
B topological and metric structure of spacetime

General relativity requires that the idea of a vector-space (with Lorentzian geometry)
as a model for spacetime is given up. From the example of the perihelion precession
of the planet Mercury we saw that the gravitational field around massive objects
like the Sun is stronger compared to the prediction of a Newtonian theory: This is
surprising, because the 1/r-form of the potential is a direct consequence of the fact
that surfaces of spheres scale ∝ r2, so typical for a Euclidean vector-space. The new
model for spacetime that was pioneered by Albert Einstein and by David Hilbert
was that of a manifold: A topological space with a metric and a differential structure,
and ultimately, curvature as an expression of the gravitational field. The decisive
property of curved manifolds is a locally defined, varying geometry, encapsulated by
the metric, which becomes dependent on the coordinates.

The topological structure explains the connectivity of sets of spacetime points
and introduces open sets, which are used to construct continuous mappings of the
spacetime points onto their coordinates. Changes from one coordinate choice to
another need to be invertible and differentiable (which is called a diffeomorphism).
Adding a metric structure to the manifold allows the measurement of norms of
vectors and the angle between them, and the construction of invariants. Finally, the
construction of parallel transport and that of a covariant derivative allows statements
about variations of vector- and tensor-fields defined on the manifold. We need to
make sure that all these structures are compatible with each other.

B.1 Metric structure of manifolds and coordinate transforms

We have already encountered weak perturbations to the Minkowski-metric ηµν medi-
ated by the gravitational field in the limit of weak fields |Φ| ≪ c2 (which is only valid
in a particular coordinate choice!). A general metric tensor gµν defines an infinitesimal
contribution ds2 to the line element,

ds2 = gµνdx
µdxν (B.111)

between two points that have an infinitesimal coordinate difference dxµ. With this
definition, the metric tensor is symmetric as ds2 would not pick up any antisymmetric
contribution in the contraction with dxµdxν.

The line element ds2 is scalar, under coordinate transformations we should obtain:

ds2 = gµν dxµdxν = gµν ·
∂xµ

∂x′ρ
∂xν

∂x′σ
dx′ρdx′σ (B.112)

isolating the transformation rule for the metric to be

gµν ·
∂xµ

∂x′ρ
∂xν

∂x′σ
≡ g ′ρσ, (B.113)

and is naturally inverse to that of vectors like dxµ

dx′µ =
∂x′µ

∂xν
dxν, (B.114)
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b. topological and metric structure of spacetime

making sure that the coordinate transformation by the Jacobian and its inverse cancel
each other,

∂xµ

∂x′ν
∂x′ν

∂xρ
=

∂xµ

∂xρ
= δ

µ
ρ (B.115)

The interpretation of ds2 as the arc-length of a trajectory through spacetime is
still that of proper time, ds2 = c2dτ2, measured on a clock comoving with a massive
particle. We will show that photons would follow null-lines, ds2 = 0, so that the
definitions of light-cones and their associated causal structure is valid on metric
manifolds in exactly the same way.

A metric defines a geometry by defining distances and angles: It is a mapping of a
pair of vectors x, y onto a positive number obeying the three metric axioms:

1. g(x, y) ≥ 0, if g(x, y) = 0 ↔ x = y positive definiteness
Because from a physical motivation, the classification of vectors into timelike,
spacelike and lightlike is incredibly important, we will soften this axiom and
allow negative values for ds2 = g(dx,dx) = gµν dxµdxν: This, ultimately, defines
a pseudo-Riemannian geometry.In relativity we’re dealing with

pseudo-metrics: ds2 is negative
for space-like vectors, but those lie
outside the light cone and do not
correspond to causal processes.

2. g(x, y) = g(y, x) symmetry
This axiom is fulfilled by gµν being a symmetric, real valued tensor defining a
quadratic form

3. g(x, y) + g(y, z) ≥ g(x, z) triangle inequality
Again, there might be physical situations, where a ”detour” is shorter than the
direct path, and the classical example for this is the twin paradoxon: Lightlike
vectors have smaller norms than timelike vectors.

