
G friedmann-universes

G.1 Friedmann-Lemaı̂tre-Robertson-Walker cosmologies

Friedmann-Lemaı̂tre-Robertson-Walker spacetimes are highly symmetric solutions of
the gravitational field equation for a particular matter distribution: Even though there
is the cosmic large scale structure in the distribution of galaxies and strong inhomo-
geneities, fluctuations in the matter distribution are thought to subside approaching
scales above a few hundred Mpc. This is summarised by the cosmological principle,
which postulates that the matter and consequently the geometric properties of space-
time are homogeneous (they don’t change as a function of position in the Universe)
and isotropic (independent of the direction in which one observes the dynamics of
spacetime). The high degree of symmetry in the matter distribution allows to find
a non-vacuum solution to the gravitational field equation, and homogeneous and
isotropic geometries sourced by ideal fluids constitute the class of FLRW-cosmologies.
Observations of distant objects show that spacetime on these very large scales is
dynamic.

Fundamental observers in a FLRW-spacetime are thought to be freely falling and
are stationary with respect to their surrounding matter distribution. Their relative
motion can be described by geodesic deviation, but every observer would naturally
center a coordinate system on her or his position (allowed by symmetry) and perceive
the properties of spacetime isotropically at every point. Is is perfectly possible that
the world lines have intersected in the past (this was in fact the case!) and they might
intersect in the future (which won’t be the case according to our understanding).
The first intersection point is called the Big Bang, and we’ll come to the dynamic of
congruences of geodesics at a later time.

A natural choice of the time coordinate is then the proper time τ of those observers,
which need to be identical for every world line, again as a consequence of homogeneity,
motivating the definition of synchronous time t. Spatial coordinates are defined to be
comoving, meaning that every freely falling object stays at its respective coordinate.
This defines a slicing of spacetime into spatial hypersurfaces of constant time, and a
threading of spacetime in terms of world lines with a common passage of synchronous
coordinate time.

The metric defines for an arbitrary set a measurable spacetime distance in form of
the line element,

ds2 = gµν dxµdxν = c2 dt2 − gij dxidxj (G.424)

The orthogonality of spacetime slices and threads suggests the separation into
the temporal and spatial part of the metric. The line element measures the length
of a world line which is perceived by the observer as her or his elapsed proper
time, c2dτ2 = ds2 = c2dt2 if dxi = 0 for comoving observers, and therefore τ = t:
Synchronous, physical time is measured by clocks of the fundamental observers, and
elapses identically for everyone.

A particle at rest follows a world line defined by

xα =
(
ct
0

)
→ uα =

d
dτ

xα =
d
dt

xα =
(
c
0

)
(G.425)

and the tangent uµ needs to fulfil the geodesic equation - otherwise the particle could
not be freely falling.
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In fact,
duα

dτ
+ Γ αµν uµuν = 0 (G.426)

is fulfilled because the specific form of the tangents uµ requires just a single
Christoffel-symbol,

Γ αtt =
gαβ

2

(
∂t gtβ + ∂t gβt − ∂β gtt

)
= 0 (G.427)

which is necessarily zero: The changes of uµ vanish and the particles stay at their
comoving coordinates.

Symmetry requires that the metric gij can only be a function of t. In a frame where
gij is diagonal isotropy must hold, too, so all three eigenvalues must be identical:

ds2 = c2 dt2 − a2(t)g̃ij dxidxj (G.428)

where g̃ij can be Euclidean, g̃ij = δij , but it might as well be possible that the spatial
submanifold has a constant (otherwise homogeneity would not hold) spatial curvature.
Allowing for this case, the FLRW-line element assumes the shape

ds2 = c2 dt2 − a2(t)
[ dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ2
]

(G.429)

with the scale factor a(t). The Euclidean case is recovered by k = 0. Spatially non-flat
universes would have k = +1 if they are spherical with a positive curvature, and
k = −1 if they are hyperbolical with a negative curvature.

