
I gravity from a variational principle

I.1 Variational principles for particles and fields

Variational principles play a huge role in theoretical physics, and only in the context of
relativity becomes their true nature apparent: The Lagrange-function L is composed
of invariants, and the Euler-Lagrange-equation carrying out the variation injects
coordinates and generates a covariant equation of motion. There are fundamental
properties of the Lagrange-function L, for instance its convexity which makes sure
that a global minimum for the variation exists and that the Legendre transform is well-
defined, ultimately yielding the Hamilton-function H including possible conserved
conjugate momenta.

While Hamilton’s principle δS = 0 is straightforward to interpret for the motion of
a particle as the arc length through spacetime, an analogous interpretation for fields
is a bit more involved: After all, the field equation establishes a relation between
the geometry of the field and the strength of the amplitudes and the source, so the
variation is effectively searching among all field configurations for the single one that
minimises the action. It is a curious property that vacuum solutions provide typically
a lower bound on the action, for instance in electrodynamics: The Maxwell-action S
is defined through the invariant Frobenius norm of Fαβ,

S =
1
4

∫
d4x

√
−detη ηαµ ηβν FαβFµν (I.570)

integrated over spacetime, where we already introduced the covolume
√
−detη to

make d4x invariant under coordinate transforms. For vacuum solutions such as plane
waves ηαµ ηβν FαβFµν ∝ EiEi −BiBi = 0 because for a wave the absolute values of Ei and
Bi are equal. Incidentially, the (only) other quadratic invariant ηαµ ηβν F̃αβFµν ∝ EiBi =
0 as well, as the electric and magnetic fields are always perpendicular. Starting with
squares of first derivatives of the potentials makes sure that one obtains a linear field
equation which fulfils the superposition principle and excluding higher derivatives
makes sure that the Ostrogradsky-theorem is respected and the Hamilton-function
bounded from below.

As Lagrange-functions only ever appear as an integral in the action and as the
Hamilton-principle makes a statement only about the action, any reformulation of
the Lagrange-function by integration is permissible and should yield exactly the same
equations of motion. For instance, a point particle would have an equivalent action if
one writes

S =
∫

dt L =
∫

dt
1
2
δij ẋ

i ẋj − Φ(x) = −
∫

dt
1
2
δij ẍ

i ẋj + Φ(x) (I.571)

if the boundary term arising in the integration by parts is neglected. But of course
this form of the action calls for a generalised Euler-Lagrange equation that is capable
of dealing with second derivatives ẍi of the trajectory xi(t). In fact, the variation for
L(xi , ẋi , ẍi) is given by

δS =
∫

dt
∂L
∂xi

δxi +
∂L
∂ẋi

δẋi +
∂L
∂ẍi

δẍi =
∫

dt
( ∂L
∂xi
− d

dt
∂L
∂ẋi

+
d2

dt2
∂L
∂ẍj

)
δxj = 0 (I.572)
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i. gravity from a variational principle

with a single integration for the second and a double integration for the third term.
In fact, this new Euler-Lagrange equation

∂L
∂xi
− d

dt
∂L
∂ẋi

+
d2

dt2
∂L
∂ẍj

= 0 (I.573)

works perfectly: L = 1
2xẍ + Φ(x) has the derivatives

∂L
∂x

=
ẍ
2

+ ∂Φ,
∂L
∂ẋ

= 0,
∂L
∂ẍ

=
x
2
, and

d2

dt2
∂L
∂ẍ

=
ẍ
2

(I.574)

which get assembled in the Euler-Lagrange equation to ẍi + ∂iΦ = 0.
Almost exactly the same argument holds for a scalar field on a Euclidean back-

ground: The Lagrange-density L = 1/2 δij∂iΦ∂jΦ − V(Φ) can be integrated by parts
to yield the equivalent form,

S =
∫

d3x L =
∫

d3x
1
2
δij ∂iΦ ∂jΦ = −

∫
d3x

1
2
Φδij ∂i∂jΦ· = −

∫
d3x :

1
2
Φ∆Φ

(I.575)

where again a generalised Euler-Lagrange equation is required for the variation
δS = 0,

δS =
∫

d3x
∂L
∂Φ

δΦ +
∂L

∂∂iΦ
δ∂iΦ +

∂L
∂∂i∂jΦ

δ∂i∂jΦ (I.576)

Single and double integration by parts while neglecting the boundary terms, where
the variation is zero, yields

δS =
∫

d3x
(∂L
∂Φ
− ∂i

∂L
∂∂iΦ

+ ∂i∂j
∂L

∂∂i∂jΦ

)
δΦ = 0 (I.577)

from which one can read off the suitable second-order Euler-Lagrange equation.
Going through the example again recovers conventional Poisson-equation ∆Φ =
dV/dΦ = 4πGρ for V(φ) = 4πGρΦ.

Things get a bit more interesting with the Maxwell-field: The variation of the field
can not be, in general, set to zero on the surface of a spacetime volume, because for
instance a plane wave as a perfectly valid solution to the field equation exists for
arbitrarily early and late times. But there is the freedom to pick a gauge, and in fact
the surface terms can be set to zero by demanding the Lorenz-gauge ∂µAµ = 0 to be
valid.