You would not believe how much I’d like at this point to go off on a tangent about
the necessity of a metric structure and the possibility of having geometries that are
defined in different ways, for instance avoiding scalar products. Instead, I would just
like to emphasise that the only metric geometry allowing for hyperbolic evolution of
the field equations along an invariant light cone is the Lorentzian one.

It is important to clarify the relation between an arbitrary geometry gµν and the
Lorentz-geometry ηµν: If one zooms in onto a single point of spacetime, it should have
a locally Minkowskian shape and allow for the local choice of Cartesian coordinates
(called normal coordinates in this context). Clearly, with a coordinate transform one
can transform the metric

g ′ρσ(x) = gµν(x) · ∂x
µ

∂x′ρ
∂xν

∂x′σ
(B.116)

at one point in such a way that it becomes diagonal with eigenvalues λµ, because it is
symmetric. A rescaling of the coordinates xµ → xµ

√
λµ would then make gµν identical

to ηµν.
But it should not be possible to bring the entire manifold to a Lorentzian shape

and to choose globally Cartesian coordinates: To show this, we need to overcome the
idea that an arbitrary coordinate transform would be able to define just the right
transform to ensure gµν = ηµν at every point.
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b.1. metric structure of manifolds and coordinate transforms

Let’s consider a general coordinate transform xµ(x′ν) at a point P:

xµ(x′) = xµ
∣∣∣
P

+
∂xµ

∂x′ν
∣∣∣
P

(
x′ν − x′νP

)
(B.117)

+
1
2

∂2xµ

∂x′ν∂xρ
∣∣∣
P
·
(
x′ν · x′νP

)(
x′ρ − x′ρP

)
(B.118)

+
1
3!

∂3xµ

∂x′ν∂x′ρ∂x′σ
∣∣∣
P

(
x′ν − x′νP

)(
x′ρ − x′ρP

)(
x′σ − x′σP

)
+ · · · (B.119)

and count the number of degrees of freedom that is provided at every order of the
Taylor-expansion and see if they suffice to have g = η and to make all derivatives of g
appear at arbitrary order. If that would be the case, a coordinate transform could be
found that diagonalises the metric at every point and makes it globally Minkowskian,
across the entire manifold.

1. At lowest order, there are are more degrees of freedom provided by the coordi-
nate transform to diagonalise the metric gµν and have unit diagonal entries: We
can adjust the coordinate transform to make gµν = ηµν at the point P, because
counting the degrees of freedom yields

∂xµ

∂x′ν
∼ n2 (B.120)

because there are n choices for x and n independent choices for x′

g ′µν ∼
n(n + 1)

2
(B.121)

because the metric is a symmetric, real-valued n×n matrix. The counting shows
that n2 > n(n + 1)/2 for every number of dimensions n, so there are enough
degrees of freedom to adjust gµν = ηµν locally at P.

2. At second order, the number of degrees of freedom provided by the coordinate
transform is exactly that needed to make the first derivatives of the metric
vanish at P.

∂2xµ

∂x′ν∂x′ρ
∼ n2(n + 1)

2
(B.122)

because the differentiations should not be counted twice for ν = ρ, and

∂g ′µν
∂x′ρ

∼ n2(n + 1)
2

(B.123)

because there are n possible differentiations of a symmetric matrix. Surprisingly,
the degrees of freedom provided by the coordinate transform suffice exactly to
have the derivatives ∂ρgµν disappear locally at P.

3. At third order, the number of degrees of freedom provided by the coordinate
transform falls short of the number needed to make the second derivatives of
the metric at the point P disappear.

∂3xµ

∂x′ν∂x′ρ∂x′σ
∼ n · n(n + 1)(n + 2)

6
(B.124)

23



b. topological and metric structure of spacetime

because all derivatives must be different, while

∂g ′µν
∂x′ρ∂x′σ

∼ n(n + 1)
2

· n(n + 1)
2

(B.125)

because both the metric and the double partial are symmetric. As n2(n + 1)(n +
2)/6 > n2(n + 1)2/4, the second derivatives of the metric can not be made to
vanish at P in the general case.