G.2 FLRW-cosmologies as maximally symmetric spacetimes

FLRW-cosmologies are maximally symmetric spacetimes in what concerns the spatial
part (also called a maximally symmetric 3-space), as one can write the Riemann-
curvature as a function of the Ricci-scalar and the metric alone:

Rαβµν =
R
12

(
gαµgβν − gανgβµ

)
(G.430)

which is traced back to the fact that there is no Weyl-curvature Cαβµν = 0 and that the
Ricci-tensor comes out proportional to the the metric, Rβν = R/4 gβν, self-consistent

with gβνRβν = R/4 gβνgβν = R/4 δββ = R.
The physical reason for the absence of Weyl-curvature is not only that FLRW-

solutions are non-vacuum solutions, but also that there are absolutely no propagation
effects of gravity, as the densities on every spatial hypersurface are constant. Absence
of Weyl-curvature implies conformal flatness and Minkowski-light cones in conformal
coordinates, and it is the case that the scale factor a(η) is exactly the conformal factor
Ω(η).

G.3 Conformal flatness of FLRW-cosmologies

FLRW-cosmologies are systems with pure Ricci-curvature, and as their density on
any spatial hypersurface is constant, the Weyl-tensor is necessarily zero: There are
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no propagation effects of gravity. As the Weyl-tensor vanishes, Cαβµν = 0 the FLRW-
spacetime is conformally flat and coordinates can be found where the metric can be
written as

gµν = Ω2(t)ηµν, (G.431)

where the conformal factor is in this particular case only a function of time; and
the suitable coordinate choice are conformal coordinates, the spatial part of which
is usually called comoving. Specifically, the line element for a spatially flat FLRW-
cosmology in physical time t and comoving coordinates r reads

ds2 = c2 dt2 − a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
(G.432)

If one defines conformal time dη = dt
a(t) → η =

∫
dt
a(t) , t one obtains a new temporal

coordinate different from physical time. While the length of the world line of a
particle at rest is measured in terms of proper time τ,

c2dτ2 = ds2 = c2dt2 → τ = t (G.433)

such that proper time τ and coordinate time t come out equal, and must be equal
everywhere due to the cosmological principle, conformal time intervals dη = dt/a(t)
have been short in the past and slow down as a(t) expands, and catch up with dt
today. In fact, the scale factor a(t) plays the role of the conformal factor Ω(t), as in
these coordinates the line element reads

ds2 = a2(t)
[
c2 dτ2 − dr2 + r2

(
dθ2 + sin2 θdφ2

)]
(G.434)

For radial (which can always be achieved using the cosmological principle, that
allows to centre the coordinate frame on the observer such that dθ = dφ = 0 along
the photon trajectory) light-like geodesics, one obtains

ds2 = a2(t)
[
c2dt2 − dr2

]
= 0 (G.435)

and the scale factor as the conformal factor does not have any influence on light
propagation, if measured in terms of comoving radial coordinate r and conformal
time τ, in fact, in these coordinates one has perfectly conventional Minkowskian light
cones, cdη = ±dr and from that, cη = ±r. Whether the light cones expand to positive
or negative infinity in terms of physical time instead of conformal time, depends on
the relation dη = dt/a(t) which might be divergent in which case a horizon appears.

G.4 Spatial curvature of FLRW-cosmologies

Perhaps a bit surprisingly, spatial curvature k , 0 which affects the scaling of the
surface of spheres with their comoving radii, does not imply deviations from confor-
mal flatness as spacetime property: Homogeneity and isotropy as symmetries are still
present, requiring the absence of Weyl-curvature, which in turn ensures conformal
flatness. A general FLRW line element including spatial curvature is

ds2 = a2
[
c2dη2 − 1

1 − kr2 dr2 − r2
(
dθ2 + sin2 θdφ2

)]
(G.436)
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where k = −1 corresponds to negative, hyperbolic curvature, for which we define a
new radial coordinate r = sinh χwith the derivative dr/dχ = cosh χ, implying

ds2 = a2
[
c2 dη2 − cosh2 χ

1 + sinh2 χ
dχ2 − sinh2 χ ·

(
dθ2 + sin2 θdφ2

)]
(G.437)

with cosh2 χ ≡ 1 + sinh2 χ, and one finds again Minkowski light cones for radial
photon geodesics, ds2 = a2 ·

[
c2 dη2 − dχ2

]
.