S =
∫

d4x
√−η · ηαµηβν FαβFµν = . . . = −

∫
d4x
√−η · 2 · ηβνAβ□ Aν (I.578)

with the d’Alembert-operator □ = ηαµ∂α∂µ. The generalised Euler-Lagrange equation
needed to deal with the second-order action is

δS =
∫

d4x
√−η ·

( ∂L
∂Aα

δAα +
L

∂∂µAα

δ∂µAα +
∂L

∂∂µ∂νAα

δ∂µ∂νAα

)
(I.579)

with δ∂µAα = ∂µδAα and δ∂µ∂νAα = ∂µ∂νδAα. Then, integration by parts suggests
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i.2. variational principles on manifolds

S =
∫

d4x
√−η

( ∂L
∂Aα

− ∂µ
∂L

∂∂µAα

+ ∂µ∂ν
∂L

∂∂µ∂νAα

)
δAα = 0 (I.580)

where again Hamilton’s principle determines the Euler-Lagrange equation. Sub-
stitution yields the perfectly normal vacuum field equation for the potential Aα

∂µ∂ν
∂L

∂∂µ∂νΦ
= □ Aα = ηµν ∂µ∂ν Aα = 0 (I.581)

in Lorenz-gauge. In summary, there are possible reformulations of the Lagrange-
densities involving the product of the fields and its second derivative (please notice
the locality here!), which give exactly the same field equation after variation. Techni-
cally, there are subtleties related to the boundary terms of the integration, which can
be set to zero in certain gauges, for instance by assuming Lorenz-gauge gµν∇µAν = 0
on the boundary for the Maxwell-field Aµ.

I.2 Variational principles on manifolds

Would it be possible to formulate a variational principle on a manifold? Clearly yes,
but we would have to use the covariant derivative ∇µ instead of the partial derivative
∂µ as a general metric gµν as a globally Cartesian coordinate choice would not be
possible. Let’s try this with a scalar field first: Clearly, the action should be invariant
under coordinate changes with a volume element d4x

√−g, and the Lagrange-function
should depend on φ, the covariant derivative ∇µφ and the metric gµν that mediates
the geometry of the manifold:

S =
∫
V

d4x
√−g · L

(
φ,∇µ φ, gµν

)
, (I.582)

consisting of generally invariant scalars built from φ and ∇µφ. Hamilton’s principle
δS = would then imply for the variation that

δS =
∫
V

d4x
√−g

( ∂L
∂Ψ

δφ+
∂L

∂∇µφ
δ∇µφ

)
= 0 (I.583)

We would continue with the usual δ∇µφ = ∇µδφ but reach an impasse when it comes
to the integration by parts, as there is the covariant ∇µ instead of the partial ∂µ: We
need a generalisation of the Gauß-theorem for manifolds:∫

V

d4x
√−g · ∇µυµ =

∫
∂V

dAµ

√
|γ| υµ (I.584)

with the induced metric γ on the boundary ∂V,

√−g
∣∣∣
∂V
≡

√
|γ| (I.585)

The covariant divergence can be written as a conventional partial divergence with
the covolume, such that
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i. gravity from a variational principle

∫
V

d4x
√−g 1

√
g
∂µ

(√−g · υµ) =
∫
V

d4x ∂µ
(√−g · υµ) =

∫
∂V

dAµ

√
|γ| · υµ (I.586)

With these tools, one can write:∫
V

d4x
√−g ∇µ

( ∂L
∂∇µφ

· δφ
)

=
∫
∂V

dAµ

√∣∣∣γ∣∣∣ · ( ∂L
∂∇µφ

δφ
)

(I.587)

Considering
∂L

∂∇µφ
· δφ ≡ υµ (I.588)

as the vector field υµ, the product rule suggests that

=
∫
V

d4x
√−g ∇µ

∂L
∂∇µφ

· δφ+
∫

d4x
√−g · ∂L

∂∇µφ
· ∇µ δφ (I.589)

so that finally∫
V

d4x
√−g ∂L

∂∇µφ
· ∇µ δφ = −

∫
V

d4x
√−g ∇µ

∂L
∂∇µφ

· δφ (I.590)

and the Euler-Lagrange equation on a manifold has exactly the same form as the
conventional one, with a ∇µ replacing the ∂µ,

∇µ
∂L

∂∇µφ
=

∂L
∂φ

(I.591)

I.3 Gauge transformations on manifolds and source terms

Clearly, coordinate transformations and a nontrivial geometry can be dealt with as
discussed in the previous chapter, but what about gauge transformations? Writing

L → L + ∇µ Qµ(φ) (I.592)

and having the transformation generated by Qµ would imply that S becomes

S→ S +
∫
V

d4x
√−g ∇µ Qµ (I.593)

with the variation δS

δS→ δS +
∫
V

d4x
√−g ∇µ δQµ = δS +

∫
V

d4x
√−g ∇µ

(∂Qµ

∂φ
δφ

)
(I.594)
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i.3. gauge transformations on manifolds and source terms

Clearly, invariance is only given if∫
V

d4x
√−g ∇µ

(∂Q
∂φ

δφ
)

