-time scale, on which the temperature
changes due to the expansion of the Universe: If tc ≪ tH, collisions between particles
are frequent and thermal equilibrium can be maintained, but if tc ≫ tH, the system
can drop out of thermal equilibrium. This happens necessarily at some point in the
history of the Universe, because one can estimate tH to be tH = 1/H(a) ∝ a2 during
radiation domination, whereas the collision rate Γ = n⟨συ⟩ with the number density
n, the cross-section σ and the particle velocity υ implies a scaling of tc = Γ −1 ∝ a3 due
to the inverse proportionality to the particle number density. Therefore, tc/tH ∝ a
and thermal equilibrium can be maintained at early times, and can break down at
late times.

Specifically, the time-evolution of the number density of particles follows a conti-
nuity equation,

50



e.3. into and out of equilibrium

0 100 200 300 400 500 600 700
frequency ν in GHz

50

0

50

100

150

200

250

300

350

400

en
er

gy
 fl

ux
 S

(ν
) i

n 
M

Jy
/
sr

Planck-law
Wien-law
FIRAS data, errors × 100

Figure 7: Spectrum of the cosmic microwave background as recorded by the FIRAS in-
strument onboard the COBE-satellite, with the best fitting Planck- and Wien-spectra in
comparison

ṅ + div(nυ) = 0 (E.238)

which reduces to ṅ + 3Hn = 0 by substituting the Hubble-flow υ = Hr, by assuming
homogeneity of the particle density and by using that divr = 3. Then, the number
density of particles has the solution d ln n/dt = −3H, which is solved by n(t) ∝
exp(−3Ht) if H is constant, otherwise by n(t) ∝ exp(−3

∫
dtH). Relating this to the

scale factor one can substitute the definition of the Hubble function, H = ȧ/a, yielding
d ln n/dt = −3d ln a/dt with the solution n ∝ a−3, as expected: The substitution of the
Hubble-law υ = Hr conserves homogeneity perfectly, and is in fact the only law that
would allow this. As a proof, please remember that in an isotropic case one could
substitute a generalised Hubble law υ ∝ rα into the continuity equation, where the
divergence is explicitly formulated in spherical coordinates,

∂iυ
i =

1
r2

∂
∂r

(r2+α) =
2 + α
r2 r1+α = H(2 + α)rα−1, (E.239)

which does not depend on r if α = 1, implying that n can only change with time.

The time-evolution is modified if there are collisions present and if particles can
be created in reactions,

ṅ + 3Hn = −Q + S = −Γ n
(
1 −

n2
T

n2

)
(E.240)

with the collision rate Q = ⟨συ⟩n2 and the particle creation rate S for which we make
the ansatz S = ⟨συ⟩n2

T. Because both processes involve the collisions between particle
pairs, the pair number density is relevant which is well approximated by the squared
particle density. The particle density n should decrease if particles thermalise through
collisions, which takes place at the rate Γ , and particles are created at the rate Γ from
a thermal background, necessitating the proportionality to the density of thermal
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particles nT. The number density of thermal particles nT can be predicted from a
dispersion relation and the suitable statistics.

Introducing the comoving number density N = na3 with the derivative Ṅ =
a3(ṅ + 3Hn) yields

Ṅ = −ΓN
(
1 −

N2
T

N2

)
(E.241)

which can be rewritten by replacing the time variable t with the scale factor a,

d ln N
d ln a

= − Γ
H

(
1 −

N2
T

N2

)
(E.242)

by writing Ṅ = aHdN/da. In this relation, the competition of time scales is clearly
expressed by the prefactor Γ /H, which is large if tc ≪ tH and collisions dominate,
and conversely small if tc ≪ tH, in which case the Hubble expansion dominates. This
prefactor changes the rate at which n can change if N , NT, and can effectively keep
N constant even if N , NT in the limit Γ ≪ H, for a dominating Hubble-expansion.

If a system is away from thermal equilibrium, the number N is larger than NT,
implying a positive bracket in the last equation, which causes N to decrease in time,
meaning that the system is driven towards thermal equilibrium, which is reached
at N = NT where the evolution of N stops. If conversely, NT is larger than N, the
sign switches and N can increase and the system can freeze out, if the prefactor Γ /H
allows it.

E.4 Photon background as a thermodynamical ensemble

The properties of a cosmological radiation background can be understood from the
properties of a quantum system at thermal equilibrium. Distributing the particles in
phase space needs to respect the Friedmann-symmetries, so one assumes homogeneity
in configuration space and isotropy in momentum space for any cosmological observer,
while one is free to choose the distribution in momentum space as a function of energy
and the dispersion relation E(p) of the particles. Specifically, for photons one has as
the ultrarelativitic dispersion relation E(p) = cp with the momentum p = h/λ, and
the phase space density n(p, T) = 1/(exp(cp/(kBT)) − 1) for bosons.

An ideal gas of photons has the interesting property that its chemical potential
µ vanishes and the corresponding fugacity exp(µ/(kBT)) is equal to one: This is
related to the fact that the photon number is not constrained, due to emission and
absorption processes, which cause the number of photons in the system to fluctuate.
In equilibrium the Helmholtz free energy F = F(T, V, N) is at a minimum, as it
describes the energy of a system in thermal equilibrium at a given temperature T,
volume V and particle number N. Because F follows by a Legendre transform from
the internal energy U, F = U − TS replacing the entropy S by the temperature T one
obtains for the differential dF = −SdT − PdV + µdN. The minimum condition implies
that ∂F/∂N = µ = 0, meaning that the chemical potential for a system at constant
temperature and volume vanishes, µ = 0, in thermal equilibrium.

Radiation pressure and entropy of the thermal photon gas result from differ-
entiation of the grand canonical potential J(T, V, n), which describes a system at
equilibrium at fixed temperature, constant chemical potential and not performing
mechanical work. Specifically, the grand canonical potential J(T, V, µ) is defined as
J = U − TS − µN and by substituting the Euler-relation U = TS − PV + µN it is
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readily shown to be J = −PV. The grand canonical potential has the differential
dJ = −SdT − PdV − Ndµ, which can be shown by substituting the Euler relation
dU = TdS − PdV + µdN. It follows from the grand canonical partition sum Z by
taking the logarithm,

J = −kBT ln Z. (E.243)

The grand canonical partition sum Z is defined as

ln Z =
g

(2πℏ)3

∫
d3x

∫
d3p ln

(
1 − exp

(
−

cp

kBT

))
(E.244)

if the dispersion relation for ultrarelativistic particles E(p) = cp is substituted for the
energy and if their statistical weight is g, meaning that a single state can be occupied
by g particles: Photons have spin 1, and being ultrarelativistic, there can only be two
particles per state, g = 2. The expression for the grand canonical partition sum Z can
be written in a closed form by integration by parts,

ln Z = −
gV

(2πℏ)3

∫
dp 4πp2 ln

(
1 − exp

(
−

cp

kBT

))
=

gV
(2πℏ)3

∫
dp

4πc
3kBT

p3 1

exp
(

cp
kBT

)
− 1

(E.245)

while identifying the configuration space volume V =
∫

d3x and assuming isotropy in
momentum space, and abbreviating β = 1/(kBT). The integration can be carried out
by substituting x = βcp and using the relation

∫
dx xn/(exp(x) − 1) = ζ(n + 1)Γ (n + 1),

ln Z =
gV

(2πℏ)3
4π
3

(
kBT
c

)3

ζ(4)Γ (4). (E.246)

The difference between the distribution functions for Bose-Einstein, Fermi-Dirac
and Boltzmann statistics are shown in Fig. 8.

Already from the expression for Z it is apparent that the temperature must
scale ∝ a−1. An adiabatic change of state implies that the system moves to a new
temperature while the relative probabilites are unchanged: While the configuration
space scales ∝ a3 and the momentum space ∝ a−3 due to the scaling of the photon
momentum p = h/λ ∝ a−1, it is necessary for the temperature to scale ∝ a−1 in
order for the partition sum to remain invariant. It is quite interesting to note that
the rescaling of temperature is sufficient for particles obeying different dispersion
relations, as long as this dispersion, i.e. the relation between energy and momentum
is scale free. Any deviation from a power law would have the consequence that a
rescaling affects high and low-energy particles differently, breaking the overall shape
invariance under rescaling by a. In this way it is possible to derive simple scaling
behaviours for ultrarelativistic particles with E = cp or for classical particles with
E = p2/(2m).

A very interesting illustration of the shape-invariance of the Planck-spectrum
is Wien’s displacement law: The shape of the spectrum itself defines a frequency
scale, which needs to scale necessarily ∝ 1/a in order not to violate the dispersion
relation. This is in fact realised in any definition of such a scale in the spectrum,
for instance through the location of the maximum. dS(ν)/dν = 0 yields a frequency
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Figure 8: Bose-Einstein, Fermi-Dirac and Boltzmann-distribution functions

νmax = proportional to the temperature and hence proportional to 1/a. Alternatively,
one could consider the mean photon frequency ν̄ =

∫
dνn(ν), or the median frequency,

which are all proportional to the temperature and hence inversely proportional to the
scale factor a.

In the following we will derive the most important thermodynamical properties of
a photon gas by an intuitive argument using a weighted integral over the occupation
statistic and by a thorough derivation using the grand canonical partition sum:
Starting with the internal energy one would use the phase space distribution n(p, T)
and the ultrarelativistic dispersion relation E = cp to collect the energy across the
entire momentum space by carrying out the dp-integration, while the configuration
space integration simply yields the volume of the system V:

U =
gV

(2πℏ)3

∫
4πp2dp E(p)

1

exp
( E(p)
kBT

)
− 1

(E.247)

where again isotropy in momentum space was assumed, d3p = 4πp2dp. The integral
can be rewritten by integration by parts,∫

4πp2dp ln
(
1 − exp

(
cp

kBT

))
=

∫
4π

p3

3
dp

1

exp
(

cp
kBT

)
− 1

(E.248)

implying that ln Z = U/3 and pV = ln Z, i.e. the relation p = U/(3V) between
pressure and internal energy as well as J = U/3. The total energy density of the
radiation background is an expression of the Stefan-Boltzmann law. The total energy
density can be evaluated to be equal to σSBT4 with the Stefan-Boltzmann-constant
σSB: This is in complete agreement with the fact that the number density

∫
dν n(ν) is

diluted ∝ a−3 and each photon’s energy is redshifted by an additional factor of a−1,
resulting in a decrease of the energy density ∝ a−4, or equivalently, a proportionality
of the energy density with T4, as derived before.

The factor 1/3 in the relation between pressure and energy density follows from
the same integral. The transfer of momentum onto a surface would be 2p cos θ under
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e.4. photon background as a thermodynamical ensemble

reflection and the flux of photons would be c cos θ. Therefore, assuming again isotropy
of the photon momenta one would collect the total momentum transfer

P =
g

(2πℏ)3

∫
d3p 2cp cos2 θ n(p, T) =

U
3V

(E.249)

by using spherical coordinates d3p = 2πp2dp sin θdθdφ, where the azimuthal inte-
gration yields 2π and the polar one 1/3, for the range of angles 0 ≤ θ ≤ π/2.

For evaluating the integrals which were needed for computing thermodynamical
quantities one can use the following trick and rewrite the phase-space distribution
function n(p, t) as a geometric series starting at m = 1. In general, one has

∞∑
m=0

qm =
1

1 − q
→ q

∞∑
m=0

qm =
∞∑

m=1

qm =
q

1 − q
=

1
1
q − 1

, (E.250)

and therefore
1

exp(x) − 1
=
∞∑

m=1

exp(−mx). (E.251)

Substituting into the expressions obtained above yields∫
dx

xn−1

exp(x) − 1
=

∫
dx xn−1

∞∑
m=1

exp(−mx). (E.252)

The integral can be solved by substitution y = mx, dy = mdx,∫
dx xn−1

∞∑
m=1

exp(−mx) =
∞∑

m=1

mn
∫

dy yn−1 exp(−y) = ζ(n)Γ (n), (E.253)

where one can identify Riemann’s ζ-function and the Γ -function in the last step.
The entropy can be determined by differentiation of the grand canonical potential

with respect to temperature, dJ = −SdT − pdV + µdN, and consequently

S = − ∂J
∂T

=
∂
∂T

(kBT ln Z) = k

(
ln Z +

1
z

∂Z
∂(kBT)

)
(E.254)

or, equivalently by using U = TS − pV = TS − J (if µ = 0), such that S = (U + J)/T =
4U/(3T). Therefore, the total entropy S is conserved because VT3 = const from
these considerations, in accordance with the entropy being constant for an adiabatic
reversible change of state. The entropy density S/V scales ∝ T3 and therefore ∝ a−3.
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The total number N of particles can be derived through an integral over the phase
space density,

N =
gV

(2πℏ)3

∫
4πp2dp

1

exp
(

cp
kBT

)
− 1

(E.255)

or equivalently, by differentiation of the grand canonical potential with respect to µ,

N = − ∂J
∂µ

= −kBT
∂
∂µ

ln Z (E.256)

For this purpose one needs to include a chemical potential in the definition of ln Z,

ln Z =
gV

(2πℏ)3

∫
4πp2dp ln

(
1 − exp

(
−
cp + µ
kBT

))
(E.257)

which is set to zero after differentiating, yielding exactly the intuitive result. Evaluat-
ing the integrals shows the scaling of particle number density N/V ∝ a−3 due to the
proportionality to T3 and the conservation of the total number of particles N.

It suffices to replace the phase space density n(p, T) by n(p, T) = 1/(exp(cp/(kBT))+
1) for the description of (massless) neutrinos: In complete analogy one obtains expres-
sions for the particle number density n = N/V, the entropy density s = S/V and the
energy density u = U/V with identical scaling behaviours with temperature, but with
different numerical prefactors due to the changed sign in the phase space density.

There is a very interesting catch in the physical properties of the Universe’s photon
and neutrino backgrounds: Their temperature is not equal. Due to the annihilation
of electron-positron pairs into photons there has been a source of thermal energy in
the photon background, lifting it’s temperature to 2.736 Kelvin, in comparison to the
neutrino background which is at equilibrium at a temperature of 1.95 Kelvins. As
there is essentially no coupling between photons and neutrinos, the two would never
really equilibrate.

E.5 Quantum-statistics and classical statistics

The Universe is filled with particles at thermal equilibrium, whose thermodynamic
properties can be derived using quantum statistics, i.e. Bose-Einstein-statistics for
particles with integer spin such as photons and Fermi-Dirac-statistics for particles
with half-integer spin, for instance neutrinos. The quantum mechanical description is
necessary in particular at low energies, and this energy is characterised by the thermal
wavelength λth. If the particle separation is smaller than the thermal wavelength,
quantum mechanical interference becomes important and the behaviour deviates
from that of a classical system: In contrast to classical statistics, quantum mechanical
particles show constructive interference in the case of bosons, if two particles are
interchanged, and destructive interference in the case of fermions. This impacts on
the occupation statistics, because there can be arbitrarily many bosons in a single
state due to constructive interference whereas there can only be a single fermion due
to destructive interference. There is no such restriction for classical particles as they
are distinguishable: In their time evolution it is always possible to track them through
phase space, and a state with interchanged particles is clearly different.

The thermal wavelength corresponds to the de-Broglie wavelength λ = ch/E of a
photon with kBT of thermal energy, λth = ch/(kBT). It scales ∝ a with the scale factor,
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Figure 9: Planck- and Wien-spectra at different equilibrium temperatures

likewise the typical distance between particles of a given energy. Therefore, the pho-
ton gas is always characterised by the same Planck-distribution irrespective of scale
factor, because for the same fraction of photons quantum mechanical interference
is important, and the Hubble expansion will not affect the shape of the statistical
distribution. The same argument holds for non-relativistic particles with a quadratic
dispersion relation: E = p2/(2m), in which case the thermal wavelength would result
in λth = h/

√
2mkBT, which scales ∝ a in consistence with the scaling T ∝ a−2.

Planck- and Wien-spectra for different temperatures are compared to each other
in Fig. 9, clearly showing an overabundance of photons at low energies in the correct
quantum mechanical formulation relative to the classical prediction. In addition,
the maxima show a clear linear trend to increase with increasing temperature as a
manifestation of the Wien-displacement law.

E.6 Radiation backgrounds

Although the picture that the Universe is filled with photons, whose equilibrium
temperature drops as the Universe expands is quite correct, it is worth pointing out
two things: The change in wavelength or temperature is caused purely by the change
in the metric, or if one adopts physical coordinates, by the a general relativistic
Doppler-effect due to recession motion of the emitter. Because both the observer and
the emitter in cosmology are following their world-lines in freely falling motion, one
can be sure that locally for both the laws of special relativity are valid due to the
equivalence principle. Because of the fact that in each frame all physical processes are
determined by the laws of special relativity only, the redshifting effect on a photon
can be unambiguously determined: In this respect, the interpretation would be that
in the distant Universe atomic physics is exactly the same as it is here, and that we can
measure a change in photon wavelength because we know the emission process under
which a photon has been generated, for instance a certain atomic transition leading
to a spectral line, and attribute the change in photon wavelength to the change in the
metric between emission and absorption of a photon.

The Universe is filled with a homogeneous and isotropic radiation field in accor-
dance with the symmetry assumption of the FLRW-metric. We perceive this photon
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background today as a blackbody radiation with an equilibrium temperature of
TCMB = 2.725 Kelvin. Looking along the backwards light cone towards earlier times,
we perceive this temperature to be higher by a factor of 1/a (a is smaller than one
in the past, implying a higher temperature) and there are physical processes, for
instance emission and absorption processes with atoms, that take place at the corre-
sponding temperature: The FLRW-symmetry assumptions make sure that at every
time the photon background has the same temperature everywhere, but moving along
the backward light cone of an observer one can see processes that are governed by
temperature to set in at a certain redshift or, equivalently, distance relative to us.

For instance, atoms are formed in the Universe at a temperature of about 3000
Kelvin, and this formation of atoms takes place everywhere at the same age of the
Universe, typically 1012 seconds after the Big Bang. For an observer today, this
temperature is reached going back by about 1000 units in redshift, or to a scale
factor of a = 10−3, in order for the Universe to reach this temperature relative to
the temperature of the background today. Again due to the FLRW-symmetries, the
temperature is reached on the surface of a sphere with a distance of about 3χH
centered on us, on which we can observe radiation from the formation of atoms. The
notion that we are surrounded by a photosphere of the cosmic microwave background
does not imply that our position as observers is special: In fact any other observer at a
different position would see an identical photosphere in perfect spherical symmetry
around them with the same radius today.

The effect of different cosmological models or choices of cosmological parameters
on the evolution of the background temperature is only relevant if a physical distance
or time is assigned to a scale factor, because for this assignment the Hubble function is
needed, which includes all density parameters and equations of state. The comoving
distance along the backward light cone to the CMB photosphere can be computed as
an integral

χCMB = c

aCMB∫
1

da
a2H(a)

(E.258)

with aCMB = 10−3.
In some calculations is is practical to use the temperature as a time-variable, which

is possible due to the monotonic relationship between scale factor and temperature:
T/TCMB = 1/a implies dT/da = −TCMB/a

2. For instance, one might estimate the
thickness of the photosphere intuitively for a certain value of ∆T, inside which the
temperature drops enough for atoms to form:

∆χ ≃
∣∣∣∣∣dχdt

∣∣∣∣∣∆T =
∣∣∣∣∣dχda

da
T

∣∣∣∣∣∆T =
c

H(a)
∆T

TCMB
. (E.259)

If one very coarsely assumes in the next step that ∆T ≃ 0.1Tcomb, one obtains
∆χ ≃ 10−2.5χH with Tcomb = 3000 Kelvin.