Similarly k = +1 corresponds to a spacetime with positive, spherical curvature.
Definition of a new coordinate r = sin χ with the derivative dr/dχ = cos χ then
suggests for the line element,

ds2 = a2
[
c2 dη2 − cos2 χ

1 − sin2 χ
dχ2 − sin2 χ ·

(
dθ2 + sin2 θdφ2

)]
(G.438)

with cos2 χ = 1 − sin2 χ. Then again, radial photon geodesics will come out as
Minkowskian. It is even possible to redefine conformal coordinates as light cone
coordinates,

du =
1
2

(c dη− dχ) (G.439)

dv =
1
2

(c dη+ dη) (G.440)

where the line element would read ds2 = 4a2du dv, implying dudv = 0 for photons.
The geometric interpretation of spatial curvature k , 0 is a non-Euclidean scaling

of areas and volumes of spheres with their comoving radius (at a fixed time). Embed-
ding spatial part of a spherically curved FLRW-spacetime into a 4d Euclidean space
can be done with the transformation

x = R sin χ sin θ cosφ (G.441)

y = R sin χ sin θ sinφ (G.442)

z = R sin χ cos θ (G.443)

w = R cos χ (G.444)

with the constraint x2 +y2 +z2 +w2 = R2, defining the manifold. With this embedding,
one can compute the area A of a sphere with radius R,

A =
∫

dθ R sin χ
∫

dφR sin χ cos θ = 4πR2 sin2 χ (G.445)

as well as the volume V,

V =
∫

dχ R ·
∫

dθ R sin χ
∫

dφ R sin χcos θ = 2π2R3 (G.446)

Because sin2 χ ≤ 1 always, one obtains for positively curved spherical FLRW-
cosmologies surfaces that are smaller than that in a Euclidean space. Repeating
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the exercise for hyperbolic, negatively curved cosmologies yields A = 4πR sinh2 χ,
and systematically larger areas, as well as a divergent volume V, both as χ→∞.

2do: redo with induced metric

G.5 Cosmological redshift

The dynamics of the FLRW-spacetime has the effect that photons arrive at an observer
redshifted lower frequency (or higher wavelength), caused by the changing geometry
between emission and observation. To make the point that the lower frequency caused
by the increase in scale factor is a transformation effect, we can try the following:
Photon propagation is most conveniently described in conformal coordinates, where
absolutely no property of the photon changes with time. What changes, however, is
the definition of the scalar product that is needed to project the wave vector of the
photon kµ onto the world lines of the emitter and observer represented by the tangent
uµ, thereby defining the frequency ω = gµνu

µkν. ω is a physical observable and comes
out, as a scalar, independent of any coordinate choice for gµν, uµ and kµ.

In conformal coordinates metric reads

gµν =


+a2 0 0 0

0 −a2 0 0
0 0 −a2 0
0 0 0 −a2

 (G.447)

such that gµν = ηµν at a = 1, i.e. today, and provides the scalar product for projecting
kµ onto uµ.

The motion of galaxies is purely timelike along the ct- or cη-direction, and in
conformal coordinates every galaxy and every observer stays at their comoving
coordinate: dr = 0. The tangent uµ = dxµ/dτ = dxµ/dt is normalised to c2, so we get: Conformal time η is not an

affine parameter, so we can’t di-
rectly parameterise the world line
with η. But it’s perfectly permissi-
ble to take uµ = dxµ/dt as a vec-
tor and do a coordinate transform
switching from physical to confor-
mal time.

gµν u
µuν = c2 = gηη u

ηuη → uη =
c
√gηη

=
c
a

(G.448)

because of the motion along the cη-direction only the η-entry of uµ is nonzero.
Photons follow null geodesics, so

c2 dη2 − dr2 = 0 → cη = ±r (G.449)

with a wave vector kµ = dxµ/dλ, using an affine parameter λ. kµ is normalised to
zero, gµνkµkν = 0 and has the entries kµ = (ω/c, k)t . Then, the projection of the wave
vector kµ onto the tangent of the world lines of comoving systems uµ is given by

ω′ = gµνk
µuν = a2kηuη = a2 · ω

c
c
a

= aω (G.450)

ω′ is the frequency today, where a = 1 by convention. Reformulating the result in
terms of wave length with the dispersion ω = ck (coming from gµνk

µkν = (ω/c)2− k2 =
0) and k = 2π/λ then implies

λ′ =
λ

a
(G.451)

such that the redshift z is defined as
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z =
λ′ − λ
λ

=
1
a
− 1 → a =

1
1 + z

. (G.452)