=
∫
∂V

dAµ ·
√
|γ| · ∂Qµ

∂φ
δφ = 0 (I.595)

implying that the variation of the fields δφ = 0 is valid on the boundary ∂V.
Let’s look at Maxwell electrodynamics as an intuitive example. Acting on the

Lagrange-density

L =
1
4
gαµgβν FαβFµν + +gαβ Aα ȷβ (I.596)

with a gauge transformation Aα → Aα+∇αχwith a gauge function χ does not change
the field tensor Fαβ: Formally it transitions to

Fαβ = ∇αAβ − ∇βAα → Fαβ +
(
∇α∇β − ∇β∇α

)
χ = Fαβ (I.597)

but the additional term is zero as a consequence of the torsion-free condition Γ µαβ =

Γ
µ

βα , making
(
∇α∇β − ∇β∇α

)
χ =

(
∂α∂β − ∂β∂α

)
χ = 0. That implies that the gauge-

transformed Lagrange-density becomes:

L =
1
4
gαµgβν FαβFµν + gαβAαȷβ + gαβ ∇α χ · ȷβ (I.598)

with gαβ ∇α χ · ȷβ being an additional term. This term, however, is necessarily equiva-
lent to∫

V

d4x
√−g gαβ∇αχ·ȷβ =

∫
V

d4x
√−g gαβ∇α

[
χ·ȷβ

]
−
∫
V

d4x
√−gχ·gαβ∇α ȷβ = 0 (I.599)

where the first term vanishes as a boundary term and the second vanishes if charge
is covariantly conserved, gαβ ∇α ȷβ = 0.

The issue does not arise in the homogeneous Maxwell-equations. There, the
covariant generalisation

gαµ ∇α F̃µν = 0 (I.600)

of the Bianchi identity
∇α Fµν + ∇µ Fνα + ∇ν Fαµ = 0 (I.601)

with the dual tensor F̃αβ is automatically gauge-independent, as Fαβ and F̃αβ do not
change under gauge transformations. The relation between the two are

F̃αβ = −1
2
ϵαβµν Fµν and Fµν = +

1
2
ϵµναβ F̃αβ (I.602)

so that both become auto-dual, ˜̃Fαβ = Fαβ,

˜̃Fαβ = −1
2
ϵαβµν F̃µν = −1

4
ϵαβµν ϵ

µνγδ Fγδ = Fαβ with ϵαβµνϵ
µνγδ = −2!2! ·δγα δδβ (I.603)
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i. gravity from a variational principle

I.4 Invariant volume elements

The integration measure for volumes needs to be independent of the coordinate
choice. The transformation changes vectors according to

dxµ =
∂xµ

∂x′µ
dx′ν (I.604)

but clearly that coordinate change implies for the volume element:

dnx = det
( ∂xµ
∂x′ν

)
dnx′ (I.605)

with the functional determinant as a prefactor. At the same time, the metric trans-
forms like a rank-2 tensor,

ds2 = gµν dxµdxν = gµν
∂xµ

∂x′α
∂xν

∂x′β
dx′α dx′β = g ′αβ dx′αdx′β (I.606)

i.e. inverse to the vector and with two powers of the Jacobian for the determinant of
the metric (as the line element is invariant):

det(g ′αβ) = det(gµν) ·
(
det

( ∂xµ
∂x′ν

))2

(I.607)

implying the definition of an invariant volume element as

dnx
√−g → dnx′ · det J ·

√
−g ′√

(det J)2
= dnx′

√
−g ′ (I.608)

with the functional determinant J =
(
∂xµ

∂x′ν

)
.

It is important to realise that
√−g is a density, not a scalar, as dnx

√−g is scalar
and therefore invariant under coordinate transformations. In particular,

∇µ
√−g =

−1
2
√−g

∇µg =
1

2
√−g

∇µ
(

exp tr ln gαβ
)

=

−1
2
√−g

g · tr g−1 · ∇µ g =
1
2
√−g · gαβ ∇µ gαβ = 0 (I.609)

as a consequence of metric compatibility of ∇µ; but it is the case that ∇µ
√−g , ∂µ

√−g
because of the missing scalar property of

√−g: The covolume is a density rather than
a scalar, and the reduction of the covariant derivative ∇µφ = ∂µφ for scalar fields is
not applicable for

√−g.

I.5 Einstein-Hilbert: gravity from a variational principle

Up to this point we postulated the gravitational field equation and convinced our-
selves that it had properties desirable in a field equation. A variational principle
would require the construction of an action for the metric
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i.5. einstein-hilbert: gravity from a variational principle

S =
∫

d4x
√−g L

(
gαβ,∇µ gαβ, ∇µ∇νgαβ

)
(I.610)

composed of invariants such that after variation a covariant field equation is obtained.
The Lagrange-density can in principle depend on the metric gαβ as the dynamical
field itself and its first and second derivatives. There, ∇µ gαβ is impossible to use
as it always vanishes due to metric compatibility, so ∂µ gαβ or Γ µαβ would be better
alternatives, but we have already argued that the gravitational field should rather
be contained in the second than the first derivatives of the metric: According to the
equivalence principle, first derivatives would automatically be zero in a freely falling
frame.

