
C differential structure of spacetime and
curvature

C.1 Riemann curvature tensor

The connection, which establishes parallel transport of vectors and tensors across a
manifold, defines the covariant derivative of these quantities because a proper rate
of change can be measured through the comparison of e.g. a vector with the parallel
transported counterpart. The Levi-Civita connection is singled out among all possible
connections as the (i) metric compatible ∇αgµν = 0 and (ii) torsion-free Γ αµν = Γ ανµ
one, in which case the connection coefficients can be computed from the metric gµν
and its first derivatives ∂αgµν alone. The metric structure of a manifold gµν, with an
additional differential structure ∇α, defines the Riemann-geometry.

All these ideas and concepts are independent from actual curvature and are rather
an expression of the choice of coordinates as they only use the metric and its first
derivatives, for which there is always a coordinate transform to make them vanish lo-
cally, and because only second derivatives would contain information about curvature,
we should use them to quantify it. Additionally, we would like to have a covariant
quantification of curvature in the form of a tensor: the Riemann curvature. Only if
the Riemann-curvature is nonzero, Rαβµν = 0 as a properly covariant expression, the
manifold is flat. None of the statements gµν = ηµν, ∇α = ∂α, or Γ αµν = 0 are able to
make a statement about curvature.

C.1.1 Riemann curvature in parallel transport

The order of parallel transport of vectors and tensors matters in shifts along different
directions. Starting with the expression for parallel transport by δx̄β,

υµ(x + δx) = υµ(x) − Γ µαβ · υ
α(x) δxβ (C.192)

we can define two paths: first a shift by δx̄ followed by a shift by δx,

υµ(x + δx) + δx) = υµ(x + δx) − Γ µαβ (x + δx) · υα(x + δx) · δxβ (C.193)

which evaluates to

= υµ(x)−Γ µαβ (x)·υα(x)δxβ−
[
Γ
µ

αβ +
∂Γ

µ

αβ

∂xγ
·δxγ

]
·[υα(x)−Γ αγδ (x)υγ(x)δxδ]·δxβ (C.194)

with Γ µαβ (x+δx̄) = Γ
µ

αβ (x)+
∂Γ

µ

αβ

∂xγ (x)·δxγ being the Taylor-expansion of the Christoffel-
symbol at x + δx̄. Alternatively, the two shifts can be interchanged, for a parallel
transport first by δx and then by δx̄.

υµ((x + δx) + δx) = υµ(x + δx) − Γ µαβ (x + δx) · υα(x + δx) · δxβ (C.195)

yielding

υµ(x)−Γ µαβ (x) ·υα(x)δxβ−
[
Γ
µ

αβ (x)+
∂Γ

µ

αβ

∂xγ
δxγ

][
υα(x)−Γ αγδ (x)υγ(x)δxδ

]
·δxβ (C.196)
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c. differential structure of spacetime and curvature

with an equivalent Taylor-expansion. Then, the change δυµ in parallel transport to
the point x + δx + δx̄ along two different paths is given by

δυµ = υµ((x + δx) + δx) − υµ((x + δx) + δx) = Rµαβγ · υ
α δxβ δxγ (C.197)

where we can isolate the Riemann-curvature,

Rµαβγ =
∂

∂xβ
Γ
µ
αγ −

∂
∂xγ

Γ
µ

αβ + Γ µ
δβ
Γ δαγ − Γ

µ

δγ
Γ δαβ , (C.198)

after renaming γ↔ β in the second expression to have δxβ δxγ). Flat manifolds with
vanishing Riemann curvature Rµαβγ = 0 would necessarily exhibit no change at all of
the transported vector, i.e. δυµ = 0.In a flat manifold the Riemann-

tensor is zero in every coordinate
choice.