G.6 Cosmological horizons and causal structure

The introduction of conformal coordinates brushes over the fact that depending on
the cosmology photons are only given a finite time to propagate and can only reach
finite physical distances, both coming from the finite past or traveling into a possibly
finite future. Effectively, we ask the question whether there are limits to the lightPlease keep in mind that for a

vanilla model with Ωm = 0.3 and
ΩΛ = 0.7 this is in fact case! But
arbitrary FLRW-models could re-
alise anything.

cones, which are not apparent in terms of conformal coordinates. The particle horizon
is the limitation of the past light cone caused by a finite age of the Universe. The
maximum distance a photon could have traveled since a = 1 is given by

rPH = c

t0∫
ti

dt
a

= c

0∫
−∞

dη (G.453)

where for an actual computation one needs H = ȧ/a. The origin of the conformal
coordinate system in time is conveniently chosen to be η = 0 today. The event horizon
is the maximum distance that light emitted today could possibly cover in the future:

rEH = c

tf∫
t0

dt
a

= c

+∞∫
0

dη (G.454)

where it is clear that the behaviour of 1/a(t) is the decisive quantity that causes the
integrals to converge or to diverge, while the a(t) relation itself as a solution to the
Friedmann-equation depends on all gravitating fluids and their properties ρ and w.

G.7 Friedmann-equations

Substituting the energy-momentum tensor Tµν into the gravitational field equation
and solving for gµν which in turn is needed for the motion of the fluid according to
gαµ∇αTµν is a nice example of how gravity, geometry and motion work together. Our
starting point is the FLRW-metric

ds2 = c2 dt2 − a2(t) ·
[ 1
1 − kr2 dr2 + r2

(
dθ2 + sin2 θdφ2

)]
(G.455)

with the choice of using physical time t (identical to proper time τ of comoving ob-
servers) and comoving distance r as coordinates: this is referred to as the synchronous
gauge, as the metric is constant on a spatial hypersurface defined through a constant
value of t. We have already made the point that the FLRW-spacetime is conformally
flat and has only Ricci-curvature. There is a single parameter, k, which determines the
spatial geometry on a spatial hypersurface, and the only dynamic degree of freedom
is the scale factor a(t), which changes the distance definition on each hypersurface,
moving from t to another time t′. It is a convention to set a = 1 today - there is a
priori no particular instant in time defined singled out by the FLRW-metric, so we
may bring in this human element.
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g.7. friedmann-equations

Substitution of this metric into the field equation

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λgµν (G.456)

with a homogeneous and isotropic ideal fluid (the symmetries of the fluid need
to be consistent with the symmetries of the metric, and the fluid can only be ideal
as it otherwise would not obey local energy momentum conservation) yields the
Friedmann-equations as dynamical equations for a(t).

Turning to the energy-momentum tensor Tµν as the source of the gravitational
field and its covariant energy momentum conservation gαµ ∇αTµν = 0 (which we have
already shown to be equivalent to the equations of relativistic fluid mechanics on a
possibly curved background), one realises that the cosmological principle requiring
a homogeneous and isotropic fluid makes sure that the Euler-equation is trivially
fulfilled: There are no spatial gradients in p that would accelerate the fluid by non-
gravitational forces. In fact,(

ρ +
p

c2

)
gαµ uµ∇α uν = −gαµ

(uµuν
c2 − gµν

)
∇αp (G.457)

suggests that the relevant driving gradient in p gets projected onto a plane perpen-
dicular to uµ. The FLRW-symmetries disallow ∂ip in this hyperplane, but do not
restrict ∂tp. That component however, is in our coordinate choice perpendicular to
the hyperplane, so it can not affect the motion of the fluid. From that we conclude
that gαµ uµ∇α uν = 0, which is just the autoparallelity condition: The fluid elements
follow geodesics.