E.7 Particle cosmology

Extrapolating the dependence of temperature with the knowledge of the fact that
the scale factor was much smaller in the past implies that the temperature in the
early Universe was very high. There are two observations which support this idea,
specifically, there is the cosmic microwave background on one side and the relative
abundances of light chemical elements including their isotopes which are formed
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in the early Universe in a process called nucleosynthesis. Nucleosynthesis models
constrain, in addition to nuclear reactions and the time passed between the initial
and final temperatures, as well the relative abundances of neutrons and protons as
its initial condition, with implications for baryongenesis at an even earlier stage.

E.7.1 Baryogenesis

In the course of the evolution of the early Universe, the temperature cools down
sufficiently to allow the formation of baryons from quarks and gluons, i.e. there
is a phase transition from the quark gluon-plasma to baryons such as protons and
neutrons. At this point one can (and should) also ask the valid question, why there
is more matter than antimatter in our Universe, for instance more protons than
antiprotons, for which Sacharow has given three criteria:

1. The baryon number B has to be violated, e.g. by the asymmetric decay of a
hypothetical X-particle precursing quarks and leptons,

X→ 2u 51% vs. → d̄ + e+ 49% ∆B = 0.177 (E.260)

in comparison to the decay of the anti-particle X̄,

X̄→ 2ū 49% vs. → d + e− 51% ∆B = −0.157 (E.261)

∆B is the baryon number weighted with the branching ratio.

2. CP- and P-symmetry have to be broken

3. The system has to be in thermal non-equilibrium

If all these criteria are fulfilled, baryons can outnumber anti-baryons. This is described
e.g. as part of a grand unified theory of particle physics, it should be mentioned that
all these theories are very uncertain.

E.7.2 Big bang nucleosynthesis

At a temperature scale of ∼ 1014 Kelvin the Universe experiences a phase transition
at which protons and neutrons are formed from a plasma composed of quarks and
gluons according to the rules of quantum chromodynamics, a quantum field theory
that describes the interactions of these particles. Due to a slight mass difference
between protons and neutrons (the neutron being more massive by about xxx Gev)
one finds a slightly larger number of protons in the equilibrium of the β-process

n↔ p + e− + ν̄e (E.262)

After the formation of protons and neutrons the Universe continues to expand and
to lower its temperature until temperatures are reached which allow the formation of
light nuclei. Because neutrons are unstable with a lifetime of about 900 seconds, they
partially decay until the formation of light nuclei starts at much lower temperatures.
The neutron decay changes the abundance of protons significantly.

From the relation T ∼ 1
a we can draw conclusions about the thermal history

of our Universe as a was much smaller in history. For example at a ∼ 10−10 the
corresponding temperature was T ∼ 1010K and therefore ϵth ∼ MeV, which allows
nucleosynthesis in the early Universe shortly after the big bang. At a ∼ 10−3 the
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temperature was T ∼ 103K or ϵth ∼ eV, which allows the formation of the first atoms.
In the next chapters we will have a closer look at both mentioned periods.

For our initial conditions (at ϵth ∼ GeV), the process

p + e− ⇌ n + νe (E.263)

is allowed in both direction whereas after the freeze-out (T drops to ϵth ∼ MeV) the
process only happens from right to left (as known from ’normal’ neutron decay with
an ν̄e). As the life-time of neutrons is ∼ 15 min, the rate n

p drops from n
p = 1 to n

p ∼
1
7

before the fusion to deuterium D (at T ∼ 2MeV)

p + n ⇌ D + γ (E.264)

sets in. The backwards process from right to left results from high energetic photons,
which cause the dissociation of the deterium again, therefore fusion only sets in at
ϵth ∼ 100keV energies.

A crucial point for creating heavier element is the ’deuterium-bottleneck’, as there
has to be a decent amount of deuterium while still having left over neutrons. At
this point the next question to ask is: How much time was there for production of
deuterium in the right temperature-window? The answer is: Not much, from abun-
dance measurements (hyperfine structure) we know of nD

np
∼ 3.5 · 10−5, this limitation

only leads to a creation of very light elements in the big-bang nucleosynthesis up to
A ∼ 5...7.

Back at the big bang nucleosynthesis, one could compare the photon background
to the neutrino background from the produced νe’s. For the derivation of the neutrino
background one has to consider that neutrinos are fermions and therefore has to
exchange the Bose- to a Fermi-Dirac-distribution and ends up at a pretty similar
result (Remember that the Fermi-Dirac-distribution can be written as a difference of
two Bose-distributions at different temperatures) which we don’t discuss here. Just
prior to nucleosynthesis, photons are produced by annihilation

e+ + e− → 2γ (E.265)

with temperature (T ∼ 1010.5K) is set by the electron rest-mass. With the knowledge
that the entropy of fermions Sfermion = 7

8 Sboson, S ∼ T3 and the assumption that the
entropy is conserved, one receives for the above process (E.265)

Sγ = S′γ + S′e+ + S′e− (E.266)

and with the entropy relations put in(
2

7
8

+ 1
)

T′3 = T3 (E.267)

one ends up at T = 1.4T′ which implies that Tγ = 2K for the today’s neutrino
background. We further can now have a look at the baryon to photon ration

nb =
ρb

mp
=

1
mp

Ωb
3H2

0
8πG︸︷︷︸
=ρcrit

(E.268)
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Ωb can be measured by X-ray observation of galaxy clusters and making use of the
virial theorem. One obtains from these measurements nb ≈ 1.1 · 10−5Ωbh

2cm−3 and
Ωb ≈ 0.04 or 10 atoms per cubic meter in the Universe today. Therefore the baryon to
photon ratio is

η =
nb
nγ
≈ 2.7 · 10−8Ωbh

2 ≈ 10−9 (E.269)

nγ in above’s equation is received from the CMB-temperature and the usage of ther-
mal equilibrium. With this result of approximate 109 more photons than atoms one
can also imagine the first light elements being destroyed again by photodissociation.
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F.1 Need for inflation and scales

There are indications that the Universe underwent an episode of rapid, accelerated
expansion at very early times, commonly referred to as cosmic inflation. Firstly, there
is the horizon problem: If we consider thermal equilibrium in the early Universe,
the horizon scale for this equilibrium is c∆t with the time for equilibration being
roughly equal to the travel time of photons. The observed homogeneity of the cosmic
microwave background is therefore very surprising, it should be made of patches
corresponding to the horizon size as the photons were set free. To make this more
quantitative, one can have a look at the comoving horizon at the time when the CMB
was generated, which was at a redshift of z = 103 or equivalently, a scale factor of
a = 10−3:

χH = c

10−3∫
0

da
a2H(a)

≈ 100 Mpc/h (F.270)

The comoving distance to the CMB is ∼ 10 Gpc/h for ΛCDM. Taking the ratio of
these two scales one arrives at an angular scale of

∆Θ ∼ 1
100

∼ 1◦. (F.271)

This would be an estimate of the patch size for homogeneity on a small scales. This
can be changed by including modification to the Hubble-function at early times, in
particular by making it very small, such that the horizon scale becomes large as a
consequence. Secondly, there is the flatness problem. As we know, the curvature ΩK
is smaller than ΩK ≲ 0.01, which is very small, but it grows in matter and radiation
dominated phases. One can describe this in FLRW-cosmologies with fluids Ωw with
EOS-parameter w and curvature ΩK = 1 −Ωw.

H2(a) = H2
0

(
Ωw

a3(1+w)
+
ΩK

a2

)
(F.272)

wherein ΩK’s behaviour can be described like a fluid with w = −1
3 . We can write

Ωw(a)
Ωw

=
H2

0

a3(1+w)H2(a)
(F.273)

derived from

Ω(a) =
ρ(a)
ρcrit(a)

with ρcrit(a) =
3H(a)2

8πG
(F.274)

Therefore we obtain for curvature in adiabatic evolution

ΩK(a)
ΩK

=
H2

0

a2H2(a)
=

1
Ωw

a3(1+w)−2 + ΩK

(F.275)
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which indicates directly the evolution of curvature in the presence of another fluid
the model universe:

(1) if 3(1 + w) − 2 = 0 then w = −1
3 and resulting no changes, as q = 0, ä = 0 using

3(1 + w) = 2(1 + q) for Ω = 1 and therefore ΩK = const. Effectively, there is
another fluid with w = −1/3 present and both fluids keep due to their analogous
evolution the density parameters fixed at constant values.

(2) if 3(1 + w) − 2 > 0 the resulting ä is smaller than 0, thus q > 0 and in result
ΩK is increasing. An additional fluid with an equation of state more positive
than w = −1/3 gives rise to a decelerating universe with an associated growth
of curvature.

(3) if 3(1 + w) − 2 < 0 the fluid EOS-parameter w < −1
3 , further q < 0 and ä > 0,

in this configuration ΩK is decreasing. This case is certainly interesting for us,
as this drives ΩK to small values, as a consequence of the dominating energy
density of the additional fluid with an equation of state more negative than
w = −1/3.

Thirdly, there is the scale problem, which arises if one tries to predict typical scales
of the Universe from natural constants. In the Planck-system, constants are c, G and ℏ,
whereas in the Hubble system we use c, G and Λ, and inflation catapults the Universe

from a system that is described by the Planck length lP =
√

Gℏ
c = 10−35 meters, the

Planck time tP =
√

Gℏ
c3 = 10−43 seconds and the Planck density ρP = c5

G2ℏ = 1096 kg
m3

to a state rather described by the Hubble length lH = 1√
Λ

= 1025 meters, the Hubble-

time tH = 1
c
√
Λ

= 1017 seconds and the Hubble density ρH = c3
√
ΛG

= 10−23 kg
m3 , where

we have made convenient use of the fact that the Universe today is flat and dominated
by Λ (in fact, a yet unexplained coincidence). Very interestingly, there is a factor of
1060 appearing

lH
lP

= 1060 as well as
tH

tP
= 1060 (F.276)

suggesting a factor of 10120 between ρP and ρH. Perhaps a better way to phrase
the scale problem is to ask why the Universe is so large an empty, and it is clear
that accelerated expansion is able to achieve this, by making the Hubble-Lemaı̂tre
parameter small and, by extension, giving the critical density a small value, too.
All in all, these three problems are solved by having an early period of accelerated
expansion, called cosmic inflation: it drives the curvature towards small values,
shrinks the horizon and makes Universe large.

F.2 Why is accelerated expansion (and stopping it) so difficult?

General relativity provides gravity in the form of spacetime curvature for any energy
momentum-tensor Tµν, which is covariantly conserved, gαµ∇αTµν = 0, and the trace
T = gµνTµν of the energy momentum tensor is proportional to the Ricci-curvature, as
required by the trace of the entire field equation:

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λgµν (F.277)
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resulting from gµνRµν = R as well as gµνgµν = δ
µ
µ = 4. The trace of the energy

momentum tensor is surely an invariant quantity but unlike electric charges which
can have either of two possible signs, the energy momentum tensor is subjected to
energy conditions, making sure that the energy momentum content of spacetime is
bounded by zero from below and that gravity is attractive. Working with an ideal
fluid

Tµν =
(
ρ +

p

c2

)
uµuν − pgµν (F.278)

one can define the energy conditions through contractions with Tµν and reexpressing
them with density ρ and pressure p.

1. null energy condition (ρ + p ≥ 0) resulting from Tµνkµkν ≥ 0 for all fluids, if kµ

is a null-vector gµνkµkν = 0.

2. weak energy condition (ρ ≥ 0, matter density always positive) resulting from
above’s Tµνuµuν ≥ 0, for time-like uµ with gµνu

µuν = c2 for the tangent uµ =
dxµdτ to a world line xµ(τ) of an observer.

3. strong energy condition (ρ + 3p ≥ 0 for an ideal fluid) resulting from scalar
Rµνuµuν ≥ 0 for all fluids.

Therefore gravity is attractive and curves geodesics towards each other. The three
conditions are subsets of each other and are related to each other by contraction
of kµkν or uµuν with the field equation, similarly to the contraction with gµν, and
working best with an ideal fluid for Tµν. Thus it is very complicated to generate
repulsive gravity, because all together ρ ≥ 0 (weak), ρ + p ≥ 0 (null) and ρ + 3p ≥ 0
(strong) but for repulsion one needs p < −1

3ρ (or w < −1
3 ) resulting in acceleration,

q > 0.
Furthermore, it is clear that in the course of the Hubble expansion, the fluids will

dominated in the order of descending value for their equation of state w: Once one has
established accelerated expansion with a fluid w < −1/3, it is very difficult to return
to e.g. matter domination with w = 0! Keeping in mind that 3(1 + w) = 2(1 + q) for a
critical FLRW-universe with density parameter Ω = 1 for a fluid with an arbitrary
but constant equation of state w on would get a progression

Ωr Ωm ΩK ΩΛ (F.279)

w = +
1
3

w = 0 w = −1
3

w = −1 (F.280)

q = 1 q =
1
2

q = 0 q = −1 (F.281)

To make this explicity, we write down the evolution of the density parameter for a
fluid with fixed equation of state w,

Ωw(a)
Ωw

=
H2

0

a3(1+w)H2(a)
(F.282)

Comparing two such fluids with equations of state w and w′ would result in

Ωw′ (a)
Ωw(a)

=
Ωw′

Ωw
× a−3(w′−w) (F.283)
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which increases if w < w′ and decreases if w > w′. Therefore, the fluid with the
most negative equation of state will eventually dominate if the Hubble-function
is monotonic: This result is actually very intuitive, as fluids with more negative
equation of state parameters tend to have a slower evolution of ρ, such that they
eventually dominate. The extreme case of this is Λ with a constant energy density,
whose domination will be the natural target of the evolution of the Universe unless
the densities of the other fluids are so high that they can halt the Hubble function or
make the Universe recollapse.

Therefore, one needs a construction where the Universe is dominated by a fluid
with sufficiently negative equation of state w < −1/3 such that curvature decreases,
but which is able to return eventually back to being dominated by matter with w = 0
or radiation with w = +1/3, in agreement with observations at redshifts z > 1.

F.3 Quintessence and dynamic dark energy

Summarising the key results of the last two sections one sees that (i) accelerated
expansion can be started with a fluid with a sufficiently negative equation of state
but that (ii) it would be difficult to terminate the accelerated expansion and return to
radiation- or matter-dominated, decelerated expansion. The solution to this problem
is to construct a microscopic model behind the energy momentum tensor consisting
of a self-interacting scalar field ϕ, called quintesence, which follows its own dynamics
and which is gravitationally acting on the FLRW-background. Such a system has
a dynamically evolving energy density and an equation of state and can terminate
accelerated expansion naturally.

The Lagrange-density L of a scalar field ϕ on a possibly curved background with
a metric gµν is given by

L(ϕ,∇µϕ) =
1
2
gµν∇µϕ∇νϕ − V(ϕ) (F.284)

with a self-interaction potential V(ϕ) including a mass term V(ϕ) = m2ϕ2/2. The
Euler-Lagrange equation follows directly from variation of the action S

S =
∫

d4x
√
−det g L(ϕ,∇µϕ) (F.285)

where the covolume
√
−det g takes care of non-Cartesian coordinates. Hamilton’s

principle assumes that δS = 0 and therefore

δS =
∫

d4x
√
−det g

(
∂L
∂ϕ

δϕ +
∂L

∂(∇µϕ)
δ(∇µϕ)

)
=

∫
d4x

√
−det g

(
∂L
∂ϕ
− ∇µ∂

∂L
∂(∇µϕ)

)
δϕ (F.286)

after an integration by parts, as done with the Gauss-theorem for integrations on
manifolds, ∫

V

d4x
√
−det g ∇µ(aυµ) =

∫
∂V

dSµ
√∣∣∣det γ

∣∣∣(aυµ) = 0 (F.287)
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for a vector field υ and a scalar field a, which are assumed to reach values of zero on
the integration boundary or at least asymptote towards zero fast enough. Formally,
the co-volume

√
−det g gives rise to an induced measure

√
det γ (a co-area, in lack of

a better expression) on the boundary ∂V, as γ is the induced metric on ∂V, γ = g(∂V).
This leads to∫

V

d4x
√
−det g ∇µ(aυµ) =

∫
V

d4x
√
−det g (∇µa · υµ + a∇µυµ) (F.288)

as the covariant derivative obeys the Leibnitz-rule, implying that if the surface
integral vanishes due to fast enough decaying fields, that∫

V

d4x
√
−det g ∇µa · υµ = −

∫
V

d4x
√
−det g a∇µυµ (F.289)

and everything looks like a straightforward integration by parts.

Deriving now all terms for the Euler-Lagrange equation gives first of all

∂L
∂ϕ

= −dV
dϕ

(F.290)

because the potential V depends only on the field ϕ, as well as

∂L
∂(∇µϕ)

=
1
2

∂
∂(∇µϕ)

(
gαβ∇αϕ∇βϕ

)
=

1
2
gαβ

(
∂∇αϕ
∂∇µϕ︸ ︷︷ ︸

=δ
µ
α

∇βϕ + ∇αϕ
∂∇βϕ
∂∇µϕ︸︷︷︸

=δ
µ

β

)
= gαµ∇αϕ

(F.291)

and further concluding that

∇µ
∂L

∂(∇µϕ)
= ∇µ(gαµ∇αϕ) = gαµ∇µ∇αϕ (F.292)

using metric compatibility of the covariant derivative. Therefore, the quintessence
equation of motion for the field ϕ looks like a wave equation, or better, a covariant
version of the Klein-Gordon equation,

gµν∇µ∇νϕ = −dV
dϕ

(F.293)

driven by the self-interaction V(ϕ), which as stated before, may include a mass-term
for the field ϕ. As this will facilitate the treatment later, we can rewrite the term
gµν∇µ∇νϕ as a covariant divergence for which there is a very practical formula:

gµν∇µ ∇νϕ︸︷︷︸
=∂νϕ=υν

= ∇µ(gµνυν) = ∇µυµ =
1√
−det g

∂µ(
√
−det gυµ) (F.294)

making use of metric compatibility again and introducing the determinant g of the
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metric. For illustrative purposes we have defined the linear form υµ = ∂µϕ = ∂µϕ as
the field gradient in ϕ.

Restricting the background now to conform to the FLRW-symmetries on can
determine the covolume to be

√
−det g = a3 and both spacetime and the field ϕ only

possesses an evolution in the t-direction, such that ∂µ → ∂t . Then, the divergence
becomes

gµν∇µ∇νϕ =
1
a3∂t(a

3∂tϕ) = 3
ȧ
a
∂tϕ + ∂2

t ϕ (F.295)

leading us finally to

∂2
t ϕ + 3H(t)∂tϕ = −dV

dϕ
(F.296)

which is the Klein-Gordon equation for the field ϕwith self-interaction V. The FLRW-
background manifests itself as the second term in eqn. (F.296), which is proportional
to H = ȧ/a: For large H it works like a damping term restricting the evolution of
the field ϕ and is aptly named Hubble-drag. But please do keep in mind that there
are no dissipative effects implied, the term purely arises because of the dynamic
background.

F.4 Gravity of the quintessence filed

In the previous section we have derived the equation of motion of a scalar field on a
FLRW-background and arrived at the Klein-Gordon-equation

∂2
t ϕ + 3H(t)∂tϕ = −dV

dϕ
(F.297)

for the field evolution for a given background dynamics encapsulated in H(t). The
background could be defined by a pre-determined Hubble-function H(t) with the
field ϕ as a test object, but the more interesting case is certainly where the field ϕ

itself exerts a gravitational effect onto the background, such that one deals with a
coupled system of (i) the Klein-Gordon-equation for the evolution of ϕ and the (ii)
Friedmann-equation sourced by the energy momentum-content of ϕ for the evolution
of H(t).

If L depends on the field ϕ and its derivative ∇µϕ, but not explicitly on the
coordinates xµ, then there is an associated covariant conservation law:

gµν∇αTµν = 0 (F.298)

Loosely speaking, because the definition of the field dynamics are invariant under
shifts on the manifold, energy and momentum are conserved. A counter example
would e.g. be a position- or time dependent change in the Lagrange-density of e.g.
electrodynamics: Then, the energies of atomic lines would be different in different
places of the Universe, and emission processes in the distant Universe would not be
compatible with absorption processes in the Milky Way.

