
D sources of the gravitational field

D.1 Gravity and matter

The source of gravity in the Poisson equation ∆Φ = 4πGρ as the field equation is the
matter density ρ. As a scalar potential Φ is identical in all frames. To make the source
consistent with the field, we need to assume in Newtonian gravity that the density
ρ is identical in all frames, too, in contradiction with relativistic effects like mass
increase and length contraction that would affect the matter density, and with the
fact that from a moving frame of reference ρ would be perceived as a momentum
density rather than a matter density. For Newtonian gravity this is all irrelevant as
the Poisson equation states a relation between two absolute quantities. The continuity
equation for the matter density

∂t ρ + ∂i(ρ υ
i) = 0 (D.220)

is phenomenological and expresses the idea that matter is not arbitrarily created or
annihilated, and the partial derivatives refer to spacetime as being Euclidean, but in
the spirit of Galilean relativity, but weirdly with a static relation between ρ and Φ.

Electrodynamics building on Lorentzian relativity does things better: The source
of the electromagnetic field Fµν in Maxwell’s equation ∂µFµν = 4π/c ȷν is the 4-current
density as a Lorentz-vector ȷµ. Neither the charge density nor the current density
are absolute but depend on the state of motion of the observer relative to the charge.
As ȷµ is a timelike vector (because charges are tied to massive particles), it is always
possible to boost into the rest-frame of a charge with a suitable Lorentz-transform,
ȷµ → Λ

µ
αȷα. There should be a consistent transformation between all terms of a

formula, so Maxwell’s field equation

∂µFµν =
4π
c
ȷν (D.221)

implies, that the Faraday-tensor Fµν should transform, too, Fµν → Λ
µ
αΛ

µ

βFαβ as well
as the partial derivative ∂µ = Λ α

µ ∂α, which inherits its transformation property from
the coordinates. The relativistic charge density ȷµ is conserved,

∂µȷ
µ = ∂ct(cρ) + ∂i ȷ

i = 0, (D.222)

consistently in all Lorentz-frames, because ∂µȷ
µ is a scalar.

It is fun to notice that the Maxwell equation and the Lorentz-equation introduce a
nice consistency between the fields and the charges: Multiplying the Lorentz-equation
for the acceleration of a charge

duα
dτ

=
q

m
ηβγ Fαβuγ (D.223)

with ηαδ uδ yields the conservation of the normalisation of the velocity as a timelike
vector

ηαδ uδ
duα
dτ

=
1
2

d
dt

(
ηαδ uαuδ

)
=

q

m
ηαδηβγ Fαβuγuδ = 0 (D.224)
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d. sources of the gravitational field

Simultaneously, acting on the Maxwell equation with the differentiation ηγν ∂γ

ηβµ ∂β Fµν =
4π
c
jν (D.225)

shows that the charge is conserved ∂µȷ
µ = 0

ηβµ ηγν ∂β∂γ Fµν =
4π
c
ηγν ∂γjν = 0 (D.226)

In both cases, the contraction of the antisymmetric tensor Fµν with the symmetric
tensors ∂µ∂ν and υµυν implies the conservation.

We would like these ideas to be realised for gravity as well: There should be a
source of gravity with a proper covariant conservation law and a consistent transfor-
mation between the source and the field, all of course consistent with the Poisson
equation in the limit of static sources and weak gravitational fields. With the knowl-
edge of special relativity one notices a decisive difference between ρ as a charge
density and ρ as a matter density: One can imagine that a cloud of charge gets
Lorentz-contracted by a factor of γ as seen from an observer moving relative to the
charge, implying that the charge density ρ is indeed the ct-component of a time-like
Lorentz-vector. A cloud of matter seen from an observer moving relative to it would
experience the same Lorentz-contraction, but there is relativistic mass increase in
addition to it, introducing two instead of a single power of γ. This transformation
property can not be reconciled with a single-indexed quantity like ȷµ but requires a
double indexed quantity: In fact, we will introduce the energy-momentum tensor Tµν

with Ttt = ρc2 in accordance with this idea.

D.2 (Relativistic) fluids as sources of gravity

Fluids are a continuum description of matter, i.e. a field where at every point the
density and the velocity are defined: It is a valid picture to think of the fluid as being
composed of small fluid elements across which the gradients of the fields do not
vary strongly and linearisations apply. Fluid elements react to forces exerted by the
surrounding fluid if their size is changed or if their shapes are distorted by gradients
of the velocity field across the fluid element; in general there is a force Fi = σijdAj

acting on the surface element dAj , parameterised by the shear tensor σij , which
is necessarily symmetric, σij = σji . While this relation is in general tensorial, the
separation σij → σij + pδij would define a traceless anisotropic stress tensor σij and
the isotropic pressure p. Effects in the relation of anisotropic stress are parameterised
by the shear viscosity and if in addition there are no viscous effects in relation to the
change of volume of fluid element parameterised by the bulk viscosity, the fluid is
ideal and only shows dynamic effects in relation with pressure p.