The continuity equation, however, is not trivial and reads

gαµ
[
∇α

(
ρc2uµ

)
+ p∇αuµ

]
(G.458)

Rewriting it in terms of a divergence

∇µ
(
ρc2uµ

)
+ p∇µuµ = 0 (G.459)

using metric compatibility and using the divergence formula bringing in the covol-
ume

√−g
∂µ

(√−g(ρc2uµ
))

+ p∂µ
(√−guµ) = 0 (G.460)

reduces to a considerably more simple shape using comoving coordinates: There are
only derivatives ∂t and only ut = c, while

√−g = ca3:

ρ̇ + 3
ȧ
a

(
ρ +

p

c2

)
= 0 (G.461)

There is an intuitive but potentially misleading reinterpretation of the continuity
equation in the form of the adiabatic equation: While the mathematics is certainly
correct, the physical interpretation is a bit problematic. Establishing the relation
between the dp and da differentials,

dρ + 3
(
ρ +

p

c2

)da
a

= 0 (G.462)
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and multiplying with a3 one can use the Leibnitz-rule to write

d
(
ρc2a3

)
= −p d(a3) (G.463)

which seems to suggest that the change in energy, given by the energy density
multiplied with the volume a3 is equal to the work done by changing the volume
against the pressure p, reminiscent of the first law of thermodynamics. Please keep
in mind, however, that pressure enters the field equations as a source of gravity and
that there are no gradients in p that could perform work.

But the argument suggests a new question: Where is the limitation in the relation
between pressure and energy density? Taking the trace of the field equation yields for
the Ricci-scalar R

R(t) =
8πG

c4 T + 4Λ (G.464)

with the trace of the energy-momentum tensor T

T = gµν ·
[(
ρ +

p

c2

)
uµuν − p gµν

]
= ρc2 − 3p (G.465)

such that one arrives at

R(t) =
8πG
c4

(
ρc2 − 3p

)
+ 4Λ (G.466)

which suggests that the Ricci-curvature is positive for all fluids with equation of state
w < +1/3, and in the absence of a cosmological a fully radiation dominated Universe
would have a vanishing Ricci-scalar, R = 0! Of course that is a direct consequence
of the masslessness of the photon that already makes sure that T = 0, and would
not imply that there is no Ricci curvature at all: The Ricci tensor would still be
non-vanishing.

Then, one needs the Ricci-tensor Rµν as well as the Ricci-scalar R(t) for the field
equation, following the chain gµν → Γ αµν → Rαβµν → Rβν → R, for which there is
really no shortcut (apart from the Cartan-formalism). It’s important to realise that
the Ricci-tensor comes out proportional to the metric, as required for maximally
symmetric spacetimes, and therefore diagonal in our choice of coordinates,

Rtt = 3
ä
a

(G.467)

Rrr =
−c2

1 − kr2

(
aä + 2ȧ2 + 2c2k

)
(G.468)

Rθθ = − c
r2

(
aä + 2ȧ2 + 2c2k

)
(G.469)

Rφφ = Rθθ · sin2 θ (G.470)

such that contraction gµνRµν = R yields the Ricci-scalar,

R(t) =
6
c2

[ ä
a

+
( ȧ
a

)2
+

ck
a2

]
. (G.471)
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Substitution into the gravitational field equation Gµν = −8πG/c4 Tµν − Λgµν and
separating ȧ from ä then yields the standard form of the Friedmann-equations

ä
a

= −4πG
3

(1 + 3w) ρ +
Λc2

3
(G.472)

and ( ȧ
a

)2
= +

8πGρ
3

+
Λc2

3
− c2k

a2 (G.473)

which relate the evolution of the scale factor a(t) to the presence of gravitating fluids,
curvature and the cosmological constant. In parallel, covariant energy momentum
conservation gαµ∇αTµν = 0 yields in these coordinates the adiabatic equation Covariant energy-momentum

conservation is already built into
the gravitational field equation, so
the adiabatic equation is not in-
dependent of the Friedmann equa-
tions.

ρ̇

ρ
+ 3(1 + w)

ȧ
a

= 0, (G.474)

from which the evolution of standard fluids with constant equation of state w can
directly be read off: The equation is equivalent to ∂t ln ρ = −3(1 + w)∂t ln a, which
is solved to be ρ ∝ a−3(1+w), so one obtains naturally ρ ∝ a−3 for matter, ρ ∝ a−4 for
radiation and a constant ρ for the cosmological constant.