As in classical mechanics one can construct the Beltrami-identity

δL =
∂L
∂ϕ

δϕ +
∂L

∂(∇µϕ)
δ(∇µϕ) = ∇µ

(
∂L

∂(∇µϕ)
δϕ

)
− ∇µ

∂L
∂(∇µϕ)

δϕ +
∂L
∂ϕ

δϕ (F.299)
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where on recognises the Euler-Lagrange equation for ϕ

δL = ∇µ
(

∂L
∂(∇µϕ)

δϕ

)
+

(
∂L
∂ϕ
− ∇µ

∂L
∂(∇µϕ)︸               ︷︷               ︸

Euler-Lagrange=0

)
δϕ (F.300)

such that the final result for the variation of L caused by the field variation δϕ is
given by

δL = ∇µ
(

∂L
∂(∇µϕ)

δϕ

)
(F.301)

For δϕ we construct an infinitesimal field variation δϕ through a coordinate shift

ϕ(xµ + δxµ) = ϕ(xµ) +∇νϕ(xµ)δxν + . . . → δϕ = ϕ(xµ + δxµ) − ϕ(xµ) = ∇νϕ(xµ)δxν

(F.302)

under which the Lagrange-density transforms according to

L(ϕ,∇µϕ)→ L(ϕ,∇µϕ) + ∇νLδxν → δL = ∇νL δxν (F.303)

Now, we can write the variation δL as resulting from the field variation δϕ, as there
can not be a variation of the working principle of the field theory with coordinate itself,
according to the assumption that the functional shape and therefore the working
principle of the field ϕ is universal and would not depend on the coordinate xµ:

δL = gµβ∇µLδxβ = ∇µ
(

∂L
∂(∇µϕ)

δϕ

)
= ∇µ

(
∂L

∂(∇µϕ)
∇νϕδxν︸  ︷︷  ︸

=gαβ∇αϕδxβ

)
(F.304)

resulting in

∇µ
(
gµβL − ∂L

∂(∇µϕ)
gαβ∇αϕ

)
δxβ = 0 (F.305)

Identifying the term in the bracket in eqn. F.305 to be the energy-momentum tensor
Tµβ shows the corresponding covariant conservation law

∇µTµβ = 0 (F.306)

for the energy-momentum tensor Tαβ, that results directly from the Lagrange-density
L of the quintessence field ϕ

Tαβ =
∂L

∂(∇αϕ)
gβν∇νϕ − Lgαβ (F.307)

The explicit result Tαβ for the scalar field ϕ by substituting its Lagrange-density

L =
1
2
gµν∇µ∇νϕ − V(ϕ) (F.308)
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into eqn. F.307, making use of

∂L
∂(∇αϕ)

=
1
2
gµν

(
∂∇µϕ
∂∇αϕ︸ ︷︷ ︸
δαµ

∇νϕ + ∇µϕ
∂∇νϕ
∂∇αϕ︸ ︷︷ ︸
δαν

)
= gµα∇µϕ (F.309)

such that one arrives at an expression for the energy-momentum tensor as it is
determined from the gradients ∇µϕ of the field and the strength V(ϕ) of the field’s
self-interaction:

Tαβ = gµαgβν∇µϕ∇νϕ −
1
2
gµνgαβ∇µϕ∇νϕ + V(ϕ)gαβ (F.310)

It is instructive to interpret this result for the the energy-momentum tensor with
that of an ideal fluid

Tαβ =
(
ρ +

p

c2

)
uαuβ − pgαβ (F.311)

and possibly derive ρ and p from the terms ∇ϕ and V(ϕ): In particular for a FLRW-
spactime with spatial homogeneity one should then be able to derive ρ and p, as
they would result dynamically from solving the Klein-Gordon-equation and compute
the evolution of the scale factor a from the Friedmann-equations, such that one has
constructed a coupled dynamical system for ϕ and a, possibly with a dynamical
relation between p and ρ, or, equivalently, a dynamically evolving equation of state
w = p/(ρc2).

Parameterising a FRLW-spacetime with comoving coordinates xµ yields for the
velocities uµ = dxµ/dt = dxµ/dt = (c,0)t as tangents to the world lines of fluid
elements simplifies the energy-momentum tensor tremendously: It will be diagonal
(as the inverse metric gµν is diagonal is the FLRW-case) and have the tt-component

Ttt =
(
ρ +

p

c2

)
utut − pg tt = ρc2 (F.312)

with g tt = 1, and the spatial ii-components

Tii =
(
ρc2 +

p

c2

)
uiui − pg ii = 3

p

a2 (F.313)

as the spatial part of the inverse metric is g ii = −a−2 and ui = 0 for comoving fluid
elements.

Isolating these two components from the energy-momentum tensor for the field
ϕ is straightforward in particular under the assumption of the FLRW-symmetries,
where all spatial derivatives are zero and because the field ϕ is scalar, implying that
∇µϕ = ∂µϕ of which only ∂tϕ is nonzero. Therefore, the density ρ must be

ρc2 = Ttt = g tαg tβ∇αϕ∇βϕ −
1
2
g ttgαβ∇αϕ∇βϕ + V(ϕ)g tt =

1
2

(∂tϕ)2 + V(ϕ) (F.314)

and similarly for the spatial part yielding pressure p
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3
p

a2 = Tii = g iαg iβ∇αϕ∇βϕ −
1
2
g iigαβ∇αϕ∇βϕ + V(ϕ)g ii = 3a−2 1

2
(∂tϕ)2 − 3a−2V(ϕ)

(F.315)

which can be simplified to

p =
1
2

(∂tϕ)2 − V(ϕ) (F.316)

Combining both results is a construction of the equation of state w

w =
p

ρc2 =
1
2 (∂tϕ)2 − V(ϕ)
1
2 (∂tϕ)2 + V(ϕ)

(F.317)

which gives a direct indication of the gravitational effect of the field ϕ, as both ρ

and p enter the gravitational field equation. In particular, if the evolution of the field
is slow and therefore the kinetic term 1

2 (∂tϕ)2 is much less than the potential term
V(ϕ), one obtains for the equation of state is w ∼ −1. Then, the gravitational effect
of ϕ is identical to that of the cosmological constant Λ and the FLRW-spacetime is
accelerating at q = −1, leading to exponential expansion.

In the course of time evolution with the Klein-Gordon equation

∂2
t ϕ + 3H(t)∂tϕ = −dV

dϕ
(F.318)

one would expect that (∂tϕ)2 increases at the expense of V(ϕ), and that the equation
of state evolves away from the value w = −1, as the slow-roll condition

1
2

(∂tϕ)≪ V(ϕ) (F.319)

is violated. For instance, when 1
2 (∂tϕ)2 ∼ V(ϕ) is reached, the equation of state

becomes w = 0, corresponding to a decelerated universe with q = 1
2 , as if it was filled

with matter. Clearly, the quintessence field shows a variable gravitational effect on
the FLRW-background, and in particular does it provide a mechanism of driving
accelerated expansion to solve the flatness-, horizon- and scale-problems, and a
natural way of stopping inflation and returning to normal expansion dominated by
fluids with less negative equations of state.

F.5 Slow-roll approximation

Cosmic inflation as driven by the scalar field ϕ, if it should solve the horizon and
flatness problems, has to provide accelerated expansion through a negative enough
equation of state and take care that this period of accelerated expansion lasts long
enough. These two conditions are ultimately requirements on the potential V(ϕ),
usually formulated in terms of the two slow-roll parameters ϵ and η:

ϵ =
1

8πG

(
d ln V

dϕ

)2

and η =
1

24πG

(
1
V

d2V
dϕ2

)
(F.320)

which are essentially logarithmic derivatives of the quintessence potential V(ϕ). If
ϵ and η are small, the potential has a small slope and is weakly curved, implying
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that the time evolution of ϕ is weak, slow-roll is maintained for a long time, and
exponential, accelerated expansion is maintained, such that a low spatial curvature
can be realised and the horizon becomes large enough.

A sufficiently negative equation of state parameter w for accelerated expansion is
generated by the slow-roll condition itself, 1

2 (∂tϕ)2 ≪ V(ϕ). This condition implies
directly for the first Friedmann-equation that

H2(t) =
8πG

3
ρc2 =

8πG
3

(1
2

(∂tϕ)2 + V(ϕ)
)
→ H2(t) =

8πG
3

V(ϕ) (F.321)

where we used the slow-roll in the last step. The acceleration ä can be derived from
the latter equation by differentiating it with respect to t, yielding

2H∂tH =
8πG

3
∂tϕ

dV
dϕ

(F.322)

by application of the chain rule to ∂tV(ϕ(t). The slow-roll approximated Klein-
Gordon equation F.321 for the FRLW-background

3H∂tϕ = −dV
dϕ

(F.323)

implies the condition

∂tH = −4πG(∂tϕ)2 ≪ 4πGV(ϕ) (F.324)

as an expression for slow roll, on the basis of the potential and constrains the
evolution of the Hubble-function H. This allows now to formulate the slow-roll
parameters ϵ and η defined in eqn. F.320 in their dependence on the potential V(ϕ).

The square of the approximate Klein-Gordon equation,

(3H∂tϕ)2 =
(

dV
dϕ

)2

(F.325)

together with the Friedmann-equation for H2

32 8πG
3

V(ϕ)2(∂tϕ)2 =
(

dV
dϕ

)2

(F.326)

shows that

(∂tϕ)2 =
1

24πG

(
1
V

dV
dϕ

)2

=
1

24πG

(
d ln V

dϕ

)2

≡ ϵ≪ 1 (F.327)

where the slow-roll parameter ϵ≪ ensures that the kinetic term (∂tϕ)2/2 stays small.

Differentiating the approximate Klein-Gordon equation with respect to t yields

3(∂tH∂tϕ + H∂2
t ϕ) ≃ 3∂H∂tϕ =

d2V
dϕ2 ∂tϕ (F.328)
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where we neglect H∂2
t ϕ over ∂tH∂tϕ and which we divide with ∂tϕ for

3∂tH = −d2V
dϕ2 (F.329)

But because of the fact that ∂tH = −4πG(∂tϕ)2 ≪ 4πGV(ϕ) as derived above, one
can conclude that the second slow-roll parameter η,

(∂tϕ)2 =
1

12πGV
d2V
dϕ2 ≡ η≪ 1 (F.330)

must be small compared to one as well.

F.6 Accelerated expansion in the late Universe

To what limit the accelerated expansion at the current time is related to quintessence
at early times is unclear, but the mechanism works in both cases: at early times,
as cosmic inflation and at late times as dark energy. Whether inflation in the early
Universe is initiated by randomly setting the right initial conditions for the field ϕ
(the exact mechanism of this is still unclear), achieving domination of ϕ in the late
Universe at redshifts below unity in a natural way is equally difficult. Many dark
energy models link accelerated expansion to other physical processes, for instance,
the acquisition of mass in neutrinos.

F.7 Seeding of cosmic structures in inflation

Apart from solving the flatness and horizon problems, cosmic inflation provides a
mechanism for seed fluctuations from which the cosmic large-scale can grow: The
exact mechanism is quite technical, but the fundamental idea is that the comoving
horizon c/(aH) shrinks during the accelerated expanding phase. Fluctuations in the
metric with a fixed comoving wave length are initialised at the instant when they leave
the (shrinking) horizon, at an amplitude that is given by the so-called Bunch-Davies
vacuum, which corresponds to the ground state amplitude of the field ϕ.

The amplitude of these perturbation in ϕ and the associated fluctuations in the
metric δΦ are roughly given by

√
⟨δΦ2⟩ ≃ H2/V(ϕ), which is roughly constant while

the expansion is exponential. One can now relate fluctuations in the potential Φ to
fluctuations in the density field by invoking the Poisson-equation which reads in
Four-space k2Φ(k) = −δ(k).

Then, the relation
|δ(k)|2 ∝ k4 |δΦ|2 ∝ k3P(k) (F.331)

for the variance of the density field fluctuations in Fourier-space applies, which is
related to the variance in the potential fluctuations. If |δΦ|2 is constant as predicted
by the constant Hubble-function, the spectrum P(k) must be ∝ k to give a consistent
scaling.

In reality, there are tiny deviations from perfect exponential expansion, of the
order of the slow-roll parameters ϵ and η. As a consequence, there is a minute
evolution of the Hubble-function and the amplitude

√
⟨δΦ2⟩ becomes a function of

time. As the comoving horizon evolves, that time-dependence can be converted into
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a scale dependence, which effectively makes P(k) ∝ kns with ns ≃ 0.96, deviating
slightly from unity, by a quantity of the order of the slow-roll parameters.
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G.1 fluid mechanics as a continuum theory

The motion of matter on large scale and for small perturbations can be described
by fluid mechanics, such that the evolution of the cosmic density field and the
cosmic velocity field is determined through the equations of fluid mechancis, namely
the continuity and the Navier-Stokes equation, both with gravity as the driving
force of structure formation. For the purpose of this book we restrict ourselves to
nonrelativistic fluid mechanics with a Newtonian description of gravity and Galilean
relativity. The motion of a fluid is primarily determined by the continuity and the
Navier-Stokes equation, which determine the time evolution of the density and
the velocity fields, respectively. Fluid mechanics is a continuum theory, because it
considers the fluids as continuous media without any microscopic structure, and as
such it can only describe fluid elements which are large enough that they contain a
large number of particles. The description of collisionless systems under the influence
of gravity is conceptually not clear, because (i) individual particles can gain very
large velocities in many-body-interactions, such that the particle density might not
be sufficient to define a smooth fluid through averaging of particle properties and
because (ii) self-gravitating systems produce structures on small scales, which are
not wiped out by collisions such that in the averaging process in deriving smooth
fields information on the phase-space structure is lost.

It is very important to notice that both the continuity and the Navier-Stokes
equations are nonlinear, as both involve products between the density and the velocity,
and between the velocity and gradients of the velocity, respectively. In addition, the
equation of state p(ρ), if present in the Navier-Stokes equation, can be nonlinear as
well and can, in addition depend on other quantities, for instance the entropy density
s or temperature T, leading to additional terms in particular in the vorticity equation.
Alternative, one can choose to work with the momentum density ρυ instead of the
velocity υ, which would render the continuity equation linear but would make the
gravitational force in the Navier-Stokes equation nonlinear.

G.2 From relativistic to non-relativistic fluid mechanics

Energy-momentum conservation in the covariant form ∇µTµν = 0 is equivalent to
relativistic fluid mechanics of ideal fluids. In the non-relativistic limit with slow
velocities |υ| ≪ c on a Minkowski-background with gµν = ηµν and Γ αµν = 0. In
the non-relativistic limit, p ≪ ρc2 and the motion of the fluid elements proceeds
essentially only in dt-direction:

ρc2(∂tβ
j + (βi∂i)β

j︸            ︷︷            ︸
=uµ∇µuν=uµ∂µuν

) = ρ(∂tυ
j + υi∂jυ

j ) = −∂jp or ∂tυ + (υ∇)υ = −
∇p
ρ

(G.332)

which is exactly the non-relativistic Euler-equation. Including gravity requires to use
gµν instead of ηµν with a corresponding nonzero Christoffel-symbol. In the weak-field
limit |Φ| ≪ c2 on has the line element

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dxidx

i (G.333)
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where only the first term contributes as the displacements in the spatial dxi-directions
are small:

gtt = 1 +
2Φ
c2 (G.334)

The gravitational acceleration is computed from the Christoffel symbols

Γ αµν =
gαβ

2

(
∂µgβν − ∂νgµβ + ∂βgµν

)
(G.335)

where in the weak-field limit the inverse metric is replaced by the (inverse) Minkowski
metric gαβ = ηαβ but of course the gradients ∂βgµν are kept. In static gravitational
fields ∂tgαβ = 0 and only nonzero spatial derivatives ∂igαβ = 2

c2 ∂iΦδαβ, from which
one would expect gradients ∂jΦ to appear:

uµ(∇µuν) = uµ(∂µu
ν + Γ νµα u

α) = uµ∂µu
ν + Γ νµα u

µuα (G.336)

The three terms naturally correspond to gravitational acceleration in an inhomoge-
neous field, to the Coriolis- and centrifugal accelerations:

Γ νµα = Γ νtt ut︸︷︷︸
c

ut︸︷︷︸
c

+ Γ νti u
tui + Γ νit u

iut︸                  ︷︷                  ︸
2Γ νit cυ

i

+Γ νij ui︸︷︷︸
υi

uj︸︷︷︸
υj

(G.337)

The first term is clearly dominating for small velocities

uµ∇µuν = uµ∂µu
ν + Γ νµα u

µuα = ∂tυ
j + (υi∂i)υ

j − Γ jtt c2 = −1
ρ
∂jp (G.338)

with the Christoffel-symbol Γ jtt

Γ
j
tt ≃

ηjk

2
(∂tgtk + ∂tgkt − ∂kgtt) = −∂j Φ

c2 (G.339)

as only the last term gtt = 2Φ/c2 contributes and the first two terms vanish, because
of the assumption of static gravitational fields. At the same time, the terms Γ itj and

Γ ijk offer a natural and consistent way to incorporate other inertial accelerations. So
the final result is the non-relativistic Euler-equation with gravity

∂tυ
j + υi∂iυ

j = −1
ρ
∂jp − ∂jΦ or ∂tυ + (υ∇)υ = −1

ρ
∇p − ∇Φ (G.340)

It is quite interesting that the nonlinearities in the fluid-mechanical equations have a
relativistic origin, and that one needs empirical reasoning to make sense of them in
classical mechanics. The advective term (υ · ∇)υ is interpreted as the rate of change
of the velocity at a fixed point in the laboratory frame as the flow sweeps new fluid
elements to this point which may carry a different velocity (the velocity the fluid
element has had upstream an infinitesimal time in the past), while only ∂tυ is the
proper rate of change of the flow velocity, measured in terms of coordinate time
instead of proper time.
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G.3 Continuity

The continuity equation is an expression of the conservation of matter. If the density
field changes in a volume element at a fixed point it must necessarily be because
fluxes have converged and have transported matter into that element:

∂tρ + div(ρυ) = 0. (G.341)

The interpretation of the continuity equation is particularly clear if one applies the
Gauss-theorem:∫

V

dV ∂tρ =
d
dt

∫
V

dV ρ =
d
dt

M = −
∫
V

dV div(ρυ) = −
∫
∂V

dA · (ρυ), (G.342)

such that the mass M changes if there are fluxes through the surface of the volume
element. The continuity equation is nonlinear because the definition of the flux ρυ
involves the product of two fields.

G.4 Navier-Stokes equation

The Navier-Stokes equation is the equation of motion for fluid elements as a generali-
sation of Newton’s third axiom,

∂tυ + (υ∇)υ = −
∇p
ρ
− ∇Φ + µ∆υ, (G.343)

as it relates the acceleration of a fluid element with the specific force density. Relevant
forces include pressure gradients, gradients in the gravitational potential or viscous
forces. The Navier-Stokes-equation seems to have the shape of an evolution equation,
but in fact it originates together with the continuity equation from a relativistic
conservation equation ∂µTµν = 0 with the energy-momentum-tensor Tµν of the fluid.
In a chosen reference frame it is possible to separate the conservation equation in the
time-part containing the conservation of mass and a spatial part with the conservation
of momentum.

