
E gravitational field equation

E.1 What should be realised in a gravitational field equation?

The field equation for gravity should first of all be a tensorial relationship between
curvature and the energy-momentum tensor the source of gravity, with a symmetric
curvature tensor isolated from the full Riemann curvature. Tensorial relationships
are necessary to have a consistent and well-defined transformation property of all
terms in the field equation. The field equation should operate on a 4-dimensional
background and allow for wave-like propagating solutions.

The field equation should obey covariant energy-momentum conservation. As a
second order partial differential equation (because the Riemann-curvature is made
from the second derivatives of the metric) it should be hyperbolic and allow modes
to propagate on the light cone. In contrast to our first attempts at constructing a
generalisation of the Poisson-equation within special relativity, there should be a
natural explanation why m = 0 but why λ , 0. But nevertheless, the limit of the field
equation for weakly perturbed, static spacetimes should fall back on the classical
Poisson equation ∆Φ = 4πGρ + λ (I’m trying to make a point that the cosmological
constant λ was always part of a classical theory).

It is a surprising result found by D. Lovelock that general relativity is unique as a
relativistic theory of gravity for conserved energy and momentum in 4 dimensions
with a second order hyperbolic and local field equation with a single dynamical field,
the metric gµν. It is an astonishing fact that the field equation of general relativity is as
fundamental as the Maxwell equations with nothing more fundamental from which
it could be derived. So all we can hope is to go through arguments why the equation
is sensible and how physical concepts are realised. I should mention that there are
ideas in relation to constructive gravity with the central idea that the theory for the
material fields (like Aµ) already fixes the dynamics of the metric gµν up to the point
that the gravitational field equation can be constructed from the Lagrange-density of
the Maxwell-field.

E.2 Construction of the field equation

The first issue in the quest to link the Riemann curvature Rαβµν to the energy-
momentum tensor Tµν is the different rank of the two tensors. The Ricci-curvature
Rβν = gαµRαβγµ would be (up to an overall sign) the only non-vanishing contraction
of the Riemann-curvature and it would be symmetric as well, as can be shown with
the algebraic Bianchi-identity,

Rαβµν + Rαµνβ + Rανβµ = 0 (E.262)

for the cyclic permutation of β, µν while keeping the first index α fixed. Applying a
contraction with gαµ to the algebraic Bianchi-identity gets rid of the second term due
to the antisymmetry of Rαµνβ in αµ. Then,

gαµRαβµν + gαµRανβµ = gαµRαβµν − gαµRανµβ = Rβν − Rνβ = 0 (E.263)

again using antisymmetry, this time of Rανβµ in the second index pair, which shows
the symmetry of the Ricci tensor, Rβν = Rνβ. Then, the Ricci-scalar R = gβνRβν =
gαµgβνRαβµν as a contraction of the Ricci-tensor Rβν is well-defined and not fixed to
zero by any index exchange symmetry.
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e. gravitational field equation

Would Rµν ∝ Tµν be viable field equation? Covariant energy-momentum conserva-
tion requires that gαµ∇αTµν = 0, but one can show that the divergence gαµ∇αRµν , 0,
so that the field equation would be inconsistent. Instead, one needs a more elaborate
curvature quantity: the Einstein-tensor Gµν. Starting from the differential Bianchi-
identity

∇τ Rαβµν + ∇µ Rαβντ + ∇ν Rαβτµ = 0 (E.264)

with cyclic permutation in τ, µν and α, β fixed, one can make the substitution Rαβτµ =
−Rαβµτ in the last term with the index antisymmetry in the second pair. Contraction
with gαµ yields:

gαµ∇τ Rαβµν + gαµ ∇µ Rαβντ − gαµ∇ν Rαβµτ = 0 (E.265)

Using metric compatibility ∇αgµν = 0 in the last term, followed by a contraction
with gβτ then introduces the Ricci-scalar R, because gαµgβτRαβµτ = R. The first term
gives gαµgβτ∇τRαβµν = gβτ∇τRβν, which is the divergence of the Ricci-tensor. The
most complicated term is the middle one: Starting from the algebraic Bianchi-identity
Rαβντ + Rαντβ + Rατβν = 0 one can construct the argument that Rβαντ = Rαντβ + Rατβν
using the antisymmetry in the first index pair of the first term, followed by the
contraction of ∇µRβαντ, over βτ and αµ, which comes out as gβτgαµ[Rαντβ + Rατβν],
where the first term vanishes due to the (anti)symmetry of the indices and only
gαµ∇µRαν is left over, with an additional overall minus-sign. Realising that this term
is, like the first one, the divergence of the Ricci-tensor albeit with different (internal)
indices, the final result is:

2gαµ∇µRαν − ∇νR → gαµ∇µ [2Rαν − Rgαν] = 0 (E.266)

indicating that this particular combination of the Ricci-tensor, the Ricci-scalar and
the metric is divergence-free and could appear in the field equation. Commonly, one
defines the Einstein-tensor Gµν

Gµν = Rµν −
R
2
gµν (E.267)

for this purpose, which inherits its symmetry from Rµν and gµν. It is a memorable
result that the trace of Gµν

gµνGµν = gµνRµν −
R
2
gµνgµν = R − R

2
δ
µ
µ = R − 4

R
2

= −R. (E.268)

is just the negative Ricci-scalar R.
Realising that the metric is the second rank-2 tensor with vanishing divergence

due to metric compatibility suggests as a possible gravitational field equationThere is no ”derivation” of the
field equation, it is so fundamen-
tal that we don’t know any more
fundamental principle from which
it could originate!

Rµν −
R
2
gµν = −8πG

c4 Tµν − Λgµν (E.269)

with two gravitational constants G and Λ. It is a second-order nonlinear hyperbolic
partial differential equation which respects the local covariant energy-momentum
conservation and constitutes 10 independent relations in 4 dimensions, due to the
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e.3. ricci- and weyl-curvature

Table 1: Numbers of entries of Tµν, Rµν and Rαβµν as a function of the dimensionality n of
spacetime: While the number of entries of Tµν is simply determined by symmetry Tµν = Tνµ,
the entries of Rµν and Rαβµν must be derived from the index exchange symmetries, for in-
stance, that there can not be any curvature in 1 dimension, because the non-commutativity
of the covariant derivative in different directions never arises: there is only one direction. In
3 dimensions, there can not be any curvature beyond Ricci-curvature and the gravitational
field would only exist at locations where the energy-momentum tensor is nonzero. Only in
4 dimensions or more there are components of curvature beyond Ricci curvature and the
gravitational field can exist away from the source.

dimension 1 2 3 4
Tµν 1 3 6 10
Rµν 0 1 6 10
Rαβµν 0 1 6 20

symmetry of Rµν, gµν and Tµν. Hyperbolicity of the field equation is a consequence of
the sign-change in the signature (+,−,−,−) of the metric gµν, which falls back onto the
Minkowskian-metric in freely-falling frames, gµν = ηµν, and ultimately, hyperbolicity
will allow for wave-type solutions: gravitational waves!

One issue needs considerable explanation: The Riemann-curvature as a complete
characterisation of the spacetime curvature has 20 entries in 4 dimensions (reduced
from 44 = 256 to 20 by the index exchange symmetries), but the field equation only
fixes half of the curvature, similarly to the Poisson equation ∆Φ = 4πGρ, where only
the trace ∆Φ = δij∂i∂jΦ of the tidal field tensor ∂i∂jΦ is determined by the field
equation. In electrodynamics, the field equation □Aµ = 4π/c ȷµ in Lorentz-gauge
∂µAµ = 0 fixes 4 of the 10 derivatives ∂α∂βAµ, so this is really a common feature
for all field theories. If this was not the case, we could have only Ricci-curvature,
and it could only exist at places where the energy-momentum tensor is nonzero,
Tµν , 0. Clearly, this would be a weird theory of gravity, as the field should be free to
propagate away from the source into spacetime.

E.3 Ricci- and Weyl-curvature

In classical gravity, ∆Φ = δij∂i∂jΦ is invariant as the trace of the tidal field ∂i∂jΦ: It
does not change under rotations of the coordinate system and links the potential to
the source 4πGρ. Starting with Φ one obtains the gravitational acceleration gj = −∂jΦ,
of which one can compute the divergence divg = δij∂igj = −δij∂i∂jΦ which tells you
about a nonzero ρ at the point where ∆ acts on Φ. Vice versa, however, does ∆Φ = 0
not imply that there is no gravitational field, it only implies that at that particular
location there is no source, and clearly can gravity exist at locations outside the field
generating matter, for instance on the surface of the Earth. This suggests that one
would like to separate ∆Φ from ∂i∂jΦ and define the traceless shear