For a single dominating fluid at critical density it is possible to relate the equation
of state directly to the deceleration

q = − äa
ȧ2 (G.475)

with this funky relationship:

3(1 + w) = 2(1 + q) (G.476)

such that the following picture emerges:

w q (G.477)

+
1
3

+ 1 relativistic particles, e.g. photons (G.478)

± 0 +
1
2

non-relativistic matter (G.479)

− 1
3

0 pure curvature, empty universe, like a fluid w = −1
3

(G.480)

− 1 − 1 Λ ∼ like a fluid with eos w = −1 (G.481)

Fluids with positive equation of state have an attractive effect and slow down the
expansion of the Universe, but as a increases, they get diluted: ρ ∝ a−3(1+w) is a de-
creasing function for all w strictly larger than −1. Therefore any expanding Universe
will work its way towards smaller values equation of state as time passes. But as
soon as w < −1/3 something interesting happens as the deceleration changes its
sign: q > 0 for all fluids with w < −1/3, such that the expansion of the Universe gets
accelerated if the Universe has gotten large enough, that the densities are sufficiently
small. Weirdly, an empty and therefore maximally hyperbolically curved universe,

91

https://en.wikipedia.org/wiki/Friedmann_equations


g. friedmann-universes

expands at a constant velocity: q = 0 for w = −1/3, and therefore ä = 0, from which
one integrates ȧ to be constant and a to be a linear function in time: There is no
gravity that changes the state of motion. While this may seem as an odd result, please
keep in mind that in a completely empty (and therefore hyperbolic universe) there is
no matter content that could by its gravitational action change the state of motion of
spacetime! Or, if you prefer a fancy argument, one can invoke the Birkhoff-theorem:
There is no gravitational dynamic outside a spherically symmetric matter distribution:
Surely, FLRW-universes are isotropic, and because there is nothing inside, one deals
with a vacuum solution, and therefore, the universe is in a state of inertial motion.

The logarithmic derivative of the scale factor as a function of time defines the
Hubble-Lemaı̂tre-function

H(a) =
ȧ
a

(G.482)

which defines the critical density ρcrit as a scale. Multiplying the first Friedmann-
equation G.473 with 1 = H2

0/H
2
0 yields

( ȧ
a

)2
= +

8πGρ
3

+
Λc2

3
− c2k

a2 (G.483)

so that we can identify

ρcrit =
8πG

3H2
0

(G.484)

with a numerical value of about 10−26kg/m3, roughly a few ten atoms per cubic
metre. Equivalent to the density scale is the Hubble-length

χH =
c

H0
(G.485)

roughly 1025m in size. Redefining the terms in the Friedmann-equation by introduc-
ing the density parameters ΩX

Ωρ =
ρ

ρcrit
, ΩΛ =

Λ

3

( c
H0

)2
, Ωk = −k

( c
H0

)2
(G.486)

(please watch out for the minus-sign in the definition of Ωk : negative curvature k < 0
has a positive Ωk!) brings the first Friedmann-equation in the standard shape

H2(t) = H2
0 ·

[Ωρ

a3 + ΩΛ +
Ωk

a2

]
(G.487)

which helps us to understand the meaning of critical density: As H(t) = H0 at a = 1
necessarily,

Ωm + Ωk + ΩΛ = 1 (G.488)

so that spatial curvature can only arise if the densities do not add up to the critical
density. It seems natural that the gravitational field equation links the dynamics of
the metric and therefore geometric properties of spacetime to the gravitating effect
of all substances, but interestingly, we can use the field equation as well to assign
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properties of material substances such as ρ and p (or equivalently w) to a geometric
property (curvature) or a phenomenon of gravity Λ.

G.8 Cosmological constant Λ

The numerical value of the cosmological constant Λ = 10−50m−2 implies that it can
only play a substantial role on scales of 1025m an above, corresponding to the size
c/H0 of the observable Universe. The first Friedmann-equation shows that ultimately
a continued expansion will necessarily lead to a Λ-dominated Universe,

ȧ
a

= H0

√
Ωm

a3 +
Ωk

a2 + ΩΛ → H0

√
ΩΛ (G.489)

substantiating the idea that the cosmological fluids dominate in the order of de-
creasing equation of state w if the expansion is monotonic, ȧ > 0, i.e. if there is no
recollapse of the Universe. Similarly, the second Friedmann-equation shows that the
dynamics will be dominated by Λ because ρ is increasingly diluted, ρ→ 0:

ä
a

= −4πG
3

ρ +
Λc2

3
(G.490)

in a way that ä becomes proportional to a as well as ȧ as the expansion becomes
exponential,

a(t) ∼ exp
(√Λc2

3
t
)

(G.491)

leading to a deceleration of q = −äa/ ȧ2 = −1.