The time derivative of the velocity, as required by Newton’s equation of motion,
is computed for a field which depends on time and on position. In components one
would write

d
dt
υi(rj , t) = ∂tυi +

∂rj
∂t

∂υi
∂rj

(G.344)

With the subsitution of the derivative ∂trj = υj one obtains

d
dt
υi(rj , t) = ∂tυi + υj

∂υi
∂rj

. (G.345)

Rewriting this expression yields

d
dt

υ = ∂tυ + (υ · ∇)υ. (G.346)

Therefore, the nonlinearity (υ · ∇)υ originates purely from the choice of a fixed
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coordinate frame, relative to which the fluid moves: The derivative ∂tυ would indicate
the acceleration or the rate of change of velocity with time of fluid elements which
pass in succession through a fixed position x in space, while the so-called convective
derivative Dt = ∂t + (υ · ∇)υ describes the acceleration of a single fluid element as it
moves around, combining the time-derivative ∂t with the rate of change of velocity
with position (υ · ∇)υ projected onto the velocity-components themselves. By choosing
instead of a fixed Euler-frame a coordinate frame which moves along with the fluid,
referred to as the Lagrange-frame, the fluid equation of motion becomes linear, by
introducing comoving, Lagrangian coordinates r = r0 +

∫
dt υ and reexpressing all

derivatives.
Both viscosity and pressure originate from collisions between the particles from

which the fluid is composed. The viscosity is usually modelled on the Lamé’-viscosity
coefficients and is able to dissipate kinetic energy from the fluid by friction if velocity
gradients or shear flows ∂iυj are present. If there is such a phenomenon, one needs
an analogous energy equation to keep track of the evolution of the energy content of
the fluid, in particular because the equation of state might show a dependence on e.g.
temperature or entropy density. We will only consider ideal fluids without viscosity,
because they approximate dark matter well due to its collisionlessness, and cover the
phenomenology of baryonic fluids at low densities.

G.5 Ideal versus viscous fluid mechanics

In contrast to the kinematical terms in fluid mechanics and in contrast to gravity,
effects associated with the microscopic properties of the fluid itself need to have a
phenomenological description. In fact, how bulk properties like fluid-mechanical
pressure and viscosity would be determined from the microscopic interactions be-
tween the particles that the fluid consists of, is yet not fully understood.

The differential change dυ of the velocity in a fluid is to first order proportional to
the displacement

dυ = (dr∇)υ → dυi = ∂jυ
idxj (G.347)

defining the velocity tensor, which is conveniently decomposed into a symmetric
part (shear) and the antisymmetric part (vorticity)

∂jυ
i =

1
2

(∂jυ
i + ∂iυ

j )︸            ︷︷            ︸
ϵ i
j

+
1
2

(∂jυ
i − ∂iυ

j )︸            ︷︷            ︸
ω i
j

(G.348)

Again, this idea is very similar to the Raychauduri-equation: The volume change is
given by

dV ∼ divυ ∼ ∂iυ
i = ϵii = tr(ϵ) (G.349)

such that the trace of the velocity tensor induces a change in volume of a fluid
element. Incompressible flows have the unique property that the divergence of their
velocity field is always zero, and hence there can not be any change in the volume of
fluid elements.

In a phenomenological model one can now relate shears in a fluid to stresses and
pressure: In general, the stress tensor σij is the ith component of the force acting on
a surface element with normal vector into the jth direction: As such, stresses and
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pressure have the same unit of force normalised by area. One can decompose the
stress tensor into the isotropic part pδij and the anisotropic contribution σ′ij

σij = σ′ij − pδij (G.350)

where
tr(σ) = p tr(δij ) = −3p. (G.351)

so that pressure gets the interpretation of isotropic stress.
Furthermore, the stress tensor is also symmetric σij = σji . This can be shown by

setting up a counter example which turns out to be aphysical: If stresses act on two
faces of a cube with volume dV = dxdydz, one introduces a torque torque Mx if the
stresses are unequal, in contradiction to σij = σji ,

Mx = σzy(dxdz)dy − σyz(dxdy)dz = (σzy − σyz)dV (G.352)

With a Newtonian equation of motion M = Iφ̈with the inertia I = (dy2 + dz2)dV for
rotation around the x-axis one would obtain the angular acceleration

φ̈ =
M
I
∼ V−

2
3 (G.353)

Therefore, for V→ 0 the volume term V−
2
3 diverges, which leads to the conclusion

that the angular acceleration φ̈ diverges, too: Accelerations for the smallest torques
would assume arbitrarily high values, which would be aphysical. A way out is the
condition σyz = σzy and a symmetric stress tensor σij .

G.5.1 Bulk and shear viscosity

With the shear as the differential velocity field into which a fluid is embedded and
the stress as the reaction of a fluid element to this external shear it is reasonable
to assume a linear relationship between these two symmetric tensors: This is the
foundational idea of a Newtonian fluid, if in addition the response of the fluid element
is instantaneous to the external shear. The shear tensor ϵij and the stress tensor σ′ij
are related in Lamé parameterisation by introducing two coefficients η and ξ,

σ′ij = 2η
(
ϵij −

tr(ϵ)
3
δij

)
+ ξ tr(ϵ)δij (G.354)

with tr(ϵ) = ∂iυ
i − divυ is the divergence of the velocity field. The first term param-

eterises a reaction of the fluid in form of anisotropic stresses to the traceless shear,
which would be realised for instance if there is a shearing motion of fluid layers
against each other, motivating the term shear viscosity for η. But there is likewise a
reaction of the fluid to changes in volume beyond the effects of pressure mediated by
the equation of state: The bulk viscosity ξ parameterises for this case the magnitude
of anisotropic stresses.

Again, in flows consisting of purely collisionless dark matter, microscopic stresses
and effects of viscosity are not present, but there are, like in the case of pressure,
collective effects with emulate these.
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G.5.2 Viscous fluid mechanics

The effects of pressure and viscosity can obviously change the state of motion of a
fluid element, as expressed by the momentum density ρυ

d
dt

∫
V

dV div(ρυ) = −
∫
V

dV ρ∇Φ +
∫
∂V

dA σ (G.355)

such that apart from bulk forces ρ∇Φ acting on the fluid element as a whole there
are stresses as surface forces σ. The first term in the momentum equation can be
reformulated as a surface integral, too, yielding

d
dt

∫
V

dV div(ρυ) =
d
dt

∫
∂V

dA ρυ =
∫
∂V

dA ρ
dυ
dt

(G.356)

in a Lagrangian frame that moves along with the flow: Following the fluid element
in this way tracks the momentum evolution as forces are acting on its surface, and
because there is no exchange of matter with the environment of a fluid element, the
time derivative only acts on the velocity. The stresses acting on the surface of the
volume element are given by

∫
∂V

dA σ


i

(dA)i=dAni=
∫
∂V

dA σijnj =
∫
V

dV
∂

∂xj
σij =


∫
V

dV ∇σ


i

(G.357)

Substituting back gives

ρ
dυ
dt

= ρ

(
∂υ
∂t

+ (υ∇)υ
)

= −ρ∇Φ + ∇σ (G.358)

Introducing viscosity and pressure

(∇σ)i = (∇σ′)i −
∂

∂xj
(pδij ) = (∇σ′ − ∇p)i (G.359)

leads to the expression

dυ
dt

=
∂
∂t

υ + (υ∇)υ = −∇Φ −
∇p
ρ

+
1
ρ
∇σ′ (G.360)

If now viscosity is parameterised by the Lamé-coefficients η and ξ

(∇σ′)i =
∂
∂xj

σ′ij = η
∂2υi

∂x2
j

+
(
ξ −

η

3

) ∂
∂xi

∂υk
∂xk︸︷︷︸

=div υ

(G.361)

and if the fluid is incompressible with the condition divυ = 0, the bulk viscosity is
irrelevant and one arrives at the Navier-Stokes equation
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g.6. fluid mechanical similarity and scaling relations

∂
∂t

υ + (υ∇)υ = −∇Φ − 1
ρ
∇p + µ∆υ (G.362)

with the kinematic viscosity µ = η/ρ.

G.6 Fluid mechanical similarity and scaling relations

Since nobody has found a general solution to the Navier-Stokes-equation, one wants
to use some properties of mechnical similarity to bring the Navier-Stokes-equation to
an already solved case. One might argue at this point, that classical fluid mechanics
is scale-free from fundamental theory, but scales can enter through macroscopic
properties of the fluid. Therefore we have some ’typical’ behaviour of flows and can
use corresponding scale symmetries. For this we first need to look for a dimensionless
form of the Navier-Stokes-equation. To do so, we rescale

x→ x∗ =
x
L

t → t∗ =
t
T

(G.363)

as well as
υ→ υ∗ =

v
V

p→ p∗ =
p

P
g → g∗ =

g

G
=
∇Φ
G

(G.364)

It’d be important to realise that the scaling with L and T is relevant for derivatives
in the fluid mechanical equations, but that V as a scale for the velocity is not auto-
matically L/T: There can be high-velocity flows that vary only slowly with time or
position, and vice versa.

Defining dimensionless derivatives is possible by writing

∂
∂t

=
∂t∗

∂t
∂
∂t∗

=
1
T

∂
∂t∗

and
∂
∂x

=
∂x∗

∂x
∂
∂x∗

=
1
L

∂
∂x∗

(G.365)

Rewriting the entire Navier-Stokes equation for incompressible flows in terms of
dimensionless variables and dimensionless derivatives gives

ρV
T

∂
∂t∗

υ∗ + ρ
V2

L
(υ∗∇)υ∗ = −P

L
∇∗p∗ − ρG ∇∗Φ∗︸︷︷︸

=g∗

+
ηV
L2 ∆

∗υ∗ (G.366)

As all prefactors are equal in their units to ρV2

L one can divide this factor out and
arrive at

L
TV︸︷︷︸
St

∂
∂t∗

υ∗ + (υ∗∇)υ∗ = −
p

ρV2︸︷︷︸
Eu

∇∗p∗ − GL
V2︸︷︷︸
Fr−2

∇∗Φ∗ +
η

ρVL︸︷︷︸
Re−1

∆∗υ∗ (G.367)

which defines the scaling numbers:

• Strouhal-number St = L
TV - proper acceleration

• Euler-number Eu = p
ρV2 - pressure vs. kinetic energy density

• Froude-number Fr =
√

V
GT - potential vs. kinetic energy density
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• Reynolds-number Re = µ

VL - magnitude of viscous forces

Working with the dimensionless form of the Navier-Stokes equation implies that
the information about the actual physical properties of the system is replaced with the
four scaling numbers. If two flows on physically different scales have the same scaling
numbers, one must be able to map them onto each other by a similarity or scaling
transform. This implies that there should be a classification of fluid mechanical
problems into categories according to the dominating scaling numbers. Again, dark
matter poses the conceptual problem how the Euler- and Reynolds-numbers should
be defined, with the absence of microscopic interactions between the particles there
is no pressure and no viscosity.

G.7 Gravity and the Poisson-equation

The gravitational force in the fluid-mechanical equations

∂tυ + (υ∇)υ = −∇Φ (G.368)

could be determined through the Poisson equation,

∆Φ = 4πGρ, (G.369)

and describes gravity in the weak field limit and at distances smaller than the
Hubble-distance such that retardation effects do not play a role. In addition, all
additional gravitational effects on and by moving objects are neglected: In summary,
the equation is valid for |Φ| ≪ c2, |υ| ≪ c and on scales≪ c/H0.

Due to the fact that it is the same density field ρ which is driven in its evolution
by gradients ∇Φ in the gravitational potential and which is at the same time sourcing
the gravitational potential through the Poisson equation speaks of cosmic structure
formation as a self gravitating phenomenon: Heuristically, a perturbation in the
matter distribution generates a potential, which attracts matter from the surrounding
of the perturbation, making it stronger. Then, the potential becomes deeper and the
fields amplify, such that more matter is falling towards the perturbation, making it
grow rapidly and at an exponential rate with time, if the influence of the background
cosmology is neglected.

G.8 Wave-type solutions and the Jeans-scale

Pressure gradients have an influence on the evolution of the velocity field, and they
typically lead to wave-type solutions: Compressing the medium builds up pressure,
causing the medium to re-expand:

∂tυ + (υ∇)υ = −
∇p
ρ

(G.370)

In order to construct a determined system of differential equations one would need
to specify a relation between pressure p and density ρ, i.e. an equation of state,
which accompanies the equation of continuity. Then, there are three relations (Euler,
continuity and equation of state) for three fields ρ, υ and p. For collisionless dark
matter, though, pressure would not exist.

Wave-like phenomena are, because they fulfil the superposition principle, ob-
tained as solutions to the linearised Navier-Stokes equation. Linearisations involve
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perturbing the dynamical fields away from their averages ρ = ρ0 + δρ, p = p0 + δp and
υ = δυ. Therefore,

∂tδρ + ρ0div δυ = 0 as well as ∂tδυ +
1
ρ0
∇δp = 0 (G.371)

Taking the time-derivative of the continuity equation and the divergence of the
Navier-Stokes euqation defines the wave equation

∂2
t δρ −

∂p

∂ρ

∣∣∣∣∣
ρ0︸︷︷︸

=c2
s

∆δρ = 0 (G.372)

if one introduces an equation of state

δp =
∂p

∂ρ

∣∣∣∣∣
ρ0

δρ (G.373)

The derivative c2
s = ∂p/∂ρ defines sound speed inside the medium and depends

typically on the thermodynamic change of state, e.g. isothermal and adiabatic.
Combining both gravity and pressure leads to an interesting concept: the Jeans-

scale. If a system of size R and density ρ collapses under its own gravity, we can
associate a free-fall time scale with the collapse, estimated to be

τf f =
1√
Gρ

(G.374)

and it can provide pressure support on the time scale of the sound-crossing time

τs =
R
cs

(G.375)

Now, comparison between the two time scales suggests that if τf f ≪ τs, the system
collapses as pressure support can not be established fast enough, and if τf f ≪ τs,
the system is stabilised by pressure against gravity. Re-expressing the time scale as a
length scale lets us define the Jeans-length RJ = csτf f , and the associated Jeans-mass

MJ =
4π
3
ρR3

J =
4π
3

c3
s√

G3ρ
(G.376)

In systems with masses exceeding MJ defined for a given cs and ρ gravity is dominant
over pressure and the system collapses, vice versa, in low-mass systems below MJ,
pressure is able to provide support against gravity. Again, these concepts are irrelevant
for systems consisting of dark matter only, due to its collisionlessness and the absence
of pressure terms from the fluid mechanical equations.
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G.9 Vorticity equation

The vorticity tensor is the antisymmetric part of velocity tensor ∂υj /∂xi

ωjk =
1
2

(∂jυk − ∂kυj ) (G.377)

and the vorticity-vector ωj can be written as

ωi = ϵijk∂jυk = ϵijkωjk (G.378)

or as ω = rotυ.
The vorticity evolution can be deduced from the Navier-Stokes equation

∂tυ + (υ∇)υ = −
∇p
ρ
− ∇Φ + µ∆υ (G.379)

by application of the operation rot to the equation and by using

(υ∇)υ = ∇υ
2

2
− υ × ∇ × υ︸︷︷︸

=ω

(G.380)

arriving at
∂tω − rot(υ × ω) = µrot(∆υ) (G.381)

For an equation of state where pressure only depends on density, p = p(ρ), the
pressure term assumes the shape

rot
(
∇p
ρ

)
=

rot∇p
ρ
− 1
ρ2∇p × ∇ρ = 0 (G.382)

making use of the chain rule in ∇p(ρ) = ∂p
∂ρ∇ρ. The Leibnitz-rule applied to υ × ω

suggests
rot(υ × ω) = (ω∇)υ − (υ∇)ω + ω div υ︸︷︷︸

=0

+υ div ω︸︷︷︸
=0

(G.383)

for incompressible fluids where divυ = ∂iυ
i = 0, and because divω = ϵijk∂

i∂jυk = 0
always. Then, making use of

rot(∆υ) = rot(∇ divυ︸︷︷︸
=0

−rot rotυ) = −rot rot rotυ = rot rotω = ∆ω − ∇div ω︸︷︷︸
=0

= ∆ω

(G.384)

one arrives at a relation featuring again an advective derivative

∂tω + (υ · ∇)ω = (ω · ∇)υ + µ∆ω (G.385)

Combining all results gives the vorticity equation, as a dynamical equation for the
vorticity field ω:
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∂tω + (υ∇)ω = −ωdivυ +
∇ρ × ∇p
ρ2 + µ∆ω (G.386)

which has the form of a convection-diffusion equation. The vorticity equation has a
convective derivative of the form ∂tω+ (υ ·∇)ω, implying that the vorticity is advected
in its own velocity field which is given by inverting the definition ω = rotυ by means
of the law of Biot-Savart,

υ(r) =
∫

d3r ′ ω(r′) × ∇ 1
|r − r′ |

(G.387)

illustrating that the vorticity field needs to be known in the entire volume for
converting back to the velocity field, as an expression of the nonlocal properties of
this term. Secondly, the sourcing of the vorticity field can take place through the
baroclinic term ∇p × ∇ρ, if the density gradient and the pressure gradient are not
parallel. Gravity alone is not able to source vorticity because as a scalar field, it can
not decide about the orientation of the vorticity vector: rot∇Φ = 0, which immediately
suggests the question why spiral galaxies should be rotating, if their dynamics is
dominated by gravity. Lastly, the term µ∆υ causes in conjunction with the term ∂tω a
diffusion of vorticity with the viscosity µ as the diffusion coefficient.

G.10 Effective processes in collisionless systems

Even though dark matter does not show elastic collisions between the particles
and even though there is no microscopic origin of pressure and viscosity, there can
be collective processes of groups of dark matter particles, emulating pressure and
viscosity. After all, we observe that dark matter dominated objects are stable against
their own gravity, due to the random motion of the particles, which acts as an effective
pressure term in a hdyrostatic equilibrium. Similarly, we observe how systems like
galaxies slow down if they enter a high density environment, by a process called
dynamical friction.
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H.1 Structure formation equations

Structure formation with cold dark matter is driven by self-gravity of cosmic struc-
tures that have been seeded by cosmic inflation as inhomogeneities in the density field.
At the highest degree of simplification, the dark matter density is subjected to fluid
mechanics but without effects of pressure and viscosity (as they would derive from
the microscopic interactions between the particles). While the background on which
structure formation takes place, is a dynamics spacetime conforming to the FLRW-
symmetries, structure formation is well captured in the Newtonian limit, with both
Newtonian gravity in the form of a potential Φ, |Φ| ≪ c2 and with non-relativistic
velocities |υ| ≪ c in the comoving frame.

The formation of cosmic structure is a phenomenon that only involves weak,
Newtonian gravitational fields, slowly moving matter and scales much smaller than
the Hubble scale. Therefore, we are going to use a Newtonian description of gravity on
the relativistic FLRW-background, a nonrelativistic equation of motion and neglect
retardation effects due to the finite propagation speed of the gravitational field as
well as gravitative effects on moving objects such as gravitomagnetic forces.

As coordinates, we use the conformal time η and comoving coordinates xi as
those coordinates are particularly suited for FLRW-spacetimes, implying that the
rate of change of physical coordinate r = ax with physical time gives rise to two
contributions in velocity:

dr
dt

= ȧx + aẋ = aHx + aẋ = aHx + υ (H.388)

with the peculiar velocity υ relative to the Hubble flow. Clearly, both terms would
contribute to a measurement of redshift. The peculiar velocity υ would likewise be
the rate of change of comoving coordinate with conformal time,

υ = aẋ = a
dη
dt︸︷︷︸

=1/a

dx
dη

=
dx
dη

(H.389)

Comoving coordinates have the advantage that the advection of matter due to
the Hubble-expansion is absorbed by the coordinates, and we only need to consider
relative motion of particles with respect to the comoving coordinate frame. Being a
hydrodynamical self-gravitating phenomenon, structure formation is described in
the this comoving frame by the system of differential equations composed of (i) the
continuity equation

∂
∂η
δ + div [(1 + δ)υ] = 0, (H.390)

which relates the time-evolution of the density field to the divergence of the matter
fluxes ȷ = (1 + δ)υ, (ii) the Euler-equation

∂
∂η

υ + aHυ + (υ∇)υ = −∇Φ, (H.391)

which describes the evolution of the peculiar velocity field υ from the gradient ∇Φ
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of the peculiar gravitational potential Φ, acting on a fluid element, and finally (iii)
the comoving Poisson-equation

∆Φ =
3
2
Ωm(η) (aH)2δ =

3H2
0Ωm

2a
δ, (H.392)

which gives the gravitational potential Φ induced by the matter distribution δ

(Newton’s constant has been replaced with the definition of the critical density,
ρcrit = 3H2

0/(8πG) and the density parameter Ωm = ρ̄/ρcrit. In the last step, we used
the adiabatic relation

Ωm(a)
Ωm

=
H2

0

a3(1+w)H(a)2
(H.393)

while setting w = 0 for nonrelativistic matter.
The three equations are sufficient to describe the dynamics of the three relevant

fields δ, υ and Φ, because there are no dissipative and pressure forces due to the
collisionlessness of dark matter, and it is not necessary to track the energy balance or
to introduce and an equation of state parametrising the pressure-density relation.