Continuing this line of reasoning shows that the problem exacerbates: The num-
bers of degrees of freedom provided by the coordinate transforms always falls short
of the degrees of freedom needed to make higher order derivatives of the metric
vanish. From that we conclude that there can only be two cases: Either the manifold
is already Lorentzian but with an unfortunate coordinate choice, in which case there
is a global construction of normal coordinates, or the manifold has new properties
expressed by the non-vanishing second derivatives of the metric: This is in fact the
curvature, as a new intrinsic property of the manifold that exists in any coordinate
choice. But even if that is the case, our argument shows that the spacetime structure
is locally Lorentzian with a Minkowski-metric.

B.2 Locally Minkowskian structure and the equivalence principle

While this argument is elegant, we might ask if the coordinate choice that achieves a
locally flat structure has a particular physical meaning: This is in fact the case, as an
expression of the equivalence principle which stipulates that gµν = ηµν and ∂ρgµν = 0
in a freely falling frame of reference. In such a freely falling frame, one recovers
(locally!) perfectly Lorentzian geometries and the laws of special relativity are valid,
for instance Maxwell’s equations as defined on a flat, Minkowskian spacetime. The
”size” r of the freely falling laboratory in which special relativity applies at least
approximatively is given by the requirement that curvature effects associated with
the second derivatives of the metric can not be dominant:

1
r2 =

∣∣∣∂2g

∂x2

∣∣∣ −→ r =
∣∣∣∂2g

∂x2

∣∣∣− 1
2 (B.126)

And we will see in a second that the Christoffel-symbols Γ αµν = gαβ

2

[∂gµβ
∂xν +

∂gβν
∂xµ −

∂gµν
∂xβ

]
will be zero, due to their proportionality to ∂g, and that the covariant derivative
∇µυα = ∂µυ

α + Γ αµβ υ
β reverts back to the partial derivative ∂µυ

α.

B.3 Vectors and fields on manifolds

Let us start with the picture that a manifold as the continuum of spacetime points has
been given coordinates by a suitable mapping, so every point P has coordinates, xµ.
Changing from one coordinate set xµ to a new set x′ν should be done in an invertible,
differentiable way. The manifold itself is not a vector space, but we can define abstract
fields on the manifold: If they have internal degrees of freedom, their components
can be expressed in the local set of basis vectors spanning the tangent space (or
cotangent space, if their degrees of freedom rather correspond to linear forms instead
of vectors).

One of the easiest geometric objects we can define is a curve C(λ) = xµ(λ) visiting
the spacetime points xµ as the (possibly affine) parameter λ evolves. If there is a scalar
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b.4. parallel transport and the covariant derivative

field φ(xµ) defined on the manifold, the rate at which the field amplitude changes
along the curve xµλ would be given by

dφ
dλ

=
d

dλ
φ(xµ(λ)) =

dxµ

dλ
∂φ

∂xµ
= uµ

∂φ

∂xµ
(B.127)

and we recognise in the last term the scalar multiplication of the field gradient
∂Φ/∂xµ into the tangent vector uµ = dxµ/dλ. In this sense, one can think of the
tangent uµ and of dxµ as vectors. In transforming from on set of coordinates to
another set shows that the vector uµ and the linear forms ∂µφ transform consistently:

dφ
dλ

= uµ
∂φ

∂xµ
= uνδ

µ
ν ·

∂φ

∂xµ
= uν

∂x′α

∂xν
∂xµ

∂x′α
∂φ

∂xµ
= u′α

∂φ

∂x′α
(B.128)

so that in fact the vector uµ transforms with the Jacobian and the linear form ∂µφ
with the inverse Jacobian of the coordinate transform.