As invariants containing second derivatives, the Ricci-scalar R = gαµgβν Rαβµν
or the Kretschmann-scalar K = gαµgβνgγρgδσ RαβγδRµνρσ would be possible choices,
although we would prefer R from the intuition on the contraction of freely falling
clouds of point particles caused by Ricci-curvature. Perhaps a bit surprisingly, a
straightforward constant Λ would be fine, too.

Postulating the Einstein-Hilbert-Lagrange density as being the simplest, local
invariant second-order action

S =
∫

d4x
√−g

(
R − 2Λ

)
(I.611)

one can in fact derive the gravitational field equation through variation of the metric,
gµν → gµν + δgµν. In the Ricci-scalar R = gµνRµν, however, there is the inverse metric
gµν so actually one needs to vary with respect to that quantity, too. The two variations
are related by

δ
(
δ
µ
ν

)
= δ

(
gµαgαν

)
= δgµα · gαν + gµα · δgαν = 0 (I.612)

where one can isolate δµα by contraction with gνβ,

δgµα gαν · gνβ = δgµβ = −gνβgµα δgαν (I.613)

with an additional minus-sign appearing.
Let’s ignore the cosmological constant for a second, Λ = 0. Then, the variation δS

of S becomes

δS =
∫

d4x
[
δ
√−g · R +

√−g · δgµν · Rµν +
√−g · gµν δRµν

]
(I.614)

which requires a relation between δ
√−g and δgµν as well as between δRµν and δgµν,

while the second term is already in good shape, being directly proportional to δgµν.
The variation of the covolume is done by

δ
√−g =

1
2
√−g

· δg =
1

2
√−g

· g · gµν δgµν = −1
2
√−g · gµν δgµν (I.615)

keeping in mind that ln g = ln det gµν = tr ln gµν, such that g = exp tr ln gµν. δ acts
like a derivative, so that g is reproduced as the derivative of the exponential, the
trace is linear and the derivative of a matrix valued logarithm is given by the matrix
inverse, multiplied with the internal derivative. Switching from δgµν to δgµν then
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i. gravity from a variational principle

introduces yet another minus sign. Collecting all results so far gives the intermediate
formula

δS =
∫

d4x
√−g ·

(
Rµν −

R
2
gµν

)
δgµν +

∫
d4x
√−g δRµν g

µν → 0 (I.616)

which is already very reminiscent of the field equation if Hamilton’s principle δS = 0
is assumed, if only the last term was zero.

For continuing one needs the Palatini-identity, which relates the variation of the
Ricci-tensor to covariant derivatives of the varied Christoffel-symbols, which I guess
merits a few words of explanation. The Riemann-curvature Rαβµν is in general a
function of Γ αµν and its derivatives ∂βΓ

α
µν , as suggested by parallel transport. In

locally Cartesian coordinates Γ αµν = 0 as in these coordinates partial derivatives of
the metric vanish, but ∂βΓ αµν are not necessarily zero. That implies that the Riemann-
curvature only depends on the derivatives of the Christoffel-symbols but not on
the squares. Secondly, the variation δΓ αµν of the Christoffel-symbols is a tensor, as
the non-tensorial contributions drop out. And thirdly, ∇µ = δµ in locally Cartesian
coordinates, as Γ αµν = 0.

Putting everything together lets us write for the Riemann-tensor

δRαβµν = ∂µ δΓ
α
βν − ∂ν δΓ

α
βµ = ∇µ δΓ αβν − ∇ δΓ

α
βµ (I.617)

and consequently for the Ricci-tensor

δRβν = ∇µ δΓ
µ

βν − ∇ν δΓ
µ

βµ (I.618)

which is the sought after Palatini-identity. Inspecting the surplus term of the Einstein-
Hilbert action∫

d4x
√−g · δRµν · gµν =

∫
d4x
√−g gβν

[
∇µ δΓ

µ

βν − ∇ν δΓ
µ

βµ

]
(I.619)

shows that both terms arising due to the Palatini-action are in fact covariant diver-
gences, which would vanish when converted into surface integrals.

The cosmological constant Λ requires only the variation of the covolume in
S =

∫
d4x
√−g · (2Λ), such that one gets:

δS =
∫

d4x δ
√−g Λ =

∫
d4x
√−g ·

(
− Λgµν

)
· δgµν (I.620)

Finally, one finds that the variation of the Einstein-Hilbert-Lagrange density

S =
∫

d4x
√−g

(
R − 2Λ) (I.621)

in fact recovers the gravitational field equation (in vacuum)

Rµν −
R
2
gµν + Λgµν = 0 (I.622)
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i.6. palatini-variation: metric gµν and connection Γ αµν

Let’s have a quick look at the non-relativistic limit of the Einstein-Hilbert-Lagrange
density. Analogous pairs of quantities are Φ and gµν, then ∂i and Γ αµν , as well as
∂i∂jΦ and Rαβµν and finally ∆Φ and Rµν. The weakly perturbed line element on an
otherwise flat Minkowski background

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
dxidx

i (I.623)

can be used to extract the metric and to compute covolume through the determinant,

det(gµν) = −
(
1 +

2Φ
c2

)(
1 − 2Φ

c2

)3
= −

[
1 − 6Φ

c2 +
2Φ
c2 + O

((Φ
c2

)2)]
=≃ −

(
1 − 4Φ

c2

)
(I.624)

such that the covolume becomes
√−g ≃ 1 − 2Φ/c2 at lowest order. This means

effectively, that in the classical, second-order Lagrange density for Newtonian gravity,

S = −
∫

d3x Φ∆Φ =
∫

d3x δij∂
iΦ ∂jΦ (I.625)

the first factor of Φ could be thought of as a remainder of the covolume, while the
second factor ∆Φ appears as the Ricci-curvature. Integration by parts recovers the
conventional form, which immediately poses the question if one could construct a
gravitational action from squares of Christoffel symbols: This will be the Einstein-
Palatini-action.