H.2 Linearised equations on an expanding background

Linearisation of the structure formation equations by substituting a perturbative
expansion and neglecting all terms involving products of two or more fields. This
methods yields the linearised continuity equation,

∂
∂η
δ + divυ = 0, (H.394)

and the linearised Euler-equation,

∂
∂η

υ + aHυ = −∇Φ, (H.395)

which are valid as long as the deviation from the mean density is small, |δ| ≪ 1.
The Newtonian Poisson-equation is always linear, or the superposition principle of
classical gravity would not apply.

The three linearised relationships between δ, υ and Φ can be combined into
the growth-equation: By taking the divergence of the Euler-equation and the time-
derivative of the continuity-equation one can eliminate ∂divυ/∂η and re-substitute
the continuity equation to obtain an expression

∂2

∂η2 δ + aH
∂
∂η
δ = ∆Φ (H.396)

where, after substitution of the Poisson-equation for ∆Φ all spatial derivatives have
vanished. This implies that structure growth in the linear regime is homogeneous
and can not depend on position. It merely scales all amplitudes in the density field
with a factor that only depends on time, δ(x, η) = D+(a)δ(x, η = 0), and this factor is
commonly referred to as the growth function D+(a).

One can continue to replace the time derivatives with respect to conformal time η
by derivatives with respect to the scale factor a to obtain
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d2

da2 D+(a) +
1
a

(
3 +

d ln H
d ln a

)
d
da

D+(a) =
3

2a2Ωm(a)D+(a). (H.397)

where the dependence on the background cosmology is clearer, and reflects the
change of the Hubble function, i.e. acceleration or deceleration in the Hubble rate H(a)
as well as the change of the background matter density with time. The homogeneity
of the growth is the reason why e.g. inflationary models of structure formation can be
investigated by observations of the statistical properties of the large-scale structure
today: Even though inflation takes place at incredibly high redshifts of z ≃ 1030,
the cosmic structure is conserving the density field perfectly as long as it is linearly
evolving.

Homogeneous structure formation corresponds to independently growing Fourier
modes,

δ(x, a) = D+(a)δ(x, a = 1) −→ δ(k, a) = D+(a)δ(k, a = 1), (H.398)

which conserves every statistical property of the initial conditions, in particular
Gaussianity. The Gaussianity of the initial density perturbations is a consequence of
inflation, where a large number of uncorrelated quantum fluctuations are superim-
posed, yielding a Gaussian amplitude distribution due to the central limit theorem.
In fact, homogeneous growth in the linear regime is the reason why investigation of
inflationary processes in structure is possible by observing the large-scale structure
today, even after the cosmic time 1/H0 has passed.

A convenient way for approximating the growth function is the γ-parameter,
introduced by in the study of peculiar velocities:

d ln D+

d ln a
≃ Ωm(a)γ, (H.399)

with γ ≃ 0.6 in ΛCDM. Solving this equation for the growth function yields

D+(a) = exp


a∫

0

d ln aΩm(a)γ

 . (H.400)

In dynamic dark energy models, γ can be approximated by γ ≃ 0.55 + 0.05(1 + w(z =
1)) with the dark energy equation of state parameter taken at unit redshift. The
effect of adding a fluid with a negative equation of state is a slower growth in the
recent cosmic past and a faster growth in the remote past (if the growth function is
normalised to unity today). Solutions for D+(a) for different dark energy cosmologies
are compared in Fig. 10.

H.3 Peculiar velocity field

Matter streams in the large-scale structure drive structure formation: If they converge,
they transport matter into a volume and increase the local density, according to the
continuity equation. In order to investigate the properties of the velocity field one can
carry out a Helmholtz-decomposition into its curl and gradient components θ = divυ
and ω = rotυ. From the Euler-equation one obtains and evolution equation for the
divergence of the matter fluxes ,
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Figure 10: Growth functions D+(a) for different dark energy cosmologies, as well as the
derivative dD+/da

∂
∂η
θ+ aHθ+

3H2
0Ωm

2a
δ = 0 (H.401)

and the corresponding equation for the vorticity ω,

∂
∂η

ω + aHω = 0. (H.402)

With the definition of the differential of the conformal time, da = a2Hdη, one
immediately notices that d lnω = −d ln a, and hence ω ∝ 1/a in the matter dominated
phase: Vorticity can not be generated in linear structure formation in collisionless
fluids, and the flows are necessarily laminar. The divergence θ can be linked to the
evolution of the density field using the continuity equation,

θ = −aH
d ln D+

d ln a
δ, (H.403)

which underlines the fact that in the linear regime of structure formation, the velocity
field is the gradient of a potential. At the same time, eqn. H.403 suggests that a natural
scale for the velocity divergence is the comoving Hubble-rate aH.

H.4 Linear structure formation

The linear growth equation is given by

d2D
da2 +

1
a

(
3 +

d ln H
d ln a

)
dD
da

=
3

2a2Ωm(a)D(a) = 0. (H.404)

Therefore, linear cosmic structure formation is governed by magnitude and time
evolution of two terms: the density of matter as given by Ωm(a) and the term 3 +
d ln H/d ln a describing a change in the expansion rate. This latter term is sometimes

90



h.4. linear structure formation

referred to as Hubble-drag, but although the interpretation as a drag term is formally
correct it does not represent the physical picture correctly. In particular it would be
wrong to formulate a time-scale for Hubble expansion 1/H(t) and compare it to a
time scale t = 1/

√
Gρ because the structure in the overdensity field δ are invariant

in shape and amplitude under Hubble-expansion as both densities ρ(x, a) and ρ̄

scale identically ∝ a−3. The relevant physical mechanism is an acceleration of matter
relative to the Hubble expansion and a change in the expansion velocity, i.e. an
acceleration or deceleration in the cosmological model. This is apparent when writing
the growth equation with e.g. the scale factor a as an evolution parameter. In this
case, the Hubble-drag term reflects a derivative of the Hubble-expansion with a, and
the term 3 + d ln H/d ln a is in fact equal to 2 − q, with the deceleration parameter
q = −äa/ ȧ2.

Linear structure formation is scale invariant, at a rate determined purely by the
FLRW-cosmology through q and H, which determines the evolution of Ωm and hence
of the strength of gravitational fields through the relation

Ωm(a)
Ωm

=
H2

0

a3H(a)2 (H.405)

as a consequence of the continuity equation for normal matter with w = 0, which
itself is a consequence of conserved 4-momentum ∇µTµν = 0. As such, it allows the
investigation of the the cosmological model through the Hubble function and its
derivative if measurements of the amplitude of structures as a function of scale factor
or redshift are available. Redshift information is crucial because the same amplitude
of cosmic structures is reached in different cosmologies at different times, and this
information would be impossible to disentangle without redshift information.

The influence of the two terms 3 + d ln H/d ln a and 2 − q on the growth equation
are straightforward to understand in the context of standard cosmologies with two
relevant fluids, with dark matter dominating at early and dark energy dominating at
late times. In these cosmologies the universe makes a transition from deceleration to
acceleration, which is reflected by the growth rate D(a). During matter domination,
the Hubble function scales H ∝ a−3/2 which transitions in the course of cosmic
evolution to dark energy domination, where in the extreme case of a cosmological
constant H = const. The derivative 3 + d ln H/d ln a would change from 3/2 at early
times to 3 at late times, therefore slowing down structure formation. A similar
behaviour is found in the matter density, which starts at the value Ωm = 1 in matter
domination and drops to 0 when the dark energy component dominates. In summary,
there are now two reasons why structure formation stops at late times under the
influence of a cosmological constant: The driving term involvingΩm, which originates
from the Poisson-equation, becomes very small and the damping term 3+d ln H/d ln a
assumes the largest possible value.

There are certain cosmologies, where the growth equation has particularly simple
solutions. For instance, in a critical FLRW-universe with a constant Ωm = 1 requires
D(a) = a. By substitution into the comoving Poisson-equation one immediately
sees that the Newtonian potentials Φ scale with D+/a and are in this particular
cosmological model constant in linear structure formation.

Therefore, structures grow proportional to the scale factor. For a general cosmol-
ogy one can at least infer the asymptotic behaviour by making a power law ansatz
for D as a function of scale factor at early times, D ∝ aα and consider solution to the
resulting quadratic equation in α, while the exact solution for an arbitrary cosmology
defined in terms of H(a) or q(a), or, in terms of the density parameters and their equa-
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tions of state, is only possible numerically. It is sufficient to formulate the ansatz as a
proportionality D ∝ aα because the growth equation is a linear differential equation.
Physically, this means that structure growth continues irrespective of the amplitudes
of the density field.

To begin, we consider the entire linear growth equation again in the Ωm = 1-
cosmology, which yields as a characteristic polynomial α2 + α/2 − 3/2 = 0, which is
solved by α+ = 1 and α− = −3/2: The growth is proportional to the scale factor, as
already found by direct substitution, D+(a) ∝ a, with a secondary solution D−(a) ∝
a−3/2: Due to the fact that the growth equation is of second order in a one expects two
solution branches, which need to be combined by linear combination with suitable
coefficients such that the boundary condition D(a) = 1 at a = 1 is met. Usually one
neglects the branch D−(a) because it decreases rapidly.

In addition, it is possible to illustrate the behaviour of the growth equation of
individual terms are set to zero and are therefore disfunctional. For instance, the
growth in a cosmology with an arbitrary but constant deceleration parameter q, but
where gravity in structure formation has been switched off leads with the same ansatz
D(a) ∝ aα to a characteristic polynomial α(α + 1 − q) = 0 with the two solutions
D+ = const for α = 0 and D− ∝ aq−1. Taking this to extremes, the dark energy
dominated universe with q = −1 and Ωm = 0 has α(α + 2) = 0, implying a constant
growing mode D+ = const and a fast decaying mode D+ ∝ a−2: structure growth
is frozen and the amplitudes reached at the point of dark energy domination are
conserved from that point on.

Conversely, in an artificial inconsistent universe with a constant expansion rate
(vanishing deceleration q = 0) and gravitational fields generated by the large-scale
structure with Ωm = 1 one would obtain α + α − 3/2 = 0, with the solutions α =
(−1 ±

√
7)/2 with a growing α > 1 and a decaying solution α < 1. Clearly, this is the

prototype solution to the differential equation, where the two solutions are modified
in any consistent cosmology relative to their actual deceleration and matter density,
including their evolution.

H.5 Nonlinear structure formation

As long the structure formation is linear, the growth is homogeneous and conserves
the Gaussianity of the initial conditions. Nonlinear structure formation implies inho-
mogeneous growth and the emergence of non-Gaussian features, which is illustrated
by a number of arguments: Non-linearity implies inhomogeneity, because if e.g. a void
reaches underdensities close to δ ≃ −1 (corresponding to ρ ≃ 0), the linearisation fails
and the growth has to slow down locally. Inhomogeneity implies non-Gaussianity
because the initially Gaussian distribution p(δ)dδ becomes wider with increasing
amplitudes δ, but the density δ can not be more negative than −1, requiring the am-
plitude distribution p(δ)dδ to become asymmetric and to acquire a nonzero skewness.
For completing the argument one immediately notices that in inhomogeneous growth,
i.e. a position dependence of the growth rate D+(x, a), the Fourier-modes δ(k, a) be-
come coupled, violating the central limit theorem such that the superposition of
Fourier-modes yields a non-Gaussian amplitude distribution.

• linearity↔ homogeneity

· There are no spatial derivatives in the growth equation, and therefore,
the growth must be homogeneous δ(x, a) = D+(a)δ(x). Only nonlinear
terms would bring in spatial derivatives and make the growth position
dependent.
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h.6. eulerian perturbation theory

· If the density field is close to δ = −1 somewhere, the growth needs to slow
down locally, which leads to different structure formation rates at different
positions which eventually breaks homogeneity.

• linearity↔ Gaussianity

· Linear growth introduces a scaling with a function D+ which itself is a
linear transform and therefore preserves statistical properties.

· Again, if δ approaches −1, the initially Gaussian distribution starts to
become asymmetric, as it generates potentially very large positive values
for δ but has to be zero for δ < −1.

• homogeneity↔ Gaussianity

· Homogeneous growth δ(x, a) = D+(a)δ(x) implies independent growth of
all Fourier-modes δ(k, a) = D+(a)δ(k), as the Fourier-transform is linear. If
a large amount of statistically independent Fourier-modes is superimposed
(by inverse Fourier-transform), the resulting δ is a Gaussian distribution.

· Inhomogeneous growth δ(x, a) = D+(x, a)δ(x) results in a convolution in
Fourier-space

δ(k, a) =
∫

d3k′

(2π)3 D+(k − k′ , a)δ(k′) (H.406)

with a position-dependent growth rate, which breaks the statistical inde-
pendence by coupling Fourier-modes. Then, the resulting distribution can
not be Gaussian anymore.

H.6 Eulerian perturbation theory

The non-linearities in the continuity and Euler-equation make a closed analytical
solution impossible. It is possible, however, to obtain a perturbative solution to the
structure formation equations, which contains the mode coupling mechanism and
describes the generation of non-Gaussianities in nonlinear structure formation. The
non-linearities in the continuity- and the Euler-equation translate to convolutions of
the density and the velocity fields in Fourier space which couple the individual Fourier
modes, violating the central limit theorem and therefore violating Gaussianity. It is
worth noting that in the perturbative expansion each field δ(n) grows homogeneously
at the rate Dn

+(a), but the sum does not.
Applying a perturbative solution means to write out perturbation series for δ and

Θ in terms of powers of the linear solutions

δ(x, t) =
∑
n

δ(n)(x, t) and Θ(x, t) =
∑
n

Θ(n)(x, t) where Θ =
divυ
aH

(H.407)

and substituting them into the fully nonlinear equations:

∂τδ + div((1 + δ)υ) = 0 and ∂τυ + aHυ + (υ∇)υ = −∇Φ (H.408)

where the comoving divergence is computed for the second equation. Differential
equations become algebraic in Fourier space, therefore continuity reads
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∂τδ(k) + Θ(k) = −
∫

d3k1

(2π)3

∫
d3k2

(2π)3Θ(k1)δ(k2)δD(k − k12)α(k1, k2) (H.409)

and similarly, the Euler-equation becomes

∂τΘ(k)+aHΘ(k)+
3
2
Ωm(aH)2δ(k) = −

∫
d3k1

(2π)3

∫
d3k2

(2π)3Θ(k1)Θ(k2)δD(k−k12)β(k1, k2)

(H.410)

keeping in mind that products in real space become convolutions in Fourier-space,
here expressed by introducing the Dirac-δD function. The derivatives are expressed
with

α(k1, k2) =
1

k2
1

k12k1 (H.411)

as well as
β(k1, k2) =

1

2k2
1k

2
2

k12k1k2 (H.412)

with the abbreviation k12 = k1 + k2. Substitution of the perturbation series yields a
recursive relation

δn(k) =
∫

d3q1 . . .

∫
d3qnδD(k − q1...n)Fn(q1 . . . qn)δ1(q1) . . . δn(qn) (H.413)

for the density field, as well as

Θn(k) =
∫

d3q1 . . .

∫
d3qnδD(k − q1...n)Gn(q1 . . . qn)δ1(q1) . . . δn(qn) (H.414)

for the velocity divergence. Here, Fn is a function of Fn(Fn−1, Gn−1) and the same for
Gn, all defined inductively starting at F1 = G1 = 1.

The lowest order symmetrised solutions for Fn are F1 = 1 and

F2(q1, q2) =
5
7

+
µ

2

(
q1

q2
+
q2

q1

)
+

2
7
µ2 with µ =

q1 · q2
q1q2

(H.415)

being the cosine of the angle between q1 and q2. Assuming q1 = q2 for simplicity,
the mode coupling function F2 attains the largest value of F2 = 2 if the wave vectors
are parallel (µ = +1), an intermediate value of F2 = 5/7 if q1 ⊥ q2 (µ = 0) and the
smallest value of F2 = 0 if the the wave vectors are antiparallel (µ = −1). Varying the
wave numbers at fixed separation angle µ shows that F2 is smallest if q1 = q2, and that
the mode coupling increases if the wave numbers are chosen differently. From this
point of view, mode-coupling bears resemblance to a resonance phenomenon, where
modes with identical direction of propagation experience the strongest coupling. The
perturbative solution to the system of equations eqns. (H.390) and (H.391) in terms
of a perturbation series in δ and υ is possible due to their renormalisation properties,
which hold exactly in the case of SCDM (Ωm = 1, Ωϕ = 0) and approximately for dark
energy cosmologies. In these cosmologies, the mode coupling kernels themselves
acquire a slow time dependence.
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In application to statistics, any correlation function of nonlinear fields can reduced
to a higher-order correlation function of the linearly evolving fields, which obey Gaus-
sian statistics, integrated over momentum space with the mode coupling function as
a weighting function. While odd n-point correlation functions of Gaussian random
fields are equal to zero, even n-point functions can be decomposed into products of
two-point functions by virtue of the Wick-theorem,

⟨δ(k1) . . . δ(kn)⟩ =
∑
pairs

∏
i,j∈pairs

⟨δ(ki)δ(kj )⟩ (H.416)

for which a proof can be found in e.g. and which constitutes an extension of the
well-known relation ⟨δ2n⟩ = (2n − 1)!!⟨δ2⟩n for the higher moments of a Gaussian
random variable δ with ⟨δ⟩ = 0.

H.7 Dark matter in astrophysical systems

With the idea, that all forms of matter, including dark matter, are effected in the same
way by gravity as commanded by the equivalence principle of general relativity one
would conclude in a range of astrophysical system that the strength of gravitational
field can not be explained by luminous matter alone.

H.7.1 Rotation curves of galaxies

Setting up circular orbits for stars in a galactic disk in the gravitational potential of a
galaxies would use the condition

υ2

r
=

dΦ
dr

→ υ2 = r
dΦ
dr

(H.417)

The gravitational potential Φ would result from solving the Poisson-equation for the
total matter density ρ

∆Φ =
1
r2

d
dr

(
r2 dΦ

dr

)
= 4πGρ (H.418)

With a matter profile ρ ∝ 1/r2 one would obtain, after multiplying with r2, integrat-
ing and multiplying with 1

r2 the result

dΦ
dr

= 4πG
1
r2

∫
dr

1
r2 r

2 =
4πG
r

=
υ2

r
(H.419)

implying that the rotational velocity υ does not depend on radius r anymore, suggest-
ing the idea that the galactic disc is embedded into a much larger dark matter halo
with density ρ ∝ 1/r2, which sources the gravitational potential, and which naturally
reproduces the observed flat rotation curves.