We can run all possible curves through the point xµ and get a complete set of
tangent vectors which would ultimately constitute, after proper orthonormalisation, a
local basis set: the basis of the tangent space TPM at the point P with the coordinates
xµ: It is important to realise that the tangent space’s basis set exists for a given choice
of coordinates and that a different coordinate choice would induce a new basis set.
In particular, a neighbouring point Q can have a different tangent space TQM. That
implies that if we take the same abstract vector υ and express it with the basis sets at
TPM and TQM in coordinates υµ, the tuples will in general differ, and that one needs
a more elaborate concept of differentiating vectors than just partial derivatives: the
covariant derivative.

Up to this point, the manifold has two structures: the topological structure which
defines open sets and allows the definition of continuous coordinate mappings, and
the metric structure which defines the geometry through a scalar product. The two
structures are compatible with each other, as the definition of open sets with the
metric is never in contradiction with the topology. The next step is the definition of a
differentiable structure constructed with parallel transport.

B.4 Parallel transport and the covariant derivative

Parallel transport generates a perfect copy of an abstract vector at a different spacetime
position. After defining coordinates and therefore entries of a vector tuple, the parallel
transported copy υµ∥ (x+δx) of the vector υµ(x) at a new, infinitesimally distant position
x + δx is given by

υ
µ

∥ (x + δx) = υµ(x) − Γ µαβ υ
α(x) · δxβ + · · · (B.129)

at lowest order. It is conventional to use a minus-sign in front of the Christoffel-
symbol Γ µαβ , which generates the transformation rule for the vector υµ, because we
have a different set of tangent vectors at x + δx compared to the point x, and therefore
different expansions of the same vector into two different basis sets. In fact, the best
way to visualise the Christoffel-symbol is to think of Γ µαβ as a transformation matrix
in the indices α and µ acting on the components υα for shifts in any possible direction
δxβ.

There are cases where the connection is trivially zero, that is when index by
index the components of the parallel-transported vector are identical to the original
vector, which would be the case in a vector-space or a flat manifold with Cartesian
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b. topological and metric structure of spacetime

coordinates. In the general case, the tangent spaces at x and x + δx are not identical
and have a different set of basis vectors, so the expansion of the abstract vector,
although it is in fact identical at x and x + δx under perfect parallel transport, needs
to be different.

With this definition of parallel transport we can ask whether a vector field υ has
changed moving from x to x + δx, or equivalently, if it has a derivative. It is senseless
just to compare the entries of the vectors as they exist in different tangent spaces,
rather, we need to compare the vector field at x + δx with a parallel transported
version of υ taken from x to x + δx.

Taking the limit δxβ → 0 to get the differential rate of change yields

∇βυµ = lim
δxβ→0

υµ(x + δx) − υµ∥ (x + δx)

δxβ
= lim
δxβ→0

υµ(x + δx) − υµ(x)
δxβ

+ Γ µαβ · υ
α(x) · δx

β

δxβ
(B.130)

such that the covariant derivative is given by

∇βυµ = ∂βυ
µ + Γ µαβ υ

α (B.131)

if we substitute the partial derivative as the index-by-index comparison of the entries
υµ at the two infinitesimally separated points. For scalar fields Φ there is no distinction
between the covariant derivative and the conventional partial derivative, ∇µ = ∂µφ
because there are no internal degrees of freedom whose entries would change if
the set of basis vectors is different, hence the field can only have a derivative if it
assumes a different value. Using Cartesian coordinates on a flat manifold allows the
usage of the connection Γ µαβ = 0, because all tangent spaces are identical (or aligned)
and vectors do not change their entries moving from one tangent space to another,
therefore υµ∥ (x + δx) = υµ(x) in parallel transport and consequently, ∇βυµ = ∂βυ

µ.
Higher-order tensors require a Christoffel-symbol for every index

∇βTµν = ∂βTµν + Γ µαβ Tαν + Γ ναβ Tµα (B.132)

because their basis set is the Cartesian product of the basis of TPM, one factor for
each index.