I.6 Palatini-variation: metric gµν and connection Γ αµν
There is an alternative approach to deriving the field equation from a variational
principle where the metric and the connection are interpreted as independent fields:
Then, the field equation and the Levi-Civita connection are simultaneous results of
the variational principle.

S =
∫

d4x
√−g R =

∫
d4x
√−ggβν Rαβαν =∫

d4x
√−ggβν

[
∂αΓ

α
βα − ∂νΓ

α
βα + Γ αγν Γ

γ

βν − Γ
α
γν Γ

γ

βα

]
(I.626)

where there is no a-priori assumption about the relationship between the metric gµν
and connection Γ αµν . The variation with the metric borrows from the derivation in
the previous section and gives directly the vacuum-field equation

δS =
∫

d4x δ
(√−g gβν

)
Rβν = 0→ Rβν = 0 (I.627)

as the Ricci-tensor Rβν was taken to depend only on Γ αµν and ∂βΓ
α
µν , not on gµν.

Then, the variation with respect to the connection coefficients Γ αµν as the second
independent field can be computed as follows. Firstly, on uses the Palatini-identity to
get

δS =
∫

d4x
√−g gβν δRβν =

∫
d4x
√−g gβν ·

(
∇µ δΓ

µ

βν − ∇ν δΓ
µ

βµ

)
(I.628)
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i. gravity from a variational principle

and rewrites it with the Leibnitz-rule: Please keep in mind that we did not yet make
any assumption about e.g. metric compatibility, so terms of the type ∇µgµν are not
automatically zero.

δS =
∫

d4x
√−g · ∇µ

(
gβν δΓ

µ

βν

)
− ∇ν

(
gβν δΓ

µ

βµ

)
=

−
∫

d4x
√−g · ∇µ gβν · δΓ

µ

βν − ∇ν g
βν · δΓ µβµ (I.629)

The first two terms vanish as covariant divergences, as they can be rewritten as
boundary integrals, leaving

δS = −
∫

d4x
√−g ·

[
∇µ gβν − δ

β
µ ∇α gγα

]
δΓ

µ

βν = 0 (I.630)

Then, we realise that the Christoffel-symbol is symmetric in the lower two indices
Γ αµν = Γ ανµ if the connection was torsion free. The last equation has to be equal to
zero as required by Hamilton’s principle δS = 0, which then implies that the term in
the square brackets, which does not have a perfect antisymmetry pertaining to the
index pair µ, ν, has to vanish identically. From that one can conclude

∇µ gβν =
1
2

[
δ
β
µ ∇α gνα + δβν ∇α gµα

]
= 0 (I.631)

after symmetrisation, and from that metric compatibility ∇µgβν = 0, with the argu-
ment that

∇µ
[
gαβgβγ

]
= ∇µ

(
δαγ

)
= 0 = ∇µgαβ · gβγ + gαβ∇µgβγ (I.632)

implying that metric compatibility of the inverse metric is consistent with metric
compatibility of the metric (please see Appendix X.1 for the detailed derivation).

These relations are sufficient to compute the Christoffel-symbol from the metric,
as ∇µ gβν = ∂µ gβν − Γ αµβ gαν − Γ αµν gβα = 0 and the two cyclic permutations define
already

Γ αµν =
gαβ

2

[
∂µ gβν + ∂ν gµβ − ∂β gµν

]
. (I.633)

I.7 Coupling to matter and generation of the energy momentum tensor

The field equation needs to be coupled to energy and momentum in the form of energy
momentum-tensor Tµν, such that curvature is induced into spacetime. A combined
action including geometry and the material fields could be

S =
∫

d4x
(√−g [

R − 2Λ
]

+ κ Lm

)
(I.634)

with an a-priori unknown coupling constant κ put as a prefactor to the Lagrange
density Lm of the non-gravitational fields: Commonly, one calls this the matter-term,
but actually it refers to any field that is defined on the spacetime.
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Variation would recover the field equation

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λ gµν (I.635)

which would work out if

δSm = δ

∫
d4xL =

∫
d4x

δL
δgµν

δgµν =
1
2

∫
d4x
√−gTµνδg

µν = −1
2

∫
d4x
√−gTµνδgµν

(I.636)

by definition, with the energy momentum tensor Tµν and the coupling constant
κ = 8πG/c4. Then, the symmetry of Tµν is implied by gµν, and the variation of S with
respect to the (inverse) metric yields the correct field equation. Vice versa, this can
only be consistent if