There are theories that modify dynamical laws in the regimes of really small
accelerations which can reproduce galaxy rotation curves even if the gravitational
potential is sourced by the visible matter only. The scale at which these MO(dified)
N(ewtonian) D(ynamics) theories change the equations of motion is for accelerations
close to a0 ≃ 10−10m/s2, which corresponds to the acceleration experienced by the
Solar System on its orbit around the Milky Way centre. An example of a rotation
curve in a low surface-brightness galaxy is provided by Fig. 11.
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Figure 11: Rotation curve of the galaxy U11616 with an fit to the rotational velocity as a
function of radius

H.7.2 Virial equilibria of clusters of galaxies

On the scale of galaxy clusters one again notices similar mismatch: The velocities of
the galaxies are too large to be compatible with the gravitational potential if only
visible matter should contribute to it. From the positions qi and the momenta pi of
all galaxies in a cluster one defines the virial G,

G =
∑
i

piqi (H.420)

with the time deriative

dG
dt

=
∑
i

dpi
dt

qi + pi
dqi
dt

=
∑
i

Fiqi + m
∑
i

q̇i q̇i (H.421)

where Newton’s equation of motion dpi /dt = Fi and the definition of momentum
pi = mq̇i was substituted. Particularly in systems with potentials of power-law shape
allow a very compact statement: If Φ is the mutual interaction potential of the particle
j onto particle i

Φ(qi , qj ) ∝ |qi − qj |
n (H.422)

one can find

∑
i

Fiqi = −1
2

∑
i

∑
j

dΦ(qi , qj )

dqij

∣∣∣qi − qj ∣∣∣2
qij

= −1
2

∑
i

∑
j

dΦ(qi , qj )

dqij
qij (H.423)

and in particular for homogeneous potentials of order n that

1
2

∑
i

∑
j

dΦ(qi , qj )

dqij
qij =

n
2

∑
i

∑
j

Φ(qi , qj ) =
n
2

V (H.424)
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with V =
∑
i

∑
j
Φ(qi , qj ) and T = m/2

∑
i
q2
i . We can therefore conclude that

dG
dt

= 2T − nV (H.425)

The time averaging yields

〈
dG
dt

〉
=

1
∆t

∆t∫
0

dt
dG
dt
≤ 1
∆t
|Gmax − Gmin| (H.426)

if G has a finite range of values, typically realised for systems bounded in the phase
space coordinates, the average vanishes in the limit ∆t →∞, and therefore the virial
theorem applies,

2⟨T⟩ = n⟨V⟩ (H.427)

For Newtonian gravity with a Coulomb-potential we insert n = −1 and get

⟨T⟩ = −1
2
⟨V⟩ (H.428)

as well as a negative total energy

⟨T⟩ + ⟨V⟩ = ⟨T⟩ − 2⟨T⟩ = −⟨T⟩ < 0 (H.429)

indicating a bound system. ⟨T⟩ can be measured from the velocity of the galaxies
inside the cluster and the potential ⟨V⟩ can be determined from the total mass and
size, typically ⟨V⟩ ∼ M/R. Observations, either of the peculiar velocity of galaxies
and a mass estimate based on luminosity, or of X-ray temperature and luminosity,
show a striking mismatch between data and theory and one would need a n of a
few hundred to reconcile ⟨T⟩ with ⟨V⟩, which is clearly at odds with Newtonian
gravitational potentials, or alternatively, that there is much more gravitating matter
present in these systems compared to luminous matter.

H.7.3 Gravitational lensing

Substituting non-relativistic particles with relativistic photons for probing gravi-
tational potentials leads to the topic of gravitational lensing. Photons travel along
null-geodesics of spacetime, which would be lines with vanishing ds2 for instance on
a Minkowski-background

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dxidx

i = 0 (H.430)

slightly curved by a (static) gravitational potential |Φ| ≪ c2. It is sufficient to work
with a perturbed Minkowski-metric instead of a FLRW-metric because of conformal
flatness of the background: With a suitable choice of conformal time as a coordinate
light propagation is impervious to the background dynamics and identical to that in
special relativity.
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The effective speed of propagation of light is the rate at which the coordinates
pass as a function of time,

c′ =
d|xi |
dt

= c

√√
1 + 2Φ

c2

1 − 2Φ
c2

≃ c
(
1 − 2Φ

c2

)
(H.431)

where we used the approximation 1/(1 + ϵ) ≈ 1 − ϵ for |ϵ| ≪ 1. With c′ , c it is
suggestive to define a refractive index

n =
c′

c
≈ 1 − 2Φ

c2 (H.432)

The factor of 2 in the effective propagation speed is typical for relativistic particles
like photons, on which the effects of gravitational fields is stronger compared to non-
relativistic particles. In fact, gravitational time dilation for non-relativistic particles
is determined through the interpretation of the line element ds as the elapsed proper
time dτ

ds2 = c2dτ2 (H.433)

such that
dτ2 =

(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dxidx

i (H.434)

If the velocities are small, the displacement in the dxi-directions are small compared
to those into the dt-direction:

dτ2 =
(
1 +

2Φ
c2

)
c2dt2 → dτ ≃

(
1 +

Φ

c2

)
dt (H.435)

with the approximation
√

1 + 2ϵ ≃ 1 + ϵ, again for |ϵ| ≪ 1. Comparing these two
results with Fermat’s principle for photons and Hamilton’s principle for the motion
of massive particles now shows that the effect of gravitational fields on photons is
twice as large as that on non-relativistic particles.

Gravitational lensing would be described by the geodesic equation

d
dλ

kα = −Γ αµν kµkν with kµ =
dxµ

dλ
(H.436)

where the wave vector kµ is tangent to the trajectory xµ(λ) and normalised to zero.
Using the invariance of geodesics under affine reparameterisation we can choose λ to
yield kt = 1, kiki = −1, such that kµkµ = (kt)2 − kiki = 0.

The geodesic equation is an implicit relation: one needs to know the trajectory xµ

as the integral curve over kµ to be able to evaluate the Christoffel-symbol Γ αµν at the
right location: In actual numerical application it needs to be solved as a differential
equation. To circumvent this, one uses the Born-approximation and assumes that
the deflections are small, such that the change of the wave vector δkα are computed
relative to fixed tangents kµ resulting from a solution of the geodesic equation for the
background. Then, only the perturbations δΓ αµν determine the deflection:

d
dλ
δkα = −δΓ αµν kµkν (H.437)
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The changes to the propagation direction can be integrated up directly

δkα = −kµkν
∫

dλ δΓ αµν (λ) (H.438)

The perturbed Christoffel-symbols δΓ αµν are given by the usual relation

δΓ αµν =
ηαβ

2

(
∂µhβν + ∂νhµβ − ∂βhµν

)
(H.439)

as derivatives of the weakly perturbed metric

gµν = ηµν + hµν and gµν ≈ ηµν − hµν ≃ ηµν (H.440)

If we assume that the perturbations correspond to Newtonian gravitational potentials,
as the perturbed Christoffel-symbols contain gradients of Φ. To evaluate the geodesic
equation further we can assume that the unperturbed propagation proceeds into the
z-direction and that the gradients in Φ deflect the photons into the perpendicular
directions:

δki = −kµkν
∫

dλ δΓ iµν = −
∫

dλ
(
δΓ itt + 2δΓ itz + δΓ izz

)
(H.441)

Inspecting the explicit expressions for the Christoffel-symbol yields

δΓ itt =
ηiβ

2

(
∂thβt + ∂thtβ − ∂βhtt

)
=

1
2
∂ihtt =

1
c2∂

iΦ (H.442)

as well as

δΓ itz =
ηiβ

2

(
∂thβz + ∂zhzβ − ∂βhtz

)
= 0 (H.443)

and

δΓ izz =
ηiβ

2

(
∂zhβz + ∂zhzβ − ∂βhzz

)
=

1
2
∂ihzz =

1
c2∂

iΦ (H.444)

making heavy use of the diagonal form of the metric and its inverse, and ignoring
derivatives along the direction of propagation z. Collecting all results gives for the
gravitational light deflection angle α̂ = δki /kz ≃ δki

δki = − 2
c2

∫
dλ ∂iΦ (H.445)

In the lensing deflection, the scale of the potential Φ is set by c2, and the factor 2
originates from the fact that photons as relativistic test particles are more sensitive to
gravitational potentials than massive particles. The relevant gradients of Φ are those
perpendicular to the line of sight.
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H.8 Properties of dark matter

A number of experiments (rotation curves of galaxies, virial equilibria in galaxy clus-
ters, gravitational lensing, amplitude of CMB temperature fluctuations) suggests the
existence of non-baryonic dark matter. Dark matter is significantly more abundant
than normal matter, as Ωm/Ωb ≃ 7, and has extreme properties. Apart from exotic
models of macroscopic dark matter such as primordial black holes, many cosmolo-
gists suspect dark matter to be made up from yet undetected elementary particles,
for instance by WIMPs in the TeV-range, or by ultra-light axions. The dark matter
particles are required to interaction by the weak force and by gravity, and they are
required to have these properties:

• Dark matter is cold, meaning that there is little or none thermal motion of the
dark matter particles. Therefore, this kind of dark matter is non-relativistic,
and as there is no thermal motion of the particles, any structures on small scales
seeded by cosmic inflation is preserved: Neither diffusive motion of the dark
matter particles themselves nor radiation pressure can break up small-scale
structures.

• Dark matter is, well, dark and shows no signs of interactions through elec-
tromagnetism: There are no annihilation or decay processes of dark matter
producing photons, nor are there effects of radiation pressure on dark matter
particles.

• In fact, the only appreciable interaction of dark matter is gravitational, and
its presence manifests itself in rotation curves, virial equilibria, gravitational
lensing or in the amplitude of CMB-fluctuations.

• Dark matter is collisionless, meaning that there is only a very small cross-
section for elastic collisions, as demonstrated e.g. by the bullet cluster: In this
system, ob observes a merging of two clusters at high velocity, where the dark
matter component as mapped out by lensing is unperturbed in the passage of
the two clusters, whereas the baryonic component is not, which clearly indicates
differences in the fluid mechanics of the two components: It is not possible
to predict fluid properties like pressure and viscosity from the microscopic
interaction of particles for dark matter.

H.9 Spherical collapse of dark matter haloes

The gravitational dynamics of a homogeneous sphere of matter under its own gravity
is, due to its high degree of symmetry, one of the few exactly solvable systems, in
Newtonian gravity as well as in general relativity. A spherically symmetric pertur-
bation would initially follow the Hubble-expansion, but its own gravity would slow
down the local expansion rate, ultimately stalling the perturbation and decoupling it
from the Hubble-flow, before it collapses on itself. During the collapse one can expect
that virialisation processes take place such that a stabilised bound state is reached, in
which the baryonic component can cool and form stars.
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h.9. spherical collapse of dark matter haloes

In classical gravity the radius R of a spherical perturbation of mass M follows the
Newtonian equation of motion

R̈ = −GM
R2 (H.446)

The instant t at which the radius stalls, Ṙ = 0, defines the moment of turn-around.
With aa and Ra as scale factor and radius at turn-around, respectively, on defines the
dimensionless variables x = a

aa
and y = R

Ra
.

If we assume for simplicity a flat, matter-dominated FLRW background with
Ωm = 1 the Hubble function is given by

H =
ȧ
a

= H0a
−3/2 (H.447)

And, due to flatness and matter-domination, ρ = ρcrit, and we can define a dimen-
sionless parameter

τ = Hat = H(aa)t = H0a
−3/2
a t (H.448)

which allows to re-express the dynamical equations for x as

x′ =
dx
dτ

=
dt
dτ

dx
dt

=
1

Ha
ẋ =

1
Ha

ȧ
aa

=
1

Ha

a
aa

ȧ
a

=
H
Ha

x (H.449)

substituting the Friedmann-equation in the last step. Similarly,

R̈ = −GM
R2 = −4πG

3
ρaR3

a
1

R2 (H.450)

with the background density ρa = 3H2
a

8πGξ the density contrast at turn around ξ > 1. In
a similar way, the dynamical equation for y can be rewritten

y′′ = − ξ

2y2 (H.451)

with the natural initial conditions y
′ ∣∣∣
x=1

= 0 and y
∣∣∣
x=0

= 0. The collapse equations
are solved analytically through

dx
dτ

= x−1/2 → dτ = x1/2dx → τ =
2
3
x3/2 + c (H.452)

as well as

y
′

= ±
√
ξ

√
1
y
− 1 (H.453)

which can be combined to

τ =
1
√
ξ

(1
2

arcsin(2y − 1) −
√
y − y2 +

π

4

)
(H.454)

At turn around x = y = 1 one obtains τ = 2
3 leading to ξ =

(
3π
4

)2
. The density inside
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the halo results from the ratio

∆ =
(
x
y

)3

≈ 1 +
3
5
y︸︷︷︸

=δ

(H.455)

If we now extrapolate the density to x = 1 by δa = δ
x = 3y

5x and use

1
x

=
(3τ

2

)−2/3
≈

(3π
4

)2/3 1
y
→ δa =

3
5

(3τ
4

)2/3
(H.456)

we receive the time τ = 4
3 of the collapse. From this one can deduce a linear growth

up to the critical density δc
δc = 22/3δa ≈ 1.69 (H.457)

at which the collapse sets in.

H.10 Mass function of dark matter haloes

The central result on spherical collapse was the overdensity of δc ≃ 1.69 for a pertur-
bation to collapse in its own gravitational field against the Hubble-expansion of the
background. This number can be used to determine the number of objects such as
clusters or galaxies per comoving volume that can form from initial conditions with
suitably high initial densities. The formalism for achieving this was discovered in
three different contexts: Assuming that the noise in an electric circuit is described by
a one-dimensional Gaussian random field, the probability for a peak in the voltage
exceeding a certain threshold would result from the spectrum of the fluctuations. Sim-
ilarly, the occurrences of waves on the surface of the ocean above a certain threshold
would likewise result from the fluctuation statistics of a Gaussian random field, now
in two dimensions. And lastly, objects like galaxies form if the density exceeds the
threshold for spherical collapse, and how often this happens in a comoving volume
in a Gaussian random field is an application of the same idea in three dimensions.

A spherical perturbation of radius R encloses the mass M

M =
4π
3

R3Ωmρcrit → R = 3

√
3M

4πΩmρcrit
(H.458)

with the ambient density Ωmρcrit, ρcrit = 3H2
0/(8πG), such that each mass M corre-

sponds to a length scale R(M). If we now filter the density field δ by convolution with
a filter WR of spatial size R(M)

δ̄(x) =
∫

d3x′WR(M)(|x − x′ |)δ(x′), (H.459)

then the convolved density field δ̄ consists of fluctuations that are massive enough
that they can form objects of mass M by spherical collapse. In Fourier-space, the
convolution relation reads

δ̄(k) = WR(k)δ(k) (H.460)
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h.10. mass function of dark matter haloes

with the Fourier-transform WR(k) of the filter function. The convolution as a lin-
ear operation does not change fundamentally the distribution of the density field
amplitude, but changes the variance. Working with a Gaussian distribution

p(δ̄, a) =
1√

2πσ2
R(a)

exp

−1
2

(
δ̄

σR(a)

)2 (H.461)

where the variance is growing in linear structure formation according to with the
relation

σ2
R(a) = σ2

R(today)D2
+(a) (H.462)

With this distribution we can ask how often in a fixed comoving volume the
smoothed density field reaches amplitudes sufficient for spherical collapse, i.e. where
the condition δ̄ > δc is fulfilled. The probability of finding those is equal to the volume
fraction filled with halos of mass M,

F(M, a) =

∞∫
δc

dδ̄ p(δ̄, a) =
1
2

erfc
(

δc√
2σR(a)

)
(H.463)

with the complementary error function erfc(). One determines the halo-distribution
by differentiation

∂F
∂M

=
dR
dM

dF
dR

δc

σRD+

d ln σR

dM
exp

−1
2

(
δc

σRD+

)2 (H.464)

because d
dxerfc(x) = 2√

π
exp(−x2). To obtain the comoving number density we divide

the by halos occupied volume fraction by the halo-volume 4π
3 R3 and get

n(M, a) =
ρ0√
2π

δc

σRD+

d ln σR

d ln M
exp

−1
2

(
δc

σRD+

)2 1
M

(H.465)

The mass function or Press-Schechter function n(M, a) is a valuable source of
cosmological information as it is sensitive to the shape of the CDM-spectrum P(k)
through the variance σ2

R and its derivative dσ2/dM. Practical numbers to remember
are about 100 clusters of galaxies above 5 × 1013M⊙/h in a volume of (100Mpc/h)3,
and about 104 galaxies with masses between 1011M⊙/h and 1012M⊙/h in the same
volume. An important caveat is that the number of haloes per comoving volume is not
observable, and neither would be comoving distance, but redshift is straightforwardly
observable. Then, a cosmological probe could be the number of haloes observed within
a fixed solid angle ∆Ω between two redshifts zmin and zmax

N =
∆Ω

4π

zmax∫
zmin

dz
dV
dz

∞∫
Mmin(z)

dM n(M, a(z)) (H.466)

where the minimal mass Mmin(z) for an object to be detectable is commonly de-
termined by the observational technique. But in almost all cases, the magnitude of
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Figure 12: Halo mass function n(M, z) at different redshifts

observable properties of haloes, like luminosity or temperature, scale with halo mass.
The comoving volume evolves with redshift z according to

V =
4π
3
χ3(a(z)) → dV

dz
=

da
dz

dχ
da

dV
dχ

(H.467)

Due to χ = c
∫

da/(a2H(a)) and a = 1/(1 + z) this expression becomes

dχ
da

=
c

a2H
as well as

da
dz

=
1

(1 + z)2 = a2 and therefore,
dV
dz

=
c
H

4πχ2

(H.468)

The halo mass function n(M, z) is shown in Fig. 12 for a ΛCDM-cosmology, in two
different parameterisations. Clearly, the most massive halos only appear at late times
in the Universe.
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I statistics in cosmology

I.1 Statistical description of structure and random fields

Structures in the Universe require a statistical description: On large scales, they look
statistically identical and similar in every direction, and predictions from cosmologi-
cal theories such as structure formation concern statistical properties rather than for
instance individual formation scenarios for single galaxies, the principal exception
being our own Milky Way. Suitable tools for a statistical description of e.g. the den-
sity field are random fields: There, one specifies a distribution of field amplitudes
and possible correlations between them taken at different points. Conceptually, a
Gaussian distribution such as

p(δ(x)) =
1√

2π⟨δ(x)2⟩
exp

(
−1

2
δ(x)2

⟨δ(x)2⟩

)
(I.469)

predicts values of the field δ taken at a specified point x for an ensemble of statisti-
cally equivalent universes. Over this ensemble, the variance ⟨δ(x)2⟩ is defined. Now,
descriptive statistics always concerns moments or cumulants of δ over this ensemble
of universe, and the same is true of symmetries like statistical isotropy or homo-
geneity, that is invariance of statistical quantities if x is rotated or shifted. Naturally,
there is only one Hubble-volume in which we can carry out observations, such that
accessing the ensemble for computing statistical quantities is impossible. But there
is the concept of ergodicity, implying that one can construct estimates for ensemble
averages from volume averages, provided that the random field is Gaussian and has
a continuous spectrum, both concepts will be explained below. Gaussian random
fields, i.e. a Gaussian distribution of field amplitudes are of particular relevance in
cosmology, as at least at early times there are very good indications that all fields have
Gaussian statistical properties.