Of course, the contravariant index ν can be lowered with a contraction,

Rµαβγ = gµνRναβγδ. (C.199)

And it is important to memorise the antisymmetry of the Riemann tensor in every
index pair,

Rµαβγ = −Rαµβγ = −Rµαγβ = +Rαµγβ (C.200)

as well as the algebraic Bianchi-identity,

Rµαβγ + Rµβγα + Rµγαβ = 0 (C.201)

with cyclic index permutation of the last three indices while keeping the first index
fixed.

C.1.2 Riemann-curvature from covariant derivatives

Covariant derivatives (into different direction) in contrast to partial derivatives, do
not commute.

(∇µ∇ν − ∇ν∇µ)υα =
[
∇µ ,∇ν

]
υα = −Rαβµνυ

β, (C.202)

and the commutator defines, as before, the Riemann curvature Rαβµν. Concerning
the index structure, it is best to remember that for every choice of µ and ν there is an
transformation in α and β acting on the vector υβ. As vectors are rotated in parallel
transport with a Levi-Civita connection, α and β are an antisymmetric index pair
because they effectively encode a rotation matrix. µ and ν are likewise an antisym-
metric index pair, due to the commutator in the definition of the Riemann curvature,
[∇µ,∇ν] = −[∇ν,∇µ].

Acting on a vector υµ with covariant differentiation ∇β yields

∇βυµ = ∂βυ
µ + Γ µ

βδ
υδ = t

µ

β (C.203)

with a tensor t
µ

β as a result. In further covariant differentiation ∇γ one needs to
watch out for co- and contravariant indices, with different signs in their respective
Christoffel-symbols:

∇γ t
µ

β = ∂γ t
µ

β − Γ
α
γβ t

µ
α + Γ µγα t α

β (C.204)
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Substituting eqn. C.203 into eqn. C.204 gives:

∇γ(∇βυµ) = ∂γ∂βυ
µ − ∂γΓ

µ

βδ
· υδ − Γ µ

βδ
∂γ υ

δ − Γ αγβ ·
[
∂αυ

µ + Γ µ
αδ
υδ

]
(C.205)

If one interchanges the order of differentiation and builds the antisymmetric combi-
nation ∇µ∇ν − ∇ν∇µ one can isolate the Riemann tensor,

Rµαβγ =
∂

∂xβ
Γ
µ
αγ −

∂
∂xγ

Γ
µ

αβ + Γ µ
δβ
Γ δαγ − Γ

µ

δγ
Γ δαβ . (C.206)

as the partial derivatives of υµ drop out, according to ∂γ∂βυ
µ = ∂β∂γυ

µ.
The two approaches are related to each other as parallel transport of a vector υα is

performed using the covariant derivative as an operator, δxβ ∇β. One can think about
extending this infinitesimal parallel transport to parallel transport operator for finite
distances by exponentiation. Then, parallel transport with a shift operator

exp(δxβ ∇β)υµ = υµ(x + δx) (C.207)

produces a shifted vector, and shifts would follow the Baker-Hausdorff-Campbell
formula,

exp(δxβ ∇β) exp(δxγ ∇γ) ≃ exp(δxβ ∇β + δxγ ∇γ) exp
(
−1

2
· δxβ δxγ [∇β,∇γ]

)
(C.208)

where translations into different directions would be sensitive to the presence of
curvature in the case [∇β ,∇γ] ∼ Rµαβγ , 0.

Tensors that are derived from the Riemann-curvature by contraction with the
metric include the Ricci-curvature Rµβ

Rµβ = gαν Rαµνβ, (C.209)

where the contraction over the first and third index is the only sensible one, given
the antisymmetry of the Riemann-tensor in the first and last index pair. Further
contraction yields the Ricci-scalar R

R = gµβ Rµβ = gµβ gαν Rαµνβ (C.210)

which is a quantification of the (local) curvature, similarly to the Kretschmann-scalar
K,

K = Rαµνβ Rαµνβ = gαγ gµρ gνσ gβδ Rαµνβ Rγρσδ (C.211)

Both curvature scalars are independent from the coordinate choice and are a conve-
nient quantification of curvature.