Φ̃ij = ∂i∂jΦ −
∆Φ

3
δij . (E.270)

Φ̃ij are the components of the tidal shear that are sourced elsewhere and propagate
to the point where the derivatives of Φ are computed.
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E.4 Curvature invariants

There are two possible ways to quantify geometric properties of manifolds, or, in
fact, tensorial or vectorial fields: Either, one is able to write down a relation between
tensors of compatible rank and index structure, in which case all terms in an equation
transform covariantly under coordinate transforms, or one can construct invariants
by a full index contraction. Then, one obtains a scalar which is necessarily invariant
under coordinate transforms and has to assume an identical value in all frames. That
is the reason why scalars are so convenient: Their entries do not only for a given
coordinate choice but are universally true. What one gives up, however, is a significant
part of the information that gets lost in contraction. But sometimes, scalars have a
physical interpretation and can isolate important information on a tensor.

In classical gravity, we can compute the tidal field ∂i∂jΦ as the curvature ana-
logue and build contractions of this quantity, for instance with the Euclidean metric:
δij∂i∂jΦ = ∆Φ is rotationally invariant (reflecting the fundamental properties of
Euclidean spaces, and proportional to 4πGρ + λ). Or, one constructs the quadratic
quantity δaiδbj∂a∂bΦ ∂i∂jΦ, which corresponds to the Frobenius-norm of Phi which
is positive definite: We can conclude Φ = 0 from a vanishing Frobenius-norm, but we
can not do that from ∆Φ = 0, which only means that at that particular location no
source of the field exists.

The central quantity for curvature in relativity is the Riemann-tensor Rαβµν, with
a range of possibilities to form a scalar. For instance, the Ricci-scalar R = gαµgβνRαβµν
would be a quantity analogous to ∆Φ, as it is proportional to the trace of the energy
momentum tensor T = gµνTµν, minus 4Λ if the cosmological constant is included.
That’s clearly only the curvature that is generated locally by Tµν (and by Λ), but
not the complete curvature. In analogy to the Frobenius-norm one could think of
Kretschmann-scalar K = RαβµνRαβµν = gαµgβνgγρgδσRαβγδRµνρσ.

The Weyl-tensor Cαβµν would correspond to the traceless tidal shear Φ̃i , because
the locally generated part of the curvature has been eliminated. Then, clearly both
δij Φ̃ij and gαµgβνCαβµν vanish. But δaiδbj Φ̃abΦ̃ij is not required to be zero by ∆Φ = 0,
and neither is the Weyl-scalar C = CαβµνCαβµν = gαµgβνgγρgδσCαβγδCµνρσ: It would
serve as an invariant quantification of the curvature at a point of all gravitational
fields that are sourced elsewhere. As such, the Weyl-curvature Cαβµν is a covariant
generalisation of the traceless tidal tensor Φ̃ij .

E.5 Weak and static gravity

General relativity needs to be consistent with classical gravity in the limit of weak
curvature and static gravitational fields consistent with a non-relativistic matter
distribution at rest. The trace of the field equation is given by

gµνRµν −
R
2
gµνgµν = −R = −8πG

c4 gµνTµν = −8πG
c4 T (E.271)

using R = gµνRµν, T = gµνTµν and gµνgµν = δ
µ
µ = 4, while the trace of the energy

momentum tensor is given by

T = gµνTµν = gµν
[(
ρ+

p

c2

)
uµuν− p · gµν

]
=

(
ρ+

p

c2

)
gµν uµuν− pgµνgµν = ρc2 −3p ≃ ρc2

(E.272)
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e.6. weyl-curvature

if the matter is non-relativistic, p ≪ ρc2, so that the Ricci-scalar just depends on the
matter density,

R = −8πG
c2 ρ. (E.273)

A weak perturbation an otherwise Minkowskian spacetime by a static gravitational
potential Φ has the form

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
δij dxidxj (E.274)

where the decomposition gµν = ηµν + hµν with the condition |hµν| ≪ 1 is only valid
in that particular Cartesian coordinate choice. Then, the inverse metric can be ap-
proximated to be gµν ≃ ηµν with an error of the order h2. The tt-component of the
Ricci-tensor in general given by