The fluctuations of the cosmic density field δ(x), which are defined as the relative
deviation of the density field ρ(x) from the mean background density ⟨ρ⟩ = Ωmρcrit,

δ(x) =
ρ(x) − ⟨ρ⟩
⟨ρ⟩

, (I.470)

are assumed to be Gaussian with a certain correlation length, meaning that the
probability of finding the amplitudes δ1 ≡ δ(x1) and δ2 ≡ δ(x2) and positions x1
and x2 in a hypothetical ensemble of universes is given by a multivariate Gaussian
probability density,

p(δ1), δ2) =
1√

(2π)2det(Q)
exp

−1
2

(
δ1
δ2

)t
Q−1

(
δ1
δ2

) (I.471)

with the covariance matrix Q:

Q =
(
⟨δ1δ1⟩ ⟨δ1δ2⟩
⟨δ2δ1⟩ ⟨δ2δ2⟩

)
(I.472)

The off-diagonal variance in Q is the correlation function ξ(x1, x2) ≡ ⟨δ1δ2⟩ of the
random field, which describes how fast with increasing distance |x2 − x1| the field
loses its memory on the amplitude at x1. A length scale in ξ(x1, x2) can be interpreted
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as a correlation length. Due to the Cauchy-Schwarz inequality,

⟨δ1δ2⟩2 ≤ ⟨δ2
1⟩⟨δ

2
2⟩ → r =

⟨δ1δ2⟩√
⟨δ2

1⟩⟨δ
2
2⟩

(I.473)

the correlation function is always smaller than the geometrical mean of the variances
at a single point, i.e. the covariance Q is positive definite, and the Pearson correlation
coefficient |r | is smaller than unity. Therefore, the Cauchy-Schwarz inequality makes
sure that the distribution I.471 is normalisable, as the determinant det(Q) is ensured
to be positive.

Clearly, if ξ(x1, x2) vanishes the Gaussian probability density separates,

p(δ1, δ2) = p(δ1)p(δ2) (I.474)

and the amplitudes are uncorrelated: The covariance Q becomes diagonal if c is zero,
which has two important consequences: (i) The determinant factorises,

det(Q) = ⟨δ2
1⟩ ⟨δ

2
2⟩ (I.475)

as well as (ii) the quadratic form in the exponent of the distribution I.471,(
δ1
δ2

)t
Q−1

(
δ1
δ2

)
=

δ2
1

⟨δ2
1⟩

+
δ2

2

⟨δ2
2⟩
. (I.476)

The Pearson correlation coefficient r vanishes simultaneously with the correlation
function ξ(x1, x2). It is sensible that the correlations in a random field decrease with
increasing distance between the points where the amplitudes are measured and
correlated, therefore, in the limit r → ∞ we get ξ → 0 as well as r → 0, such that
p(δ1, δ2) = p(δ1)p(δ2) for sufficiently separated points.

The knowledge of the variance is sufficient because all moments of a Gaus-
sian distributed random variable with zero mean are proportional to the variance,
⟨δ2n⟩ ∝ ⟨δ2⟩n. Hence the characteristic function ϕ(t) =

∫
dδp(δ) exp(itδ) =

∑
n
⟨δn⟩(it)/n!

only requires the estimation of the variance ⟨δ2⟩ for reconstructing p(δ)dδ from the
moments ⟨δ2n⟩ by inverse Fourier transform.

If the correlation function ξ(r) = ⟨δ1δ2⟩ only depends on the separation vector
r = x2 − x1, the density field has homogeneous fluctuation properties: Pictorially, this
is a case where the fluctuations are similar (and in fact, statistically equivalent) at
every point in space. In this case it is convenient to transform to Fourier space,

δ(k) =
∫

d3x δ(x) exp(−ikx) ↔ δ(x) =
∫

d3k

(2π)3 δ(k) exp(+ikx), (I.477)

and to consider the variance between two Fourier modes δ(k1) and δ(k2)

⟨δ(k1)δ∗(k2)⟩ = (2π)3δD(k1 − k2)P(k1) with P(k) =
∫

d3r ξ(r) exp(−ikr). (I.478)

Therefore, Fourier modes of homogeneous random fields are mutually independent
and their variance in Fourier-space defines the power spectrum P(k) as the Fourier
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transform of the correlation function ⟨δ1δ2⟩. If, in addition, the random field is
isotropic, P(k) only depends only the wave number k instead of the wave vector k.
Pictorially, this would be a random field whose fluctuation properties are identical in
every direction. An intuitive counter-example wound be waves of the surface of the
ocean close to a beach, where the wave fronts are roughly parallel to the seafront and
isotropy, which one would expect from the open ocean, is broken.

In this case, the angular integrations in eqn. I.478 can be carried out by introducing
spherical coordinates in Fourier-space, yielding:

P(k) = 2π

∞∫
0

r2dr ξ(r)j0(kr), (I.479)

with the spherical Bessel function of the first kind j0(kr) of order ℓ = 0, being equal
to

j0(kr) = sinc(kr) =
sin(kr)

kr
(I.480)

Cosmological inflation provides a mechanism for generating Gaussian fluctuation
fields with the spectrum P(k),

P(k) ∝ kns T2(k) (I.481)

with the CDM transfer function T(k). T(k) describes the scale-dependent suppression
of the growth of small-scale modes between horizon-entry and matter-radiation
equality by the Meszaros-mechanism. It is well approximated with the polynomial fit
of the type

T(q) =
ln(1 + 2.34q)

2.34q

(
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

)− 1
4 , (I.482)

The asymptotic behaviour of the transfer function is such that T(k) ∝ const for
k ≪ 1 and T(k) ∝ k−2 at k ≫ 1, such that P(k) ∝ kns on large scales and P(k) ∝ kns−4

on small scales. The wave vector is rescaled with the shape parameter Γ ≃ Ωmh,
which corresponds to the horizon size at the time of matter-radiation equality aγm,
and describes the peak shape of the CDM power spectrum P(k). There are weak
corrections due to a nonzero baryon density Ωb

Γ = Ωmh exp
[
−Ωb

(
1 +

√
2h
Ωm

)]
, (I.483)

where Γ is measured in units of (Mpc/h)−1, such that q = k/Γ is a dimensionless wave
vector. The spectrum is usually normalised to the variance of the linearly evolved
density field at zero redshift on a scale of R = 8 Mpc/h,

σ2
R =

1
2π2

∞∫
0

dk k2P(k)W2(kR), (I.484)

with a Fourier transformed spherical top hat filter function,
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Figure 13: CDM-spectrum P(k) today for linear growth

W(x) =
3j1(x)

x
(I.485)

j1(x) is the spherical Bessel function of the first kind of order ℓ = 1.
This particular definition of σ2

R, along with the fact that the power spectrum
has the dimension of a volume, motivates the definition of the dimensionless power
spectrum ∆2(k) ∝ k3P(k),

∆2(k) =
k3

2π2 P(k) → σ2
R =

∞∫
0

d ln k ∆2(k)W2(kR), (I.486)

such that ∆2(k) reflects the fluctuation variance per logarithmic band in k, dσ2
R/d ln k ∝

∆2. It is common to normalise P(k) by the variance σ2
8 on scales of comoving R =

8 Mpc/h, and typical values are σ8 = 0.8 . . . 0.9. The spectrum P(k) is shown in Fig. 13
for linear evolution at the current cosmic epoch.

I.2 Fluctuations on the sky and Limber-projections

A Gaussian random field γ(θ) on the celestial sphere can be characterised by the
correlation function

Cγγ(α) = ⟨γ(θ)γ∗(θ′)⟩ (I.487)

with the separation α = ∢(θ,θ′), because a Gaussian distribution is determined by the
variance, following the argument using the characteristic function of a distribution
outlined in Sect. ??. The averaging brackets ⟨. . .⟩ denote a hypothetical ensemble aver-
age over realisations of the random field, but can be replaced by spherical averages
for estimating the correlation function because of the ergodicity of the ensemble
provided that the random process has a continuous correlation function up to cosmic
variance. The correlation function and the angular power spectrum can be converted
into each other under transformations with Legendre polynomials Pℓ(cos α),
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Cγγ(ℓ) = 2π
∫

d cos αCγγ(α)Pℓ(cos α) ↔ Cγγ(α) =
1

4π

∞∑
ℓ=0

(2ℓ+ 1)Cγγ(ℓ)Pℓ(cos α)

(I.488)

using the orthonormality of the Legendre-polynomials Pℓ(cos α):

+1∫
−1

dx Pℓ(x)Pℓ′ (x) =
2

2ℓ + 1
δℓℓ′ . (I.489)

Fluctuations of a quantity like the sky temperature τ(θ) or the galaxy density γ(θ) on
the celestial sphere with homogeneous fluctuation properties can be decomposed in
using the spherical harmonics Yℓm(θ), because they are a complete orthonormal set of
basis functions:

γ(θ) =
∞∑
ℓ=0

+ℓ∑
m=−ℓ

γℓmYℓm(θ) ↔ γℓm =
∫
4π

dΩγ(θ)Y∗ℓm(θ). (I.490)

The orthonormality relation of the spherical harmonics Yℓm(θ) reads∫
4π

dΩ Yℓm(θ)Y∗ℓ′m′ (θ) = δℓℓ′δmm′ , (I.491)

and is not identical to the completeness relation:

∞∑
ℓ=0

+ℓ∑
m=−ℓ

Yℓm(θ)Y∗ℓm(θ′) = δ(θ − θ′), (I.492)

because the spherical harmonics Yℓm(θ) are a discrete basis system. Orthonormality
and completeness are identical in the case of a continuous basis system like the plane
waves exp(±ikx) of the Fourier transform. The variance of the spherical harmonics
expansion coefficients γℓm can be related to the angular power spectrum,

⟨γℓmγ∗ℓ′m′ ⟩ =
∫
4π

dΩ
∫
4π

dΩ′ Cγγ(α)Yℓm(θ)Y∗ℓ′m′ (θ
′), (I.493)

by substituting the decomposition eqn. (I.490) and using the definition of the corre-
lation function eqn. (I.487). The correlation function Cγγ(α) can be replaced with the
angular spectrum Cγγ(ℓ), and the Legendre polynomial can be substituted with the
spherical harmonic’s addition theorem, α = ∢(θ̂, θ̂′):

+ℓ∑
m=−ℓ

Yℓm(θ)Y∗ℓm(θ′) =
2ℓ + 1

4π
Pℓ(cos α). (I.494)

Using the orthonormality relation twice and contracting the Kronecker δ-symbols
yields the final result

⟨γℓmγ∗ℓ′m′ ⟩ = δℓℓ′δmm′ Cγγ(ℓ), (I.495)
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i.e. that the variance of the expansion coefficients γℓm is equal to the angular spectrum
Cγγ(ℓ) and that there is no cross-correlation between coefficients on different angular
scale ℓ or different propagation direction m in the case of homogeneous and isotropic
fields.

The Limber equation is used for relating the fluctuation statistics of the 3d source
field to the fluctuation statistics of the projected observable. Both observables, the
iSW-temperature perturbation τ(θ) and the tracer density γ(θ) are derived as line of
sight projections from the source fields ϕ(χθ, χ) and δ(χθ, χ) with weighting functions
Wτ(χ) and Wγ(χ):

γ(θ) =

χH∫
0

dχWγ(χ)δ(χθ, χ) and τ(θ) =

χH∫
0

dχWτ(χ)ϕ(χθ, χ) (I.496)

The angular correlation function Cγγ(α) can be then related to the correlation of the
source field δ(θχ, χ):

Cγγ(α) =

χH∫
0

dχWγ(χ)

χH∫
0

dχ′ Wγ(χ′)
∫

dk k2P(k, χ, χ′)
∫
4π

dΩk exp(ik(x − x′)), (I.497)

with the spatial comoving coordinates x = (θχ, χ) and the solid angle element dΩk in
Fourier space. The power spectrum P(k, χ, χ′) follows from the Fourier transform of
the correlation function of the source field,

⟨γ(θχ, χ)γ∗(θ′χ′ , χ′)⟩ =
∫

d3k

(2π)3 P(k) exp(ik(x−x′)) =
∫

dkk2P(k)
∫
4π

dΩk exp(ik(x−x′))

(I.498)

In order to solve the angular integration, one can take advantage of the Rayleigh
expansion of a plane wave in terms of spherical waves:

exp(ikx) = 4π
∞∑
ℓ=0

iℓjℓ(kx)
+ℓ∑

m=−ℓ
Yℓm(k̂)Y∗ℓm(θ). (I.499)

The angular integration can be carried out while substituting the orthonormality
relation of the spherical harmonics,

∫
4π

dΩk exp(ik(x − x′)) =

(4π)2
∞∑
ℓ=0

jℓ(kχ)jℓ(kχ
′)

+ℓ∑
m=−ℓ

Yℓm(θ)Y∗ℓm(θ′) =

4π
∞∑
ℓ=0

jℓ(kχ)jℓ(kχ
′) (2ℓ + 1) Pℓ(cos α) (I.500)

where in the last step the addition theorem has been used, yielding
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Cγγ(α) = 4π

χH∫
0

dχWγ(χ)

χH∫
0

dχ′Wγ(χ′)
∫

dkk2P(k, χ, χ′)
∞∑
ℓ=0

jℓ(kχ)jℓ(kχ
′)(2ℓ+1)Pℓ(cos α)

(I.501)

Inverting the expression for the angular correlation function Cγγ(ℓ) by multiplying
both sides with Pℓ′ (cos α) and integrating over d(cos α) results in

Cγγ(ℓ) = (4π)2

χH∫
0

dχWγ(χ)

χH∫
0

dχ′ Wγ(χ′)
∫

dk k2P(k, χ, χ′)jℓ(kχ)jℓ(kχ
′) (I.502)

by using the orthonormality relation of the Legendre-polynomials. The expression
can be further simplified if P(k, χ, χ′) is slowly varying in comparison to the spherical
Bessel functions, i.e. if the angles involved are small, which corresponds to approx-
imating the sky as being flat. In this case P(k, χ, χ′) can be moved in front of the
dk-integration, which can then be carried out using the orthogonality relation of the
spherical Bessel functions,

∞∫
0

k2dk jℓ(kχ)jℓ(kχ
′) =

π

2χ2 δD(χ− χ′). (I.503)

We can approximately set P(k) ≃ P(ℓ/χ), giving the final result

Cγγ(ℓ) ≃
χH∫
0

dχ
χ2 W2

γ (χ)P(k = ℓ/χ, χ). (I.504)

A slightly better approximation to the correct result in spherical coordinates can be
obtained by replacing k = ℓ/χwith k = (ℓ + 1/2)/χ. The small-angle approximation
of the Limber eqn. (I.504) generally overestimates the angular power spectrum in
comparison to the correct solution in eqn. (I.502).

I.3 Cosmic microwave background anisotropies

The spectrum CTT(ℓ) of the CMB-fluctuations is given in Fig. 14.
Fig. 15 shows the size of the CMB photosphere from the moment of decoupling

until today, for three different ΛCDM cosmologies.

I.4 Secondary anisotropies in the cosmic microwave background

I.4.1 Gravitational lensing of the CMB

There is a very interesting gravitational lensing effect in the cosmic microwave
background: A typical lensing deflection that photons from the CMB experience
amounts to a few arcminutes, which is small compared to the typical scales on which
the temperatures in the cosmic microwave backgrounds vary, which is roughly on
the degree-scale. Therefore, one expects a small distortion of the CMB-fluctuation
pattern, as hot and cold patches are deformed by roughy a percent. There is no energy
input into the CMB by the gravitational lensing effect, if one assumes the gravitational
potentials to be static (which is a good approximation but which is ultimately flawed
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i.4. secondary anisotropies in the cosmic microwave background

because of the integrated Sachs-Wolfe effect). Lensing, being a gravitational effect, can
not differentiate between photons of different energy and is completely achromatic,
as well as perfectly conserving photon density, energy flux and spectral distribution.
Therefore, we expect that lensing conserves the Planck-distribution of the photons of
the CMB as a thermal source. Because the lensing effect only redistributes photons,
it could not generate structures in a completely isotropic CMB, contrarily, it needs
structures to work on.

In gravitational lensing in astronomy it is rarely the case that one can access the
unlensed situation, where the Solar eclipse of 1919 is a very notable exception. In
almost all other cases of gravitational lensing, one has to make an assumption about
the unlensed case in order to detect the gravitational lensing effect. Obviously, one
would like to make assumptions that are as weak as possible and generic from a
physical point of view. Gravitational lensing changes the statistical properties of the
cosmic microwave background and breaks statistical homogeneity as a symmetry.
With the assumption of a statistically homogeneous unlensed CMB one can quantify
the magnitude of the broken statistical symmetry and therefore measure the weak
lensing effect. It is practical to define a dimensionless amplitude T(θ) of the temper-
ature fluctuations T(θ) in the cosmic microwave background relative to the mean
temperature TCMB = 2.725 Kelvin,

T(θ) =
T(θ) − TCMB

TCMB
, (I.505)

Statistical homogeneity has a very interesting implication for the Fourier-modes
T(ℓ) of the temperature field T(θ). Defining

T(ℓ) =
∫

d2θ T(θ) exp(−iθℓ) ↔ T(θ) =
∫

d2ℓ

(2π)2 T(ℓ) exp(+iθℓ), (I.506)

one can ask the question how the Fourier-modes are correlated, if there is a nonzero
correlation in configuration space. In fact,

⟨T(ℓ)T(ℓ′)∗⟩ = (2π)2TD(ℓ − ℓ′)CTT(ℓ), (I.507)

with the Dirac-function TD,

TD(ℓ) =
∫

d2θ exp(+iθℓ). (I.508)

CTT(ℓ) is the spectrum of the temperature fluctuations and is given by

CTT(ℓ) =
∫

d2θ ξ(θ) exp(−iθℓ), (I.509)

where in the case of statistically isotropic fields the integration can be simplified
according to θℓ = θℓ cosϕℓ and d2θ = θdθdϕℓ by introducing polar coordinates.
Therefore, one observes uncorrelated Fourier-modes in the case of statistically ho-
mogeneous fields. As we will see, the signature of CMB-lensing is to change the
fluctuation statistics of the cosmic microwave background. In particular, it will make
a statistically homogeneous CMB statistically inhomogeneous and will generate corre-
lations ⟨T(ℓ)T(ℓ′)∗⟩ , 0 even if ℓ , ℓ′ . Under the assumption that the unlensed CMB
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has been statistically homogeneous, which is a weak assumption that is supported
by models of cosmic inflation, any measurement of these correlations would be an
indication for the gravitational lensing effect.

As the photons of the CMB propagate to us, they have to transverse the cosmic
large-scale structure and experience gravitational lensing. As they are deflected by
gravitational potentials, they seem to change their propagation direction: Instead
of measuring the temperature field T(θ) in the direction θ, the arrival direction is
changed to θ + α, where the deflection angle α is the gradient of the lensing potential
ψ(θ):

T(θ)→ T̂(θ) = T(θ + α) (I.510)

These deflections distort the pattern of hot and cold patches in the CMB, which can
be quantified in a statistical way. To this purpose, assuming that the deflections are
small compared to the angular size of structures in the microwave background, one
can expand the temperature field in a Taylor-series,

T̂(θ) = T(θ + α) = T(θ) +
∑
i

αi∂
iT +

1
2

∑
ij

αiαj∂
i∂jT + . . . . (I.511)

Computing a correlation function of the lensed temperature field yields

⟨T̂(θ)T̂(θ′)⟩ = ⟨T(θ + α)T(θ′ + α′)⟩ (I.512)

and consequently

= ⟨T(θ)T(θ′)⟩+ ∑
i

∑
k

⟨αi(θ)αk(θ′)⟩ × ⟨∂iT(θ)∂′kT(θ′)⟩+

2
∑
ij

⟨αi(θ)αj (θ)⟩ × ⟨∂2
ijT(θ)T(θ′)⟩ + . . . (I.513)

if one assumes that the deflection field is uncorrelated with the temperature field, and
that the distribution of the lensing deflection angle components are symmetric with
zero mean. Both assumptions are physically sensible, because the deflecting large-
scale structure responsible for the gravitational lensing effect is separated by a very
large distance from the CMB, and because the structures responsible for lensing do not
define a preferred direction. The two terms appearing as a correction to the unlensed
temperature fluctuations can be interpreted as a correlated deflection ⟨αi(θ)αk(θ′)⟩
where the lensing deflection αi(θ) at θ is not independent from the deflection αk(θ′) at
θ′ , and as an effect caused by a second-order deflection ⟨αi(θ)αj (θ)⟩ at a single point.
Especially the last effect can be visualised by imagining that CMB photons reaching
us are deflected by some amount into a random direction, leading to a blurring of the
CMB. In fact, the lensed CMB has less structure compared to the unlensed one, as the
blurring causes the contrast of structures to decrease.
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Transforming the Taylor-series to Fourier-space then yields

T̂(ℓ) = T(ℓ)+

i
∫

d2ℓ1

(2π)2

∑
i

αi(ℓ1)(ℓ − ℓ1)iT(ℓ − ℓ1)−

∫
d2ℓ1

(2π)2

∫
d2ℓ2

(2π)2

∑
ij

αi(ℓ1)αj (ℓ2)(ℓ − ℓ1 − ℓ2)i(ℓ − ℓ1 − ℓ2)jT(ℓ − ℓ1 − ℓ2) + . . . ,

(I.514)

applying the two properties of Fourier transforms, i.e. that products become convo-
lutions and that every derivative ∂i generates a prefactor iℓi . Furthermore, one can
replace the deflection angle α(ℓ) by the derivative −iℓψ(ℓ) of the lensing potential ψ.
Inspection of the last relationship shows that the lensed CMB temperature field is
given by the unlensed field, with a series of corrections that involve n-fold derivatives
of T, contracted with n factors of the lensing deflection field α.