An ideal fluid is therefore characterised by density, pressure and velocity, and
these quantities are assembled into the energy momentum tensor Tµν,

Tµν =
(
ρ +

p

c2

)
uµuν − p gµν (D.227)

and we will convince ourselves retrospectively that this is the correct quantity, by
showing the equivalence of covariant conservation of Tµν by means of a continuity
equation gαµ∇αTµν = 0 and the equations of relativistic fluid mechanics.
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d.2. (relativistic) fluids as sources of gravity

The components of the energy momentum tensor,

Tµν =
(
Ttt Tti
Tjt Tij

)
(D.228)

contain the energy density Ttt , the energy flux in i−direction, Tjt being the component
j of momentum density and Tij the projection of the i−momentum in j-direction. In
the local rest frame with Cartesian coordinates one would obtain gµν = ηµν as well as
uµ = (c, 0)t such that

Tµν =


ρc2

p
p

p

 (D.229)

The trace gµνTµν has the value ρc2 − 3p, which likewise is true in any frame and any
geometry: gµνTµν = (ρ + p/c2)gµνuµuν − pgµνgµν = ρc2 − 3p because gµνuµuν = c2 and
gµνgµν = δ

µ
µ = 4. Many fluids are characterised by a fixed relation between pressure

p and energy density ρc2, which is referred to as the equation of state parameter
w = p/(ρc2). With the equation of state, the trace becomes gµνTµν = (1 − 3w)ρc2.
A good way to remember this is the realisation that for photons the relationship
p = ρc2/3 holds, implying that gµνTµν = 0 as w = +1/3, in accordance with a direct
computation of the energy-momentum tensor from the Maxwell-Lagrange-density.

The conservation law gαµ ∇αTµν = 0 for the energy momentum tensor is vectorial
(in the index ν), in contrast to the corresponding law for the charge density gαµ∇αȷµ =
0, which is a scalar expression. To make sense of it nonetheless, one can project the
vector gαµ ∇αTµν = 0 onto the velocity uµ and a plane perpendicular to it. Computing
the gradient gαµ ∇αTµν = 0 yields

gαµ∇α
[(
ρ+

p

c2

)
uµuν−pgµν

]
= gαµ

[
∇α

(
ρ+

p

c2

)
·uµuν+

(
ρ+

p

c2

)
∇α(uµuν)−∇α p ·gµν

]
= 0

(D.230)

keeping in mind that metric compatibility states that ∇αgµν = 0 and that the product
of velocities in the second term resolves to gαµ∇α(uµuν) = gαµ∇αuµ ·uν+ gαµ uµ ·∇αuν.

Computing uνgαµ∇αTµν = 0 as the projection of the covariant conservation law
onto uν yields, if applied to the form of eqn. D.230 :

= gαµ ∇α
(
ρ +

p

c2

)
· uµuνuν + gαµ

(
ρ +

p

c2

)
· ∇αuµ · uνuν−

gαµ
(
ρ +

p

c2

)
· uµuν ∇αuν − gαµ ∇α p · gµν uν (D.231)

where we can carry out a number of simplifications: uνuν = c2 in the first and second
term. Then, ∇α(uνuν) = 0 = uν∇αuν + ∇αuν · uν = 2 · uν∇αuν implies that the third
term vanishes, and finally gαµ ∇α p · gµν uν = gαµ gµν∇αp uν = δαν ∇α p · uν = ∇αp · uα.
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Therefore, one arrives at

uνgαµ∇αTµν = gαµ ∇α
(
ρ +

p

c2

)
· c2 uµ + gαµ

(
ρ +

p

c2

)
∇αuµ · c2 − ∇α p · uα = 0 (D.232)

and lastly
uνgαµ∇αTµν = gαµ

[
∇α

(
ρ c2 · uµ

)
+ p∇αuµ

]
= 0 (D.233)

which is exactly the relativistic continuity equation. The non-relativistic limit is
recovered by setting ρ c2 ≫ p as well as uµ = (c, υi)t with γ = 1, and using Cartesian
coordinates implies gαµ = ηαµ as well as ∇α = ∂α:

gαµ
[
∇α(ρc2 ·uµ) +p∇αuµ

]
= ηαµ

[
∂α ρc2 ·uµ+ρc2∂αuµ+p∂αuµ

]
≃ c2 ·ηαµ∂α(ρuµ) = 0

(D.234)

where the last term in the brackets reads

∂t ρ + ∂i(ρ υ
i) = 0 (D.235)

in the preferred coordinate frame, which is exactly the continuity equation from
classical continuum mechanics: But unlike classical mechanics, where continuity is
an empirical finding, it results in relativity from the covariant conservation of Tµν.