G.9 Size and age of FLRW-universes

It is a funny realisation that the age of the Universe as the elapsed time between
a = 0 and a = 1 can be finite or infinite, depending on the cosmological model; in
fact, whether the point a = 0 is reached in a finite past is determined by the matter
and energy content of the FLRW-cosmology, and usually high densities of matter or
radiation cause that time to be finite.

To be exact, the age of the Universe would be the elapsed coordinate time (and
hence the proper time) of a comoving observer, who has the right to center the
coordinate frame onto herself or himself. Then, dr = 0 and the age of the Universe
corresponds to the length of the observer’s world line. H = ȧ/a implies dt = da/(aH)
from the Hubble-Lemaı̂tre-function, and therefore

t =
∫

dt =

1∫
0

da
aH(a)

=
1

H0

1∫
0

da

a
√
Ωγ

a4 + Ωm
a3 + ΩΛ

(G.492)

where the inverse Hubble-Lemaı̂tre constant 1/H0 ≃ 1017s determines the scale of
the age of the Universe. While fluids with an equation of state w > −1/3 tend to
make the integral converge, very negative equation of state parameters w < −1/3
will cause infinite ts. A good example is a pure Λ-dominated Universe, where the
Hubble-Lemaı̂tre-function is constant.
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In this particular case,

t =
∫

dt =

1∫
0

da
aH(a)

=
1

H0

1∫
0

da
a

=
1

H0

1∫
0

d ln a (G.493)

diverges logarithmically.
A related question is whether the Universe will exist an infinite time into the

future. Coming back to the example with a Λ-dominated Universe as ours, the scale
factor will increase exponentially in time, a(t) = exp(

√
Λt), such that there is a finite

a given at every time. The integral

t =
∫

dt =

∞∫
1

da
aH(a)

=
1

H0

∞∫
1

da
a

=
1

H0

∞∫
1

d ln a (G.494)

is divergent, too. In contrast, high values of the equation of state parameter w will
make the integral convergent. A weird example is an empty, hyperbolically curved

universe with Ωk = 1 and w = −1/3. Then, t = 1/H0

1∫
0

da is exactly 1/H0, so the age

is finite and the Universe will continue to exist into the infinite future.

G.10 Quintessence: dynamical fluids with varying w

Up to this point, the equation of state w = p/(ρc2) was a property of the fluid and
expressed an intrinsic, unaltering property of the substance sourcing the gravitational
field, for instance relativistic matter with w = +1/3 or nonrelativistic matter with
w = 0. Interestingly, it was possible to map curvature as a property of spacetime
onto a fluid with w = −1/3 or to think of the cosmological constant as a substance
with w = −1. It is even possible to design an artificial fluid with a given ΩX and an
equation of state wX that reproduces any expansion history H(t) that one might think
of, if one has the freedom to choose a function wX(t). Vice versa, it is an interesting
question if one could take this one step further and not only generate any Hubble
function H(t) with the freedom to choose wX(t), but to set up a field that changes by
interaction its gravitational properties such that it can vary its own equation of state:
That is the foundational idea behind quintessence, the fifth substance after radiation,
matter, curvature and the cosmological constant, substance meant here of course in a
gravitational sense.

The quintessence construction starts with a scalar field φwhich can only depend
on t in accordance with the cosmological principle. φ can interact with itself in the
sense of particle physics through the potential V(φ), a suitable Lagrange-function
would be

L(φ,∇αφ, gµν) =
1
2
gαβ∇αφ∇βφ− V(φ). (G.495)

Apart from direct self-interaction the scalar field φ sources a gravitational field as it
provides a nonzero energy momentum tensor, so as it evolves dynamically it does
that in a varying geometry; in fact, it is best to think of the dynamical equations
for φ and for gµν (or a(t), which is the only degree of freedom in the metric if the
FLRW-symmetries apply) as a coupled system with a joint solution.
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Substitution into the corresponding Euler-Lagrange-equation for a scalar field φ
on an arbitrary and possibly curved background yields a wave equation with a source
term

gαβ∇α∇βφ = −dV
dφ

(G.496)

which is effectively a Klein-Gordon-equation with a driving term. It can be inter-
preted as the covariant divergence of the vector υα = ∇αφ = ∂αφ,

gαβ ∇α∇β φ = gαβ ∇α υβ = ∇α
(
gαβ υβ

)
= ∇α υα =

1
√−g

∂α
(√−g ∂αφ

)
(G.497)