Assembling a correlation function ⟨T̂(ℓ)T̂(ℓ′)∗⟩ of the lensed CMB then yields a
series of correction terms to the correlation function ⟨T(ℓ)T(ℓ′)∗⟩ of the unlensed
CMB. If one assumes that the structures that are responsible for gravitational lensing
are separated by a large distance from the structures that cause the temperature
fluctuations of the CMB, one can again factorise the mixed correlation functions

⟨αi(ℓ1)αj (ℓ2)T(ℓ − ℓ1 − ℓ2)T(ℓ′)⟩ = ⟨αi(ℓ1)αj (ℓ2)⟩ × ⟨T(ℓ − ℓ1 − ℓ2)T(ℓ′)⟩, (I.515)

and using the assumption, that the lensing deflection field is isotropic, implying that
the distributions of each of the components of α is symmetric with mean zero, sets
⟨αi⟩ = 0. Then, one obtains for the correlations of T̂ in Fourier space:

⟨T̂(ℓ)T̂(ℓ′)∗⟩ = ⟨T(ℓ)T(ℓ′)∗⟩

+
∫

d2ℓ1

(2π)2

∫
d2ℓ′1
(2π)2

∑
i

∑
k

(ℓ − ℓ1)i(ℓ
′ − ℓ′1)k⟨αi(ℓ1)αk(ℓ′1)⟩ × ⟨T(ℓ − ℓ1)T(ℓ′ − ℓ′1)⟩

+2
∫

d2ℓ1

(2π)2

∫
d2ℓ2

(2π)2

∑
ij

(ℓ−ℓ1−ℓ2)i(ℓ−ℓ1−ℓ2)j⟨αi(ℓ1)αj (ℓ2)⟩×⟨T(ℓ−ℓ1−ℓ2)T(ℓ′)⟩.

(I.516)

The two correction terms that appear at second order have a clear physical inter-
pretation. They involve the correlations ⟨αi(ℓ1)αk(ℓ′1)⟩ and ⟨αi(ℓ1)αj(ℓ2)⟩, showing
that the correlations of the temperature field in fact get changed due to correlations
in the deflection field, which can both be traced back to the spectrum Cαα(ℓ). Both
correction terms introduce correlations between ℓ and ℓ′ as an expression of breaking
of statistical homogeneity. The effect is proportional to Cαα(ℓ), such that the lensing
effect can be measured in a quantitative way.

I.4.2 Thermal and kinetic Sunyaev-Zel’dovich effect

Of all secondary CMB-anisotropies, the thermal Sunyaev-Zel’dovich effect is the most
subtle: There is a redistribution of the CMB-photons in energy in scattering processes
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Figure 16: Spectral modulation of the CMB due to the thermal and kinetic Sunyaev-
Zel’dovich effects

with electrons in galaxy clusters, as illustrated by Fig. 16. Essentially, Compton-
collisions between the CMB-photons and electrons of the intra-cluster medium put
the CMB as a very cold reservoir into thermal contact with the intra-cluster medium
of a galaxy cluster as a very hot reservoir. Consequently, there will be a flow of
thermal energy from the hot electron gas to the cold photon gas, causing a spectral
distortion of the CMB: This is illustrated in Fig. 16, where the peculiar modulation of
the CMB-spectrum if it is observed through a galaxy cluster is depicted. There is a
secondary Sunyaev-Zel’dovich effect caused by the bulk motion of the cluster itself:
In the cluster’s rest frame, the CMB appears anisotropic, and likewise the radiation
pressure exerted on it through Compton collisions, causing effectively the cluster to
be slowed down until it comes to rest in a frame where the CMB appears isotropic.
The kinetic energy of the cluster is transfered to the CMB, and therefore one perceives
photons of higher energy from the direction of a cluster that is approaching the
observer.

I.4.3 Integrated Sachs-Wolfe effect

The integrated Sachs-Wolfe effect is essentially a gravitational lensing effect: In the
same way as spatial gradients ∂iΦ of the gravitational potential Φ have an influence
on the direction of propagation ki of the photons, the time derivative ∂tΦ changes
the frequency (or colour) of photon. Again, working with a Newtonian perturbation
on a flat, Minkowksian background

ds2 = (ηµν + hµν) dxµdxν = −
(
1 +

2Φ
c2

)
dη2 +

(
1 − 2Φ

c2

)
dx2 (I.517)

one can write for the metric gµν = ηµν + hµν with
∣∣∣hµν∣∣∣ ≪ 1 in this preferred frame.

Photons follow null-geodesics defined by kµk
µ = 0 where kµ = (k0, k)t as the wave

vector is tangent to xµ(λ); it is parameterised by an affine parameter λ and for con-
venience normalised to k0 = 1 and k2 = 1. Again, it is sufficient to consider a static
background because of the conformal invariance of null-geodesics, which do not
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change under conformal transformations of the type gµν → a2gµ of the metric gµν.
Effectively, this amounts to ignoring cosmological redshifts while focusing on the
gravitational interaction.

The geodesic equation, which describes the change δkα in kα due to gravitational
interaction now reads:

d
dλ
δkα = −δΓ αµν kµkν (I.518)

where the Christoffel symbol of the weakly perturbed metric transforming the
time-component of kα is given by

δΓ tµν = −1
2

[
∂νhµt + ∂µhνt − ∂thµν

]
. (I.519)

In this approximation of δΓ tµν , the multiplication with the metric gµν was dropped
because it would give rise to terms quadratic in the perturbation hµν.

The first two terms give rise to the conventional Sachs-Wolfe effect, and the last
term with the time derivative ∂thµν of the metric perturbation hµν causes the iSW-
effect. Substitution into the geodesic equation yields:

d
dλ
δkt = −1

2
∂thµν k

µkν (I.520)

The energy shift δk0 of a photon is given by subsequent integration,

δk0 =
1
c2

∫
dλ

[
(kt)2 + k2

] ∂Φ
∂η

=
2
c2

∫
dλ

∂Φ
∂η

(I.521)

such that the energy perturbation is a measure of the integrated growth rate along
the line of sight. Curiously, the iSW-effect is a direct probe of dark energy, as ∂Φ/∂η
vanishes in flat cosmologies with only matter, Ωm = 1.

The integral should be evaluated along the photon geodesic, but one assumes
Born’s approximation, such that the energy shift is obtained perturbatively while the
geodesic remains characterised by the conditions (k0)2 = 1 and k2 = 1 mentioned
above. In a cosmological context, the photon geodesic ds2 = 0 is given by dχ = cdt/a =
cdηwith the conformal time η such that η is would be the natural choice for the affine
parameter λ in the comoving frame. η and λ are linearly related such that their ratio
can be absorbed in the normalisation of k. As a purely gravitational interaction, the
iSW-effect conserves the spectral distribution of photons: Due to the equivalence
principle, gravity treats all photons in the same way, which is true for the iSW-effect
and lensing alike.

I.5 Weak gravitational lensing by the large-scale structure

In Sect. H.7.3 we have already derived the deflection angle α̂ in gravitational light
deflection

α̂i = − 2
c2

∫
dλ ∂iΦ (I.522)

into the direction of the gradients of Φ perpendicular to the line of sight. To be exact,
α̂ is the change in direction between the spatial wave vector entering and leaving the
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gravitational potential, but not yet the change in position as observed on the sky. If a
source is situated at a comoving distance χs and the gravitational potential acting as
the light deflector is at a comoving distance χ, the change in position αi of the source
being at position θi without lensing is given by

α = θ′ − θ (I.523)

so that the source appears at θ′ . Writing θ = x/χs, θ′ = (x + d)/χ2 and α̂ = d/(χs − χ)
suggests that the angular displacement on the sky generated by lensing is

α =
(
1 − χ

χs

)
α̂ (I.524)

where α̂ is computable with eqn. I.522. With comoving distance as the integration
variable and by rewriting the spatial as an angular derivative χ∂i = ∂θ we get

αi = ∂i
θψ with ψ = 2

∫
dχ

χs − χ
χsχ

Φ

c2 (I.525)

defining the lensing potential ψ.
In this entire discussion it would be important to realise that the change in

propagation direction α̂i is only defined because the lens is embedded in a flat
spacetime (or at least a conformally flat spacetime). Then, there is a parallel transport
around the lens through essentially flat space as a reference wave vector, to which
one can compare the actual wave vector that has been properly parallel transported
through the gravitational potential along the physical trajectory, defining a deflection
angle.

Clearly, one needs to make an assumption about the unlensed situation: Generally
one does not know the positions of objects without lensing (Eddington’s Solar eclipse
from 1919 being a very notable exception). Instead, one could try to observe a differ-
ential deflection across the image of a distant object like galaxy: If the deflection field
depends on position, there is such a differential deflection and one observes a change
in shape of the image. Similarly, one could invoke Raychaudhuri’s equation, as the
light bundle of the galaxy forms a geodesic congruence. Then, changes in shape and
size of the light bundle are related to the tidal gravitational fields, or relativistically
speaking, to the curvature experienced by the light bundle. With this idea, if the
observable are galaxy shapes, a weak assumption about the unlensed situation would
be uncorrelated shapes, which would get coherently distorted, as light bundles from
neighbouring galaxies would experience similar tidal distortions.

For changes in shape and size to emerge one needs variations of the deflection
field αi across the image of a galaxy, and as αi is defined as the gradient of the lensing
potential ψ, the changes are induces by second derivatives ψij = ∂i∂jψ of ψ. The
index pair ij runs over x and y and as partial derivatives interchange, ψij is a real
symmetric 2 × 2 matrix. A suitable basis system are the real-valued Pauli matrices,

ψij =
∑
n

anσ
(n)
ij with an =

1
2

∑
ij

σ
(n)
ji Ψ ij (I.526)
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The role of the three different components of ψij = ∂i∂jΨ are:

• convergence κ = a0 = 1
2 (∂i∂jψδij ) = ∆ψ/2, which changes the angular size of a

galaxy isotropically, i.e. by the same amount in the x and y-direction

• shear γ+ = a1 = 1
2σ

(1)
ij ψij = 1

2 (∂2
xψ − ∂2

yψ), which elongates the image in x-
direction while compressing it in the y-direction

• shear γ× = a3 = 1
2σ

(3)
ij ψij = ∂x∂yψ, which stretches an image into the (x + y)-

direction while compressing in the (x − y)-direction

The two components of shear are often combined into a single complex number
γ = γ+ + iγ×.

The convergence κ provides a mapping of the matter density:

κ =
1
2
∆θΨ = ∆θ

χs∫
0

dχ
χs − χ
χsχ

Φ

c2 =

χs∫
0

dχ(χs − χ)
χ

χs
∆x

Φ

c2 (I.527)

using ∆θ = χ2∆x and the small angle approximation x = θχ. Substituting the Poisson-
equation

∆
Φ

c2 =
3Ωm

2χ2
H

δ

a
(I.528)

yields

κ =
3Ωm

2χ2
H

χs∫
0

dχ
χs − χ
χs

χ
D+

a
δ0 (I.529)

Statistically, line of sight expressions like κ =
χs∫
0

dχW(χ)δ can be used in Limber’s

equation to give the angular spectrum of the shear or convergence fields,

Cκκ(ℓ) =

χs∫
0

dχ
χ2 W(χ)2 P(k = ℓ/χ) (I.530)

as a function of the spectrum P(k) of the source field, in our case δ. The spectrum
Cγγ(ℓ) is identical to that of κ.

A quantification of shape could be the ellipticity ϵmeasured in terms of the second
moments of the brightness distribution I(θ)

Qij =
∫

d2θ I(θ) θiθj (I.531)

from which one defines the ellipticity

ϵ =
Qxx − Qyy

Qxx + Qyy
+ 2i

Qxy

Qxx + Qyy
(I.532)
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Figure 17: Tomographic spectra Cγγ(ℓ) of the weak lensing shear

Similarly to lensing shear γ, ellipticity is a tensor with two components, and has the
property to be invariant under rotations of π, as one can easily imagine by rotating
an actual ellipse, and there is a practical notational advantage to combine both
components into a complex ellipticity. In the weak lensing limit, the shear γ operates
on ellipticity according to

ϵ→ ϵ + γ (I.533)

such that an estimate of correlation functions with the observable ϵ provides an
estimate of γ, if there is no intrinsic correlation between the ellipticities without
lensing. The angular spectrum Cγγ(ℓ) is shown in Fig. 17, for a so-called tomographic
measurement, where the galaxies are divided up in redshift intervals.

I.6 Bayes-inference in cosmology

Science knows two types of truths: empirical truths correspond to reproducible,
objective observations, and logical truths to statements that are derived from axioms
in a mathematically consistent way. The way in which science operates is by making
predictions for theories, and comparing them to observations, possibly discarding
the theories in the process: As such, science is a self-correcting process guided by
deduction and inference. Here, inference refers to deriving statistical statements
about model parameters from data, or about the validity of entire model classes. The
issue in this is that Nature provides data only with an added experimental error or
by providing only finite amounts of data with a restricted statistical power: After
all, the Hubble volume is finite. Therefore, an observation can not tell in an absolute
sense if a theory is true, rather, it provides confidence regions and statistical error
estimates, and only allows to differentiate theories that differ by significantly more
than the inherent error of the measurement.

One might wonder how randomness in a measurement comes about: but after
all, it is simply the result of all variables in the measurement process that can not
be controlled in the experiment, because the experimental setup itself is perfectly
predictable by the laws of Nature, as it is clearly part of Nature and does not exist in
a transcendent way, and a better experiment will essentially allow a better control,
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resulting in reduced errors. Recording a set of values yi in a measurement that are
Gaussian distributed with error σi allows to compute the likelihood L({yi} |θµ), here
with the simplifying assumption that all data points are statistically independent,

L({yi} |θµ) ∝
∏
i

exp

−1
2

(
yi − y(xi)

σi

)2 = exp

−1
2

∑
i

(
yi − y(xi)

σi

)2
 (I.534)

that one would make the measurement if the values result from a theoretial model
y(x) with model parameters θµ. A likelihood is, for all intents and purposes, a prob-
ability as it is a number obeying Kolmogorov’s axioms. But there is an important
difference in perspective: Usually, one imagines in a probability that there is a fixed
random experiment that is able to produce outcomes at different probability, but in a
likelihood there is a fixed outcome (the data values yi) for which one considers now
variable models y(x) that differ by the value of their model parameters θµ. For the
Gaussian error process as in eqn. I.534 it is possible to work with the χ2-functional
instead, which is linked to the likelihood by

L({yi} |θµ) ∝ exp

−χ2(θµ)

2

 with χ2 = −
∑
i

(
yi − y(xi)

σi

)2

(I.535)

Therefore, the likelihood is a function of the model parameters and depends of
course on the actual data set. Now, one suspects the true model parameters in the
value that maximises L (or minimises χ2), as the data that one has is most easily
generated by the true model: This is exactly the principle of maximum likelihood. At
the same time, eqn. I.535 shows that the origin of least squares-rule originates from
the Gaussian error in the data.

But there is a very important catch: The likelihood L({yi} |θµ) is able to quantify
how probable it would have been to observe the data for a given choice of θµ, but what
one actually would like to know is the distribution p(θµ| {yi}) of the model parameters
given the observation of the data points. For interchanging the random variable and
the condition one needs to use the Bayes-theorem:

p(θµ| {yi}) =
L({yi} |θµ)

p({yi})
p(θµ) (I.536)

In Bayes’ reasoning, the posterior distribution p(θµ| {yi}), i.e. the distribution of the
model parameters taking the data into account is given by the likelihood L({yi} |θµ),
for which one needs the model to predict the data and the knowledge on the error
process, and the prior distribution p(θµ), which reflects the uncertainty in the model
parameters before one has carried out the experiment, normalised by the evidence
p({yi}),

p({yi}) =
∫

dnθL({yi} |θµ) p(θµ) (I.537)

which is the probability to obtain the data in the first place given the prior infor-
mation. If a new experiment is carried out, the posterior distribution from the last
experiment would serve as a prior for the next experiment.
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Figure 18: Direct gridded evaluation of the supernova likelihood in the parameters Ωm and
the dark energy equation of state w.

As one essentially multiplies peaked distributions in this process, the resulting
distribution will be more peaked as the original ones, indicating that the uncertainty
on a model parameter has been reduced by including more data.

Even though the posterior or the likelihood are computable for a given model
y(x) parameterised by θµ and for a given data set {yi}, this is in practise numerically
very challenging for highly-dimensional parameter spaces. Instead, one uses the
Metropolis-Hastings algorithm (or more efficient variants of it) to generate samples
θµ that are distributed according to the posterior distribution p(θµ| {yi}).

In the Metropolis-Hastings algorithm one performs a random walk in parameter
space on a potential given by the logarithmic likelihood (or the sum of logarithmic
likelihood and logarithmic prior, those quantities exist for distributions from the
exponential family). For evaluating the random walk, one takes a step from θµ
to θµ + δµ, where δµ is a random vector from the so-called proposal distribution.
Comparing L(θµ) with L(θµ + δµ) with the logarithmic likelihood ratio

r = ln
L(θµ + δµ)

L(θµ)
(I.538)

gives two possible options: Either r > 0, in which case one allows the process to jump
θµ → θµ + δµ, as the new point is a better explanation for the data. Or, r < 0, in which
one accepts the step to a point with lower likelihood only in exp(r) of all cases. In this
way, the samples θµ will follow the distribution L(θµ). The comparison between the
gridded evaluation of a supernova likelihood in Fig. 18 with the Metropolis-Hastings
evaluated result in Fig. 19 at a fraction of the computational cost is striking.
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Figure 19: Samples (n = 3 × 103) from the supernova likelihood in the parameters Ωm and
w. The colour indicates the number of the sample resulting from the Metropolis-Hastings
random walk.
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and Markus Pössel for lecturing with me, and Robert Reischke, Elena Sellentin, Sarah
Konrad, Hans-Martin Rieser, Maximilian Düll and Carsten Littek for accompanying
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The lecture notes give an overview of modern cosmology: After 
introducing the necessary concepts from general relativity, the 
FLRW-class of cosmological models is discussed, with emphasis on 
dark energy. Cosmic structure formation, the necessity of dark matter 
and the interplay between statistics and nonlinear fluid mechanics 
are treated in detail. The physics behind cosmological observations 
that have led to the standard model of cosmology is explained, 
in particular supernovae, the cosmic microwave background and 
gravitational lensing.
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