δL
δgµν

=
√−g

2
Tµν (I.637)

I.8 Dynamics of the energy-momentum tensor

General relativity is the theory for the dynamics of spacetime for energy-momentum
conserving fields, which is formulated in terms of the covariant divergence of the
energy-momentum tensor Tµν,

gαµ ∇α Tµν = 0 (I.638)

The variation in Hamilton’s principle can be generated by an infinitesimal coordi-
nate shift, which can have two important consequences: It should, applied to the
matter-part of the action, reproduce covariant energy momentum conservation, as the
working principle of the fields does not change across the manifold. Alternatively, it
would as well generate a variation in the inverse metric, on which the Einstein-Hilbert-
Lagrange density is built: Varying the gravitational part with respect to the inverse
metric should yield the field equation, and varying the matter part the corresponding
source of the gravitational field.

Infinitesimal coordinate shifts xµ → x′µ = xµ + ζµ(x) induce a change in the metric
gµν → g ′µν following

g ′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ (I.639)

based on the Jacobians

∂xα

∂x′µ
=

∂
∂x′µ

(
x′α − ζα

)
=

∂x′α

∂x′µ
− ∂ζα

∂x′µ
= δαµ − ∂µ ζα (I.640)

Therefore, the metric changes according to

g ′µν(x
′) =

(
δαµ−∂µζα

)(
δ
β
ν−∂νζβ

)
·gαβ = δ

β
ν gαβ−δαµ∂νζβ gαβ−δ

β
ν∂µζ

α gαβ+O(ζ2) (I.641)

such that at order ζ2 the changed metric is given by

g ′µν(x
′) = gµν − ∂ν ζβ gµβ − ∂µ ζα · gαν (I.642)
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i. gravity from a variational principle

The induced variation in gµν due to the coordinate change is given by

δgµν = g ′µν(x)− gµν(x) + g ′µν(x
′)− g ′µν(x′) =

[
g ′µν(x

′)− gµν(x)
]
−
[
g ′µν(x

′)− g ′µν(x)
]

(I.643)

Subsituting eqn. I.642 and the Taylor expansion g ′µν(x
′) − g ′µν(x) ≃ ∂α g

′
µνζ

α

δgµν = −gµβ · ∂ν ζβ − gαν ∂µ ζα − ∂α gµν · ζα (I.644)

if the approximation ∂α gµν = ∂α g
′
µν is done

Replacing the partial derivatives ∂µ with covariant ones ∇µ according to

∇µ ζα = ∂µζ
α + Γ αµτ ζ

τ (I.645)

as ζα is a vector yields

gµβ∂νζ
β + gαν∂µζ

β + ∂αgµνζ
α =

gµβ∇νζβ − gµβΓ
β
ντ ζ

τ + gαν∇µζα − gανΓ
β
µτ ζ

τ + ∇αgµνζα +
(
Γ ταµ gτν + Γ ταν gµτ

)
ζα

(I.646)

where the metric compatibility condition ∇αgµν = 0 has been substituted. Two pairs
of Christoffel-symbols drop out, leaving

δgµν = −
(
gαν∇µζα + gµβ∇νζβ

)
= −

(
∇µζν + ∇νζµ

)
(I.647)

This result can be substituted into the variation δSm of the part of the action Sm

describing the material fields,

δSm = −1
2

∫
d4x
√−gTµνδgµν = +

1
2

∫
d4x
√−gTµν

(
∇µζν + ∇νζµ

)
(I.648)

and using the Leibnitz-rule to orient the ∇µ-differentiations to Tµν rather than ζµ,

δSm = −1
2

∫
d4x
√−g

(
∇µ Tµν · ζν + ∇ν Tµν · ζµ

)
=

∫
d4x
√−g ∇µ Tµν · ζν (I.649)

by exploiting the symmetry of the expression, and if the variation on the boundary
vanishes, to be assumed when the Gauß-theorem is applied,∫

V

d4x
√−g ∇µ

[
Tµν ζν

]
=

∫
∂V

dAµ

√∣∣∣γ∣∣∣ Tµν ζν = 0 (I.650)

Let’s try out this relation for a straightforward scalar field φwith a self-interaction
or a coupling V(φ), as the easiest example of a non-gravitational field serving as a
model for the matter content of the theory. Variation of the action

Sφ =
∫

d4x
√−g

(1
2
gαβ∇αφ∇βφ− V(φ)

)
(I.651)
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with respect to gµν should recover the energy momentum tensor Tµν. In fact, there are
two dependences on the metric, the covolume

√−g and the contraction gαβ∇αφ∇βφ
in the kinetic term, such that the variation becomes

δSφ =
∫

d4x
√−g

[1
2
δgµν∇µφ∇νφ

]
+ δ
√−g ·

[1
2
gαβ∇αφ∇βφ− V(φ)

]
gµν (I.652)

using the relation

δ (
√−g) = − 1

2
√−g

δg = − 1
2
√−g

g gµν δgµν = −1
2
√−g gµν δg

µν (I.653)

for the variation of the covolume. Rewriting the variation yields

δSφ =
∫

d4x
√−g

[1
2
∇µφ∇νφ−

1
2
gµν

(1
2
gαβ ∇αφ∇βφ− V(φ)

)]
δgµν (I.654)

Naturally, we obtain the energy momentum tensor

Tµν = ∇µφ∇νφ− gµν
(1

2
gαβ ∇αφ∇βφ− V(φ)

)
(I.655)

for a scalar field, by comparing eqn. I.654 with

δSφ =
∫

d4x
√−g 1

2
Tµν δg

µν (I.656)

which is the correct form, that could otherwise be obtained by Legendre-transform
or by taking the Lie-derivative of the Lagrange-function.