The covolume
√−g is quickly derived for the FLRW-metric to be

√−g = ca3(t) and
cosmological principle makes sure that there are only variations along the ct-direction,
such that ∂µ → ∂t :

1
√−g

∂α
(√−g ∂αφ

)
=

1
a3 ·

(
3a2 ȧ φ̇+ a3φ̈

)
= φ̈+ 3

ȧ
a
φ̇ (G.498)

such that the final Klein-Gordon-equation on a FLRW-background with scale factor
a(t) reads

φ̈+ 3
ȧ
a
φ̇ = −dV

dφ
(G.499)

where we recognise the Hubble-Lemaı̂tre-function H(t) = ȧ/a. The energy-momentum
tensor Tµν as the source of the gravitational field can be derived from the Lagrange-
function and is covariantly conserved as L does not explicitly depend on the coordi-
nates, gαµ∇αTµν = 0,

Tµν =
∂L

∂∇µφ
∇ν φ− gµν L (G.500)

specifically for the particular Lagrange-function,

Tµν = ∇µφ∇νφ− gµν
1
2
gαβ ∇αφ∇βφ+ V(φ)gµν (G.501)

which we view in terms of the energy-momentum tensor of an ideal fluid,

Tµν =
(
ρ +

p

c2

)
uµuν − pgµν (G.502)

in order to be able to identify terms involving the field φ and its derivative φ̇with
the fluid-mechanical quantities ρ and p.
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The actual entries of Tµν can then be computed by enforcing the FLRW-symmetries,
where only t-derivatives are present; we identify the tt-component with the energy
density ρc2 of an ideal fluid

Ttt =
(
ρ +

p

c2

)
utut − p · gtt = ρc2 (G.503)

as uµ = (c, 0) in the comoving frame, and the trace g ijTij with the pressure,

g ijTij =
(
ρ +

p

c2

)
g ijuiuj − p g ijgij = +3a2p, (G.504)

where the trace g ijgij only encompasses the diagonal elements of the metric and
yields −3a2, while the first term g ijuiuj does not contribute, as the spatial components
of uµ are zero: the fluid is at rest in the comoving frame. Comparing these two
expressions with the energy-momentum tensor Tµν of the field φ then yields for the
tt-component

Ttt = ∂tφ · ∂tφ− gtt ·
1
2
g tt · ∂tφ∂tφ+ V(φ)gtt =

1
2
φ̇2 + V(φ) = ρc2 (G.505)

and correspondingly for the trace over the spatial components

g ijTij = −g ijgij
1
2
g tt∂tφ∂tφ+ g ijgijV(φ) = 3a2

(1
2
φ̇2 − V(φ)

)
= 3a2p (G.506)

Collecting the results yields for the equation of state w:

w =
p

ρc2 =
φ̇2 − 2V(φ)

φ̇2 + 2V(φ)
(G.507)

which is an amazingly interesting result: The coupled system of the Klein-Gordon-
equation and the Friedmann-equation allows a simultaneous evolution of φ and
a. φ and φ̇ determine the energy-momentum tensor Tµν and define the two fluid
properties ρc2 and p that enter the Friedmann-equation as source properties. The
Friedmann-equation in turn provides the solution for a(t) for a given fluid, and a(t)
enters the Klein-Gordon-equation as ȧ/a. Phenomenologically, one obtains a time-
varying equation of state w from the dynamics of the field φ: If the field is static, φ̇ = 0
and the equation of state w is equal to −1. In this case, φ mimicks a cosmological
constant. But it would be natural that φ is accelerated by the gradient in V(φ), as
determined through the Klein-Gordon-equation, so φ̇ increases at the expense of
V(φ), and w will move away from −1 towards less negative numbers. In summary, the
coupled system of differential equations for φ(t) and a(t) allow the construction of
a Friedmann-universe with a dynamical fluid; the freedom to choose the equation
of state function w(t) is mapped onto the choice of the potential V(φ) and initial
conditions for φ. Effectively, one obtains repulsive gravity in the limit φ̇ ≪ V(φ),
making quintessence a possible explanation of dark energy.

96

https://en.wikipedia.org/wiki/Dark_energy