We can resubstitute the conservation law eqn. D.233 into the divergence D.230
and see how we can isolate a statement about the conservation of momentum density.
Again writing out gαµ∇αTµν = 0 for the energy momentum tensor of an ideal fluid
and writing out the expression fully gives:

gαµ∇αTµν = gαµ
[
∇α(ρuµ)uν+

p

c2∇αuµ ·uν+∇αp ·
uµuν

c2 +
p

c2 uµ∇αuν+ρ·uµ∇αuν−∇αpgµν
]

(D.236)

where the sum of the first two terms correspond exactly to the continuity equa-
tion D.233 (up to a pre-factor of c2), and are therefore zero. Consequently,

gαµ∇αTµν = gαµ
[(uµuν

c2 − gµν
)
· ∇α p +

(
ρ +

p

c2

)
· uµ∇αuν

]
= 0 (D.237)

In this way, one arrives at the relativistic Euler equation as an expression of momen-
tum conservation:

gαµ
[(uµuν

c2 − gµν
)
∇α p +

(
ρ +

p

c2

)
uµ∇α uν

]
= 0 (D.238)

First, we see that only pressure gradients perpendicular to the velocity are ever
relevant,

gαµ
(uµuν

c2 − gµν
)
∇αp = ∇⊥p (D.239)

because one applies a projection operator on the gradient in pressure, projecting out
the component of ∇µ p perpendicular to uµ, and secondly, if the motion of a fluid
element proceeds along a geodesic with autoparallelity uµ∇µuν = 0 given,(

ρ +
p

c2

)
gαµuµ∇αuν =

(
ρ +

p

c2

)
uµ ∇µuν (D.240)
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d.2. (relativistic) fluids as sources of gravity

that those pressure gradients must be zero! Pressure gradients would push a fluid
element away from the geodesic that characterises free fall.

The nonrelativistic limit can be constructed by approximating the autoparallelity
condition,

uµ∇µuν ≃ uµ∂µu
ν = c∂ctu

j + ui∂iu
j (D.241)

which shows that the nonlinearity of the Euler-equation has a relativistic origin, and
furthermore for a flat background where ∇µ = ∂µ that

ρ
(
∂tu

j + ui∂iu
j
)

= −∂jp (D.242)

or equivalently, that

∂tu
j + ui∂iu

j = −
∂jp

ρ
(D.243)

which is the classical Euler-equation for ideal fluid mechanics. Allowing for weak,
static Newtonian gravity one work with the approximation that pressure is scalar
(actually it is only a partial trace of the energy momentum tensor!), so ∇αp = ∂αp and
we obtain for the covariant derivative

uµ ∇µuν = uµ
(
∂µuν − Γ αµν uα

)
(D.244)

while Newtonian gravity is a weak and static perturbation to the line element,

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
δij dxidxj (D.245)

from which we isolate the two metric functions

gtt =
(
1 +

2Φ
c2

)
and gii = −

(
1 − 2Φ

c2

)
(D.246)

Working towards the nonrelativistic limit we would replace gαβ = ηαβ but keep
the derivative ∂µgαβ with the exception ∂ctgµν = 0 as Newtonian fields are neces-
sarily static. The derivatives of the metric then reflect potential gradients, ∂i gµν =
± 2

c2 ∂iΦδµν which become the Christoffel-symbol Γ itt ∼ +∂jΦ. So ultimately, we ar-
rive at the Euler-equation of classical ideal fluid mechanics including a gravitational
potential Φ,

∂tu
j + (ui∂i)u

j = −
∂jp

ρ
− ∂jΦ, (D.247)

from the covariant divergence gαµ∇αTµν = 0. Alternative to resubstituting we can
take the vector gαµ∇αTµν = 0 and project it straight away onto a plane perpendicular
to uν, by means of a projection operator P

νρ
⊥ = uνuρ/c2 − gνρ, to arrive at the Euler-

equation.
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D.3 Fields as sources of gravity

Relativistic gravity should be compatible with relativistic fields as well as fluids,
similarly to electrodynamics which is equally valid for a classical charge density as a
source or a charge density that is computed from the probability determined by the
wave functions of the particles according to the Born-postulate: This is made sure
by the fact that fields can be assigned an energy-momentum tensor as an expression
of local energy density, momentum density and stress, which obeys automatically
relativistic conservation laws as soon as the Lagrange-density L of the fields does not
explicitly depend on the coordinate, meaning that the working principle of the fields
should be identical everywhere and at every time.