I.9 Symmetries on manifolds: Lie-derivatives and the Killing equation

Spacetime as a manifold can have symmetries; whether they a particular choice of
coordinates is compatible with them or not. Up to this point we have always relied on
our intuition about choosing coordinates in which the symmetries became apparent
in a very clear way, for instance the Schwarzschild coordinates for a spherically
symmetric, static spacetime. But general covariance of relativity does not require that
we find the best coordinate choice, instead, it should be possible to make a statement
about symmetry without recursing to particular, properly adjusted coordinates;
there should be a perfectly valid Schwarzschild solution for oscillating cylindrical
coordinates, too. As all observables are associated with scalars, the coordinate choice
does not matter for the prediction of measurable physical quantities.

Additionally, there should be conserved quantities along with any symmetry of a
system as predicted by Noether’s theorem. It is worth pointing out that certain state-
ments are impossible or do not contribute substantially to statements on symmetry:
concerning motion through manifolds, gµνuµuν = c2 or gµνk

µkν = 0 are expressing
causality or define the choice of a sensible affine parameter rather than conservation,
and symmetries of the metric are certainly not expressed by ∂αgµν = 0 because of
its unclear transformation properties, nor by ∇αgµν = 0, which is always true for a
Levi-Civita connection.
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i. gravity from a variational principle

Instead, we would require a new derivative, the Lie derivative (Lag)µν = 0, which
states that there is an isometry present: The metric does not change under shifts in
the direction of a vector aµ, as an expression of a spacetime symmetry. Ideally, we
can link this new derivative to the already defined covariant derivative and possibly
derive a relationship which allows us to find coordinates adopted to a spacetime with
a given symmetry.

Imagine two distinct points P(xµ) and P′(x′µ) with coordinates xµ and x′µ, respec-
tively. Then, the coordinates of the two points are related in general by

x′µ = xµ − ϵaµ and differentially, by
∂x′µ

∂xν
= δ

µ
ν − ϵ ∂ν aµ (I.657)

where ϵ controls the infinitesimal shift into the direction aµ. Any vector field υµ then
transforms according to

υ′µ(x′) =
∂x′µ

∂xν
υν(x) =

(
δ
µ
ν − ϵ∂ν aµ

)
υν(x) = υµ(x) − ϵ∂ν aµυµ(x) (I.658)

Clearly, υ′µ(x′) − υµ(x) is not a vector because the two υ refer to physically different
points on the manifold, so we could apply a Taylor-expansion

υ′µ(x′) = υ′µ(x) + (x′ − x)ν ∂ν υ
′µ(x) + . . . = υ′µ(x) − ϵaν ∂ν υ′µ(x) (I.659)

such that

υµ(x) = υ′µ(x′) + ϵ∂ν a
µυν(x) = υ′µ(x) − ϵaν ∂ν υ′µ + ϵ ∂ν a

µ · υν(x) (I.660)

and we can define the Lie-derivative
(
Laυ

)µ
lim
ϵ→0

υµ(x) − υ′µ(x)
ϵ

= −aν ∂ν υ′µ + ∂ν a
µ · υν ≡

(
Laυ

)µ
(I.661)

of the vector field υµ in the direction aµ with all terms at order ϵ. If defined for linear
forms, the Lie-derivative picks up a different sign in the Jacobian,(

Laυ
)
µ

= +aν ∂ν υµ + ∂µ a
ν · υν (I.662)

and applied to a rank-2 tensor such as the metric one obtains(
Lag

)
µν

= gµλ · ∂ν aλ + gλν ∂µ a
λ + aλ ∂λ gµν (I.663)

It is very important to realise that up to this point we did not use the concept
of parallel transport nor the covariant derivative, but only partial derivatives. In
fact, symmetries of vector or tensor fields on a manifold exist and and quantifiable
with the Lie-derivative even when there is no differential structure and no parallel
transport. But of course, one would like to define the Lie-derivative in a way that it
becomes compatible with the covariant derivative, and that is in fact one motivation
for Levi-Civita connections:
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∇ν υµ · aν−∇ν aµ ·υν = ∂ν υ
µ · aν−∂ν aµ ·υν−

(
Γ
µ

κλ
− Γ µ

λk

)
·υκ · aλ = ∂ν υ

µ · aν−∂ν aµ ·υν
(I.664)

if the connection is torsion free, Γ µkλ = Γ
µ

λk , and the covariant expression falls back
onto the partial one. Applied to the metric this would mean that(

Lag
)
µν

= gµλ ∇λ aλ + gλν ∇µ aλ + aλ · ∇λ gµν = ∇ν aµ + ∇µ aν (I.665)

with the last of the terms being canceled by metric compatibility ∇λ gµν = 0, and
using the index-lowering property of the metric. Again, we should be able to compute
the Lie-derivative of the metric purely with partial derivatives instead of covariant
ones. Indeed, replacing ∇ with ∂ and the Christoffel-symbols yields