The covariant differentiation can be constructed for linear forms (or covariant
vectors) in a way that is compatible with the differentiation of (contravariant) vectors:
Because a product υµwµ = gµνυ

µwµ would be scalar, the covariant derivative reverts
back into a partial one:

∇β
(
υµwµ

)
= ∂β

(
υµwµ

)
= ∂βυ

µ · wµ + υµ · ∂βwµ. (B.133)

If we require the covariant differentiation to obey a Leibnitz-rule, the last term can
be written as:

∇β
(
υµwµ

)
= ∇βυµ · wµ + υµ∇βwµ =

(
∂βυ

µ + Γ µαβ υ
α
)
wµ + υµ∇βwµ (B.134)
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b.4. parallel transport and the covariant derivative

Then, the term ∂βυ
µ · wµ drops out and renaming the indices µ↔ α

υµ
(
∇βwµ

)
= υµ ·∂βwµ− Γ

µ

αβ υ
αwµ = υµ∂βwµ− Γ αµβ υ

µwα = υµ
(
∂βwµ− Γ αµβ wα

)
(B.135)

gives the final result
∇βwµ = ∂βwµ − Γ αµβ wα (B.136)

for the covariant derivative of a linear form, with a minus-sign instead of a plus-sign.
Up to this point, the connection has been arbitrary but we will now focus on Levi-

Civita-connections: Those are metric-compatible and torsion-free, and can therefore
be computed from the metric and its derivatives. A metric manifold with such a
connection and the corresponding covariant derivative is referred to as a Riemannian
geometry. It is important to achieve the compatibility between the metric and the
differentiable structure of the manifold so that we can compute the connection coeffi-
cients from the metric itself. Scalar products υµwµ = gµν υ

µwν between two vectors
υ and w that are parallel transported should be identical: The parallel transport of
two abstract vectors only changes the tuples υµ and wµ because the tangent spaces
change and a different basis set is provided at every point. The scalar product is an
abstract measure of the lengths and relative orientations of the two vectors and that
statement should be invariant:

g(υ(x),w(x)) = g(υ∥(x + δx),w∥(x + δx)) (B.137)

For that to be conserved, parallel transport by δxβ should not change anything,
neither the length nor the relative orientation of the two vectors, υ∥(x+ δx) = υ(x+ δx),
and δxβ∇βυµ is necessarily zero. Stating that the scalar product of parallel-transported
vectors remains constant is equivalent to

δxβ ∇β g = δxβ ∇β
(
υµwµ

)
= δxβ ∇β

(
gµνυ

µwν
)

= 0 (B.138)

As the covariant derivatives obeys a Leibnitz-rule, one can write

δxβ ∇β
(
gµν υ

µwν
)

= δxβ
(
∇β gµν · υµwν + gµν ∇β υµ · wν + gµν υ

µ ∇βwν
)

(B.139)

and therefore, as δxβ∇βυµ = 0 and δxβ∇βwν = 0 as an expression of parallel transport,

δxβ ∇β gµν · υµwν = 0. (B.140)

Because that statement must be valid for every index choice, we can isolate the metric
compatibility condition

∇β gµν = 0, (B.141)

stating that the covariant derivative of the metric must be zero. On the other hand,
the metric is a covariant tensor, so its covariant derivative is explicitly given by

∇β gµν = ∂β gµν − Γ αβµ gαν − Γ αβν gµα = 0. (B.142)
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b. topological and metric structure of spacetime

As a second condition, we require symmetry of the Christoffel-symbol in the lower
two indices,

Γ αµν = Γ ανµ , (B.143)

which is called the torsion-free condition of the connection. With that, we can write
out eqn. B.142 with cyclically permuted indices (µ, ν, β):

∇µ gνβ = ∂µ gνβ − Γ αµν gαβ − Γ αµβ gνα = 0 (B.144)

as well as
∇νgµβ = ∂ν gβµ − Γ ανµ gαβ − Γ ανβ gµα = 0 (B.145)

and combine all three by computing B.144 +B.145 − B.142 = 0:

∂µ gβν− Γ αµν gαβ− Γ αβµ gαν+∂ν gµβ− Γ αµν gαβ− Γ αβν gµν−∂β gµν+ Γ αβµ gαν+ Γ αβν gµν = 0.
(B.146)

Finally, we solve for the Christoffel-symbol Γ αµν :