Rtt = ∂tΓ
µ

tµ − ∂µΓ
µ

tt + Γ νtµ Γ
µ

νt − Γ νtt Γ
µ
µν (E.275)

where the first term ∂tΓ
µ

tµ = 0 for static fields, and the squared Christoffel-symbols

+Γ νtµ Γ
µ

νt − Γ νtt Γ
µ
µν would contribute at order h2, so we neglect them. The only

contributing term is then

Rtt = −∂µΓ
µ

tt = −∂iΓ
i
tt = −∂i

(
δij

2

(
− ∂jhtt

))
=

1
2
δij∂i∂jhtt =

∆Φ

c2 (E.276)

because htt = 2Φ/c2. Collecting the results on the traces and the weak field, static
limit then yields

Rtt =
∆Φ

c2 =
4πG
c4 ρc2 → ∆Φ = 4πGρ, (E.277)

which one recognises as the classic Poisson field equation.

E.6 Weyl-curvature

There is a very good physical reason to decompose the Riemann tensor Rαβµν as
full quantification of curvature into two parts: The Ricci-curvature Rβν = gαµRαβµν,
which appears in field equation as Rβν − R/2 gβν and which is proportional to the
energy-momentum tensor Tβν, and the remaining curvature components, which form
the Weyl-tensor Cαβµν describing the curvature that has been sourced by energy and
momentum elsewhere and has propagated to the spacetime point under considera-
tion.

As already discussed, the field equation should not fully fix the curvature and
set it to be proportional to the source of the field, which is a typical structure in
all field equations. Electrodynamics, for instance, equates only 4 components of the
24 = 6 × 4 possible derivatives ∂βFµν of Fµν to be equal to the source ȷν according to
ηβµ∂

βFµν = 4π/c ȷν.
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e. gravitational field equation

But is there a constraint on the remaining 20 components? Yes, in fact through
the Bianchi-identity,

∂λFµν + ∂µFνλ + ∂νFλν = 0 or, equivalently ηβµ∂βF̃µν = 0 (E.278)

with the dual tensor F̃µν = ϵµναβFαβ/2.
Similarly, the off-trace parts of the curvature form the Weyl-tensor which obeys

an analogous differential Bianchi-identity. In fact, it obeys the same antisymmetry
relations as the Riemann-tensor, i.e.

Cαβµν = −Cβαµν = −Cαβνµ (E.279)

as well as an algebraic Bianchi-identity

Cαβµν + Cαµνβ + Cανβµ = 0 (E.280)

and
gαµ Cαβµν = 0 (E.281)

and finally a differential Bianchi-identity

∇τCαβµν + ∇µCαβντ + ∇νCαβτµ = 0. (E.282)

Let’s construct a systematic decomposition of the Riemann curvature Rαβµν: From
any symmetric tensor Xαβ one can derive the quantity X̃αβµν

X̃αβµν = Aαµ gβν + Aβν gαµ − Aαν gβµ − Aβµ gαν. (E.283)

This definition of X̃αβµν makes sure that the quantity fulfils the properties

X̃αβµν = −X̃αβµν = −X̃βαµν and X̃αβµν + X̃αµνβ + X̃ανβµ = 0 (E.284)

i.e. effectively the index exchange symmetries of the Riemann-tensor, suggesting the
ansatz

Rαβµν = Cαβµν + a · R̃αβµν + b R · g̃αβµν (E.285)

with the Ricci-scalar R, and g̃αβµν and R̃αβµν from the metric gµν and the Ricci-
tensor Rµν, respectively. Then, the two factors a and b can be determined through
contraction.
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e.6. weyl-curvature

This decomposition can be used to show an extremely interesting algebraic prop-
erty of the Weyl-curvature Cαβµν as the part of curvature that propagates: The tensor
can only be nonzero in more than four dimensions, suggesting that gravity can
only exist at locations where the energy momentum tensor is zero in less than four
dimensions, entirely defeating the purpose of a field theory:

• n = 1

no Riemann-curvature, Rαβµν = 0, because of the exchange symmetry in e.g. the
last two indices: There can’t be any curvature in one dimensions, because the
covariant derivatives always commute, as they apply only to a single direction.

• n = 2

Riemann-curvature is always proportional to the Ricci-scalar and the metric, as
two-dimensional manifolds are always maximally symmetric,

Rαβµν =
R
2

(
gαµgβν − gανgβµ

)
(E.286)

• n = 3

Riemann-curvature is proportional to the Ricci-tensor and the Ricci scalar, but
the Weyl-tensor vanishes identically,

Rαβµν =
(
gβµ Rαν + gαν Rβµ − gβν Rαµ − gαµ Rβν

)
+

R
2

(
gαµgβν − gανgβµ

)
(E.287)

That implies that the full Riemann-curvature needs to vanish if Tµν is linked to
the Ricci-curvature as in the conventional field equation: There would not be
vacuum solutions in 2 or 3 dimensions.