A scalar field φ on an arbitrary, possibly curved spacetime with metric gµν for
instance would be described by the Lagrange-function

L = L(φ,∇αφ, gµν) (D.248)

if its dynamics is universal, so that L depends on the field φ and its derivative ∇αφ
(which would of course be = ∂αφ as φ is scalar, but let’s use the covariant formalism),
but not explicitly on the coordinates xµ. The action integral would read

S =
∫

d4x
√
−det g L (D.249)

where the additional factor
√
−det g makes sure that the volume element is invariant

under coordinate transforms (we come to this in the next chapter). The field equation
follows from variation according to Hamilton’s principle δS = 0. Specifically,

δS =
∫

d4x
√
−det g

(∂L
∂φ

δφ+
∂L

∂∇αφ
δ∇αφ

)
(D.250)

Using the interchangeability δ∇αφ = ∇αδφ and integration by parts while keeping
the variation on the boundary fixed gives

δS =
∫

d4x
√
−det g

(∂L
∂φ
− ∇α

∂L
∂∇αφ

)
= 0 (D.251)

from which we extract the Euler-Lagrange equation, now in a covariant formulation
ready to work on a curved background,

∇α
∂L

∂∇αφ
=

∂L
∂φ

(D.252)

Next, it’d be great if an expression for the energy momentum tensor Tµν would
directly follow from the coordinate independent Lagrange-function L, possibly along
with a covariant conservation law in the form gαµ∇αTµν = 0. In fact, if L(φ,∇αφ) does
not depend on position the variation δL is given by

δL =
∂L
∂φ

δφ+
∂L

∂∇αφ
δ∇αφ = ∇α

[ ∂L
∂∇αφ

δφ
]

+
∂L
∂φ

δφ− ∇α
∂L

∂∇αφ
· δφ (D.253)
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d.3. fields as sources of gravity

where in the last step the Leibnitz-rule was used to introduce the derivative of the
product ∂L/∂∇αφ δφ, which suggests that the Euler-Lagrange-equation should be
substituted,

δL = ∇α
[ ∂L
∂∇αφ

δφ
]

+
(∂L
∂φ
− ∇α

∂L
∂∇αφ

)
︸               ︷︷               ︸

=0

δφ → δL = ∇α
[ ∂L
∂∇αφ

δφ
]

(D.254)

Next, we need to write the variation in L from an infinitesimal translation of
the field δφ (because the Lagrange-density does not change itself as a function of
coordinate, it can only change if the fields themselves are different!), i.e. to think of a
way of actually generating the variation from an infinitesimal shift in the coordinates:

φ (xµ + δxµ) = φ (xµ) + ∇νφ (xµ) · δxν + . . . (D.255)

again using covariant derivatives for generality. Then, the field variation δφ is given
by

δφ = φ(xµ + δxµ) − φ(xµ) = ∇νφ · δxν = gµν ∇µφ δxν (D.256)

On the other hand, shifting the Lagrange function L by an amount δxβ is easily
achieved by the displacement defined through the covariant derivative, δxβ∇β =
gαβδxβ∇α:

δL = gαβ ∇αL · δxβ. (D.257)

Combining both yields

δL = gαβ ∇αL · δxβ = ∇α
[ ∂L
∂∇αφ

· gµν ∇µφ δxν
]

(D.258)

As the same covariant derivative ∇α acts on both terms, they can be combined to give

∇α
[
L · δxα − ∂L

∂∇αφ
gµν ∇µφ δxν

]
= 0 (D.259)

This equation would be perfect if it was independent of the shift δx, but it appears
with different indices in the two terms. A possible remedy is a renaming δxα =
gαµ gµν δx

ν = δαν δx
ν, so that the formula becomes

∇α
[
gαµ gµν L −

∂L
∂∇αφ

∇νφ
]
δxν = gαµ ∇α

[
L gµν −

∂L
∂∇µφ

∇νφ
]
δxν = 0 (D.260)

where we can identify the energy momentum tensor as computed for the field φ from
its Lagrange-function L(φ,∇αφ, gµν),

Tµν =
∂L

∂∇µφ
∇νφ− Lgµν (D.261)
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including the conservation law gαµ ∇αTµν = 0 in a covariant formulation. The idea,
that the energy-momentum tensor Tµν mediates between the field and the gravita-
tional field equation is very interesting: As soon as the dynamics of the fields are
universal, Tµν is defined , covariantly conserved, and computable from L, irrespective
of the actual substance. In this sense, general relativity is the gravitational theory
of systems with conserved energy and momentum in the same way as Maxwell-
electrodynamics is the electromagnetic theory for systems with conserved charges.
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