The Ricci-tensor and the Ricci-scalar define the Einstein-tensor Gµν,

Gµν = Rµν −
R
2
gµν (C.212)
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c. differential structure of spacetime and curvature

which is surprisingly the only rank-2 tensor with vanishing covariant divergence,
gαµ∇αGµν = 0 (the other one being the metric itself, gαµ∇αgµν = 0, due to metric
compatibility), as will become relevant in the next chapter.

C.1.3 What happens to vectors in parallel transport?

Levi-Civita connections are constructed to be metric-compatible which will imply
that vectors, if transported around a closed loop, will conserve their norm. Then, the
only way in which they can be affected in by curvature is a rotation: One can in fact
make that determination because the transported vector is brought back into the
original tangent space if the connection is torsion-free.

We can compute explicitly that the norm of a vector υ does not change, expressing
parallel transport by δxµ with the covariant derivative δxµ∇µ as an operator acting on
a geometric object like a vector or a scalar product. Bringing in the commutator of ∇µ
is a convenient way of interchanging the order of parallel transport from the starting
point to the destination and to subtract the two results from each other: If the norm
is conserved, the result should be zero.

gαβυ
αυβ → δxµδxν[∇µ,∇ν]

(
gαβ υ

αυβ
)

= δxµδxν
(
∇µ∇ν − ∇ν∇µ

)(
gαβ υ

αυβ
)

(C.213)

Metric compatibility ensures that ∇g = 0, so we obtain, dropping the common
prefactor δxµδxν,

= gαβ ∇µ∇ν
(
υαυβ

)
− gαβ ∇ν∇µ

(
υαυβ

)
(C.214)

Expanding the expression with the Leibnitz-rule yields

= gαβ
(
∇µ∇ν υα · υβ + ∇ν υα · ∇µ υβ + ∇µ υα · ∇ν υβ + υα ∇µ∇ν υβ

)
−

gαβ
(
∇ν∇µ υα · υβ + ∇µ υα ∇ν υβ + ∇ν υα ∇µ υβ + υα ∇ν∇µ υβ

)
(C.215)

and reordering the terms

= gαβ
(
∇µ∇ν − ∇ν∇µ

)
υα · υβ + gαβ υ

α
(
∇µ∇nu − ∇ν∇µ

)
υβ (C.216)

Finally, identifying the Riemann curvature and renaming the indices in the second
term gives:

= gαβ Rαγµν υ
γυβ + gαβ υ

α Rβγµν υγ = 2 Rαγµν υ
αυγ = 0, (C.217)

which is zero as a consequence of the antisymmetry of the Riemann-tensor in the
first index pair: The norm of υα is conserved.

In exactly the same way one can show that the scalar product gαβυαwβ between
two vectors υα and wβ is conserved. Indeed, repeating the entire calculation shows
that[
∇µ ,∇ν

](
gαβ υ

αwβ
)

=
(
∇µ∇ν − ∇ν∇µ

)(
gαβ υ

αwβ
)

= . . . = Rαγµν
(
υαwγ + υγwα

)
= 0,

(C.218)

keeping in mind that the tensor
(
υαwγ + υγwα

)
is perfectly symmetric.
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With these results, we can revisit the defining equation of Riemann-curvature:

[∇µ,∇ν]υα = Rαβµνυ
β (C.219)

where the antisymmetry in the µν-index pair is obvious because of the commutator,
[∇µ,∇ν] = −[∇ν,∇µ]. If a vector υα is transported in a loop and compared to the
original vector, it can not have changed its norm because of metric compatibility, and
it exists (if the manifold is torsion-free) at the same point and can be decomposed in
terms of the basis of the same tangent space. The only possible difference between
the vectors is a rotation, and this is exactly the meaning of the Riemann-tensor (and
which gives you a great way to memorise its antisymmetry in the index pair αβ): It is
essentially a rotation matrix in αβ for every µν-pair.
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