∂µ gβν + ∂ν gµβ − ∂β gµν = 2Γ αβν gαβ (B.147)

and isolate Γ γµν by multiplication with the inverse metric gβγ,

Γ αµν gαβg
βγ = Γ

γ
µν =

gβγ

2

(
∂µ gβν + ∂ν gµβ − ∂β gµν

)
(B.148)

by using gαβg
βγ = δ

γ
α. Please keep in mind that

υα = δαβ υ
β = gαβ vβ = gαβgβγ υ

γ → gαβgβγ = δαγ (B.149)

as the defining equation for the inverse metric gµν for any metric gµν. It is a standard
exercise to show that the Christoffel-symbol Γ αµν is not a tensor, but that the covariant
derivatives ∇β υµ and ∇β wµ are.

B.5 Geodesics as autoparallel curves

A curve xµ(λ) parameterised by λ can be autoparallel in the sense that the tangent
uµ = dxµ/dλ does not change, or equivalently, that the tangent vector uµ is always a
parallel transported version of itself along the curve. Then, writing ẋµ = uµ = dxµ/dλ
for simplicity,

ẋβ∇βẋα = 0 (B.150)

because ẋ
µ

∥ (x + δx) = ẋµ(x + δx). We can substitute the explicit form of the covariant
derivative to get

ẋβ∇βẋν = ẋβ
[
∂βẋ

α + Γ αβµ ẋ
µ
]

= ẋβ · ∂βẋα + Γ αβµ ẋ
βẋµ = 0 (B.151)
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Rewriting the first term as a differentiation along λ yields

ẋβ∂βẋ
α =

dxβ

dλ
∂ẋα

∂xβ
=

d
dλ

(
ẋα

)
= ẍα (B.152)

which defines the standard form of the geodesic equation,

ẍα + Γ αµν ẋ
µẋν = 0. (B.153)

A curve that obeys this equation of motion and follows an autoparallel line is called a
geodesic. Geodesics generalise the concept of a straight line through Euclidean space
to manifolds, where straight and autoparallel are equivalent. One would already
suspect at this point that inertial motion, where no accelerations are felt, corresponds
to motion along an autoparallel line. But at the same time, freely falling motion
through a gravitational field would likewise be characterise by a feeling of perfect
weightlessness and the absence of inertial forces: And one is correct in guessing
that geodesics are in fact trajectories through spacetime followed by freely falling
particles.

Because the rate at which particle pass by the coordinates does not need to be
constant for inertial motion (imagine a particle drifting off-centre through Euclidean
space with polar coordinates) we should not use the statement r̈ = ϕ̈ = 0 as a char-
acterisation of inertial motion, possibly motivated by Newtonian thinking. Instead,
autoparallelity condition would be the proper thing to do. And as the connection has
been defined to be metric compatible, we immediately see that the modulus of the
velocity, defined as the scalar product gµνẋµẋν, is conserved.

It is possible to reverse-engineer Newton’s equation of motion in a gravitational
field with our knowledge of relativity and to rediscover the geodesic equation, adding
perhaps some support for the idea on the connection between autoparallelity and
geodesic motion: Newton’s equation of motion reads

ẍi + ∂iΦ = 0 (B.154)

for a particle falling through the gravitational potential, where no accelerations can
be felt. The dot denotes the derivative with respect to laboratory time, which for
small velocities is equal to the proper time, t = τ. Because we already suspect that the
potential is measured in units of c2 as suggested by the weak field-metric, one can
write:

ẍi + ∂i Φ

c2 · c · c = 0. (B.155)

Perhaps the two cs are just the t-component of the 4-velocity in the slow motion
limit,

ẍi + ∂i Φ

c2 ẋ
t ẋt = 0 (B.156)

with coordinates (a tuple!) and velocities (a vector!)

xµ =
(
ct
xi

)
, ẋµ =

(
c
υi

)
, (B.157)
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where the difference between coordinate time and proper time vanishes, and γ = 1.
If we identify the Christoffel-symbol

Γ itt = ∂i Φ

c2 (B.158)

with a suitable derivative of the metric, one gets

ẍi + Γ itt ẋ
t ẋt = 0 (B.159)

Finally, making everything covariant by replacing i with α and reinstating τ instead
of t

d2xα

dτ2 + Γ αµν
dxµ

dτ
dxν

dτ
= 0 (B.160)

one obtains the geodesic equation, with the affine parameter τ. This immediately
poses the question if these statements are only true for a particular choice of the
affine parameter. This is not the case, as geodesics are invariant under affine reparam-
eterisations λ→ λ′!