(
Lag

)
µν

=

gµλ
[
∂ν a

λ + Γ λνκ a
κ
]

+ gλν
[
∂µa

λ + Γ λµκ a
κ
]

+ aλ
[
∂λ gµν − Γ κλµ gκν − Γ

κ
λν gµκ

]
=

gµλ ∂ν a
λ + gλν ∂µ a

λ + aλ · ∂λ gµν (I.666)

because of the pairwise cancellation in the expression

gµλΓ
λ
νκ a

κ + gλνΓ
λ
µκ a

κ − Γ κλµ gκνa
λ − Γ κλν gµκa

λ = 0 (I.667)

.
If

(
Lag

)
µν

= 0 for a given shift field aµ then the spacetime possesses a certain

symmetry and ∇ν aµ + ∇µ aν = 0. Then, aµ is called a Killing-vector. There is a weird
relationship between Killing vectors and the Riemann-curvature. For any vector we
have the definition of curvature through the non-commutability of second covariant
derivatives, (

∇κ∇λ − ∇λ∇κ
)
aµ = Rτµκλaτ = Rτµκλa

τ (I.668)

from which we can construct

∇κ
[
∇ν aµ − ∇µ aν

]
+ ∇ν

[
∇µ aκ − ∇κ aµ

]
+ ∇µ

[
∇κ aν − ∇ν aκ

]
=(

Rτµνκ + Rτνκµ + Rτκµν
]
aτ = 0 (I.669)

which necessarily vanishes due to the algebraic Bianchi-identity. From the Killing-
condition ∇ν aµ + ∇µ aν = 0 we get ∇µ aν = −∇ν aµ, so we can change the sign in every
second term,

∇κ
(
∇νaµ + ∇νaµ

)
+ ∇ν

(
∇µaκ + ∇µaκ

)
+ ∇µ

(
∇κaν + ∇κaν

)
=

2
[
∇κ∇νaµ + ∇ν∇µaκ + ∇µ∇κaν

]
= 0 (I.670)

Inspecting the result ∇κ∇νaµ + ∇ν∇µaκ + ∇µ∇κaν = 0 in more detail we can carry out
this treatment: Let’s keep the first term unchanged, but switch the indices µ↔ κ in
the second term. Because of the Killing-condition, this can be done as ∇µaκ+∇κaµ = 0,
so one picks up a minus-sign. The analogous index switch can be performed on the
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last term. κ↔ µ is possible because ∇κaν +∇νaκ = 0, again introducing a minus sign:

∇κ∇νaµ + ∇ν∇µaκ + ∇µ∇κaν = ∇κ∇νaµ − ∇ν∇κaµ − ∇µ∇νaκ (I.671)

The first two terms are just double covariant derivatives with interchanged order ap-
plied to the vector aµ which yields the Riemann-curvature: Making this identification
yields the Killing-equation

∇µ∇ν aκ =
(
∇ν∇κ − ∇κ∇ν

)
aµ = Rτµκνaτ (I.672)

The Killing-equation is a tool of determining the Killing-vectors aµ for a spacetime
with a given metric gµν: Think of it as an eigenvalue equation, which yields the shift-
vectors for any spacetime where the covariant derivatives and the Riemann-curvature
are given in an arbitrary coordinate choice, and effectively isolate the spacetime
symmetries in the form of the set of aµ. If the connection is of the Levi-Civita type,
both the covariant derivative ∇ as well as the Riemann-curvature are completely
computable from gµν, so that all ingredients of the Killing equation for a given metric
are present.

Euclidean space, for instance, has two types of symmetries: shifts and rotations.
By using intuition and introducing global Cartesian coordinates one simplifies every-
thing tremendously as gµν = δµν, Γ αµν = 0 such that ∇µ = ∂µ and of course Rτκµν = 0.
Then, the Killing-equation reduces to ∇µ∇ν aκ = 0 = ∂µ∂ν aκ and one can search
for solutions to ∂µ∂ν aκ = 0, which are obviously given by aκ = qνκx

κ + pκ with 6
constants qνκ (due to the antisymmetry qνκ = −qκν, from the Lie-derivative) and 3
constants pκ, corresponding to the rotations and shifts, respectively.

There is a tight connection between Killing-vectors ∇ν aµ +∇µ aν = 0 expressing an
isometry of spacetime and geodesics, which are defined through their autoparallelity
condition uν∇ν uµ = 0. If the scalar product aµuµ is shifted by uλ∇λ into the direction
of uλ, we obtain

uλ∇λ
[
aµ · uµ

]
= uλ

[
∇λaµ · uµ + aµ∇λuµ

]
= ∇λaµ · uµuλ + aµ · uλ∇λuµ = 0 (I.673)

as ∇λaµ · uµuλ = 0 because of the antisymmetry ∇ν aµ = −∇µ aν and uλ∇λuµ = 0
because of geodesic motion. Hence, the projection of the tangent uµ onto the Killing
vector field aµ is conserved along the geodesic.
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