• n = 4

Ricci- and Weyl-curvature can simultaneously exist

Rαβµν = Cαβµν +
1
2

(
gβµ Rαν + gαν Rβµ − gβν Rαµ − gαµ Rβν

)
(E.288)

and Rαβµν can be nonzero even if Rµν is zero as a consequence of Tµν = 0.

Spacetimes without Weyl-curvature, Cαβµν = 0 (as for instance FLRW-spacetimes)
are conformally flat and their metric can always be written as

gµν = Ω2(x)ηµν (E.289)

i.e. as originating with a (coordinate-dependent) conformal factor Ω2(x) > 0 from the
flat Minkowski-metric: This implies that the light cone structure of these spacetimes
is identical perfectly Minkowskian light cones: The conformal factor drops out in the
condition ds2 = gµνk

µkν = Ω(x)2ηµνk
µkν = 0. That would be automatically the case in

2 and 3 dimensions.
A direct computation (which is very tedious) shows that Weyl-curvature is in-

variant under conformal transformations gµν → Ω(x)gµν of the metric and that the
Weyl-tensor maps onto itself: Cαβµν → Cαβµν.
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e. gravitational field equation

The differential Bianchi-identity is the dynamical equation for the Riemann cur-
vature:

∇τ Rαβµν + ∇µRαβντ + ∇ν Rαβτµ = 0 (E.290)

Contraction with gαµ then yields:

gαµ ∇τ Rαβµν + gαµ ∇µ Rαβντ + gαµ ∇ν Rαβτµ = 0 (E.291)

Identifying the Ricci-scalar in the first (and after an index swap) in the last term
yields:

gαµ ∇µ Rαβντ = ∇α Rαβντ = ∇ν Rβτ − ∇τ Rβν. (E.292)

As the same differential Bianchi-identity applies to the Weyl-tensor Cαβµν as well,
one obtains a very similar result

gαµ ∇µ Rαβντ = ∇α Cαβντ = ∇ν Sβτ − ∇τ Sβν = Cβντ (E.293)

with the Schouten-tensor

Sβτ =
Rβτ
2
− R

6
gβτ (E.294)

and the Cotton-tensor
Cβντ = ∇ν Sβτ − ∇τ Sβν (E.295)

such that the differential Bianchi-identity assumes a shape that is in fact reminiscent
of the field equation in Maxwell-electrodynamics! For vacuum both Rβτ and R vanish,
such that the Sβτ is necessarily zero, implying that

gαµ∇µCαβντ = 0 invacuum. (E.296)

If there are is a field-generating energy momentum content Tβτ , 0, one would obtain
in a non-vacuum situation

gαµ ∇µ Cαβντ = ∇α Cαβντ = Cβντ =
4πG

c4 ·
[
∇νTβτ − ∇τTβν −

1
3

(
∇τT · gβν − ∇νT · gβτ

)]
(E.297)

similar to gαµ∇α Fµν = 4π/c ȷν.

E.7 Raychaudhuri-equation

The Raychaudhuri-equation gives a very pictorial and intuitive impression of the
effects of the two types of curvature (Ricci and Weyl). It’s even possible to apply the
concept to classical gravity, so let’s do this first: A bundle of geodesics xi(t) with
relative velocities υi

x′i = xi + υi t (E.298)

would exhibit relative motion

∂x′i

∂xj
= δij +

∂υi

∂xj
· t ≃ ∂x′i

∂xj
= exp

(∂υi
∂xj
· t

)
(E.299)
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e.8. nonlinearity and locality

at order t, in the spirit of a Lie-generated transformation. The change of the volume
elements from d3x to d3x′ is given by

d3x′ = det
(∂x′
∂x

)
d3x (E.300)

with the Jacobian determinant of the coordinate change. Using my third most
favourite formula,

ln d3x′ = ln det
(∂x′
∂x

)
+ ln d3x (E.301)

following from ln det A = ln
∏
i
λi =

∑
i

ln λi = tr ln A for any non-singular matrix

A one arrives at

ln det
(∂x′
∂x

)
= tr ln

(∂x′
∂x

)
= tr ln exp

(∂υ
∂x

t
)