We have seen that autoparallelity of the tangent vector is equivalent to the geodesic
equation,

ẋβ∇βẋµ = 0 → ẍβ + Γ βµν ẋµẋν = 0 (B.161)

where

ẋβ =
dλ
dλ′

dxβ

dλ
and ẍβ =

d
dλ′

( dλ
dλ′

dxβ

dλ

)
(B.162)

yielding the following conversion

d
dλ′

(( dλ
dλ′

)
· dxβ

dλ

)
+ Γ βµν

dλ
dλ′

dxµ

dλ
· dλ

dλ′
dxν

dλ
= 0 (B.163)

from the chain rule, and by applying the Leibnitz-rule,

d2λ

dλ′2
· dxβ

dλ
+

( dλ
dλ′

)2 d2xβ

dλ2 + Γ βµν
dλ
dλ′

dxµ

dλ
· dλ

dλ′
· dxν

dλ
= 0 (B.164)

such that
d2xβ

dλ2 + Γ βµν
dxµ

dλ
· dxν

dλ
= − d2λ

dλ′2
·
(dλ′

dλ

)2
· dxβ

dλ
(B.165)

If there is now a linear relationship between λ and λ′, the derivative d2λ/dλ′2

vanishes, making sure that one recovers the geodesic equation in both parameters:
In fact, there seems to be an entire class of affine parameters which are all equally
suited to be used to define autoparallelity or the geodesic equation, all related by
affine transformations λ′ = aλ + b.

In classical mechanics with ẍi + ∂iΦ = 0 as the equation of motion, this looks
like nothing particular beyond mechanical similarity: t → at + b implies that ẍ
acquires a factor a−2, but Φ has units of velocity2, so that it will have a factor of a−2,
too, which cancels. But we can make an interesting statement about the relativistic
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Doppler-effect, which arises as a projection of a photon’s wave vector kµ onto the
observer’s world line with the tangent uµ, ω = gµνu

µkν. Clearly, reparameterisation
of uµ brings in a factor of a−1, but the photon wave vector should not change, such
that the frequency only changes by a single factor of a−1: We can not work with the
same affine parameter for photons and massive particles.

In fact, the wave vector as the tangent to the photon geodesic is normalised to zero,
gµνk

µkν = 0, while there is a particular choice of the affine parameter for massive
particles such that the tangent is normalised to c2. With the proper time τ and
tangents uµ = dxµ/dτ one always obtains the normalisation gµνu

µuν = c2. And, in
both cases, geodesic motion conserves this normalisation as a consequence of metric
compatibility ∇αgµν and the autoparallelity condition uα∇αuµ = 0:

uα∇α
(
gµν u

µuν
)

= uα∇α gµν · uµuν + gµν u
α∇α uµ · uν + gµν u

µuα∇αuν = 0 (B.166)

B.6 Geodesic motion through a variational principle

Relativity surprises with the idea that the variational principles of classical mechanics
have a clear geometric meaning: Particles move along trajectories in spacetime with
extremised arc lengths. The central result of the last chapter was that autoparallelity
leads to the geodesic equation and that autoparallel lines are straight in a general
sense: But is straight equivalent to shortest? Writing down the action as the integrated
arc length gives

S =

B∫
A

ds =

B∫
A

√
gµν

dxµ

dλ
dxν

dλ
dλ =

B∫
A

dλ L
(
xµ, ẋµ, gµν

)
(B.167)

with L being the generalised Lagrange function. A variation of the trajectory xµ(λ)→
xµ(λ) + δxµ(λ) by δxµ(λ) generates a variation δS of the arc length,