= t · tr
(∂υ
∂x

)
(E.302)

with the identification

tr
∂υ
∂x

= δij ∂jυi = −δij ∂j∂i Φ = −∆Φ = −4πGρ (E.303)

such that the matter density ρ (appearing through the substitution of the Poisson
equation ∆Φ = 4πGρ) inside a cloud of freely falling test particles (made sure by the
Newtonian equation of motion υ̇i + ∂iΦ = 0) causes a negative change of the volume.
Interestingly, the appearance of a cosmological constant λ would likewise contribute
to the volume evolution, and we witness this actually in cosmology.

The same intuition applies to a relativistic theory of gravity, as the Ricci-curvature
is responsible to the volume change of a spacetime volume. The picture that emerges
is that Ricci-curvature changes volumes while keeping their shape intact, and that
Weyl-curvature changes shapes while conserving their volumes (at least to lowest
order). In all theories this distinction is made by a decomposition into the trace and
the traceless part of the curvature.

E.8 Nonlinearity and locality

The field equation of general relativity are nonlinear partial differential equations
with the important consequence that the superposition principle does not apply,
which was such a convenient tool in classical gravity for solving the Poisson equation
∆Φ = 4πGρ + λ. There, it’s always possible to separate the problems one faces when
determining the potential Φ from ρ: the inversion of the differential operator, to
account for boundary conditions (as the Poisson-equation is an elliptical partial
differential equation) and the possibly complicated geometry of the source ρ. In the
case of linear field theories one achieves that by means of a Green-function G(r, r′) as
a solution to the field equation for a point charge δD(r − r′), for simplicity on small
scales where λ = 0 in a good approximation:

∆
1

|r − r′ |
= 4πGδD(r − r′) (E.304)

Using linearity, the equation can be multiplied with ρ((r)) and integrated over d3r ′ .
Effectively, this is exactly the expression of the superposition principle as one adds
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e. gravitational field equation

Table 2: Compilation of the simplest solutions of general relativity together with their sym-
metries and peculiar physical properties. It should be emphasised that a coordinate choice
has been taken which is particularly suited to the symmetry of the respective spacetimes.

black holes grav. waves FLRW-cosmologies white dwarfs
homogeneous t r ± ct r t
isotropic yes yes yes yes
varies along r r,t t r
gravity strong weak strong weak...strong

scales rS = 2GM
c2 linear physics ρcrit = 3H2

0
8πG eqn. of state

curvature Weyl Weyl Ricci Weyl + Ricci
sources vacuum solution vacuum solution p, ρ (ideal fluid) p, ρ (ideal fluid)

up the contributions to Φ at r from the source distribution ρ(r′):∫
d3r ′ ∆

ρ(r′)
|r − r′ |

= ∆

∫
d3r ′

ρ(r′)
|r − r′ |

= ∆Φ = 4πG
∫

d3r ′ ρ(r′)δD(r − r′) = 4πGρ(r)

(E.305)

so that

Φ(r) =
∫

d3r ′
ρ(r′)
|r − r′ |

(E.306)

is the required solution for the potential. Effectively, going from ρ to Φ relies on
linearity, and going from Φ to ρ uses the locality of the equation as it determines
the classical equivalent of Ricci-curvature. General relativity, however, is nonlinear,
because pictorially the Christoffel-symbols contain terms of the type g∂g, the Rie-
mann curvature (g∂g)2 and ∂(g∂g), and finally the Ricci-curvature terms of the type
g(g∂g)2 and g∂(g∂g). Despite the nonlinearities, the field equation is still local, as it
links the Ricci-part of the curvature to the energy-momentum tensor, as exemplified
by the consideration of the change in volume of freely falling clouds of test particles
in the Raychaudhuri-equation.

And I would like to mention, that the field equation of general relativity is a
hyperbolic differential equation: Therefore, the solution is already unique if initial
conditions are specified, while boundary conditions are not necessary. Hyperbolicity
makes sure that excitations of the gravitational field are propagating along the light
cones defined differentially by ds2 = gµνdxµdxν = 0. The nonlinearities of the field
equation make it very difficult to find solutions for arbitrary Tµν, as one can not use
the Green-method which would require linear superposition. But there are solutions
for reasonable simple and symmetric cases, which are listed in Table. E.8 and which
will be discussed in Sects. F, G and H.
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