δS =

B∫
A

dλ
[ ∂L
∂xα

δxα +
∂L
∂ẋα

δẋα
]

with δẋα =
d

dλ
δxα (B.168)

which can be recast into

δS =

B∫
A

dλ
[ ∂L
∂xα

− d
dλ

∂L
∂ẋα

]
δxα (B.169)

through an integration by parts, where no variation is done at the end points A and
B. Then, the Euler-Lagrange equation

d
dλ

∂L
∂ẋα

=
∂L
∂xα

(B.170)

can be isolated, as it applies to the generalised Lagrange function

L
(
xµ, ẋµ, gµν

)
=

√
gµν

dxµ

dλ
dxν

dλ
(B.171)
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which depends on the trajectory and its tangent, apart from the metric itself defining
the geometry. The derivatives can be directly computed, keeping in mind that the
metric itself is a function of the coordinates, for the derivative with respect to the
coordinates,

∂L
∂xα

=
1

2L

∂gµν
∂xα

· dxµ

dλ
dxν

dλ
(B.172)

and for the derivative with respect to the velocities,

∂L
∂ẋα

=
1

2L
· gµν

(∂ẋµ
∂ẋα

· ẋν + ẋµ · ∂ẋ
ν

∂ẋα
)

=
1

2L

(
gαν ẋ

ν + gµα ẋ
µ
)

=
1
L
gαµ ẋ

µ (B.173)

Substitution into the Euler-Lagrange-equation yields

d
dλ

(1
L
· gαµ ẋµ

)
= − L̇

L2 gαµ ẋ
µ+

1
L
ġαµ ẋ

µ+
1
L
gαµ ẍ

µ =
1
L

[
− L̇

L
gαµ ẋ

µ+
∂gαµ
∂xν

· ẋµẋν+ gαµẍ
µ
]

(B.174)

where the derivative of the metric is given by the chain rule, ġαµ = ∂ν ġαµ · ẋν, so that
one arrives at

d
dλ

(1
L
· gαµ ẋµ

)
=

1
L

[
− L̇

L2 gαµ ẋ
µ +

∂gαµ
∂xν

· ẋµẋν + gαµ ẍ
µ
]
, (B.175)

which leads to

− L̇
L
gαµ ẋ

µ +
∂
∂xν

gαµ ẋ
µẋν + gαµ ẍ

µ =
1
2

∂gµν
∂xα

ẋµẋν (B.176)

with a symmetrisation 1
2

(∂gαµ
∂xν + ∂gνα

∂xµ

)
of the second term one then obtains

ẍα +
1
2

(∂gαµ
∂xν

+
∂gνα
∂xµ

−
∂gµν
∂xα

)
ẋµẋν =

L̇
L
· ẋα (B.177)

Multiplying this relation with the inverse metric gβα shows the emergence of the
Christoffel symbol,

ẍβ +
gβα

2

(∂gαν
∂xµ

+
∂gµα
∂xν

−
∂gµν
∂xα

)
ẋµẋν =

L̇
L
· ẋβ (B.178)

which one can replace in the equation,

ẍβ + Γ βµν ẋµẋν =
L̇
L
· ẋβ =

S̈
Ṡ
ẋβ. (B.179)

The arc length S =
∫

dλ L has the derivatives L = Ṡ and L̇ = S̈. If in particular an
affine parameter is chosen, then S̈ = 0, and one obtains the classic geodesic equation,

ẍβ + Γ βµν ẋµẋν = 0. (B.180)
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Conceptually, the geodesic equation joins straight, autoparallel motion and with
the principle of external proper time or minimal arc length to arbitrary geometry, as
the proper time is a preferred affine parameter because it has a measurable physical
meaning.

There is a number of interesting properties of gravity: Firstly, all objects experience
the same acceleration irrespective of their mass; with acceleration being meant as
the rate of the rate at which the coordinates pass by the object, not as a physical
acceleration which is always absent in free fall. This is very much different for e.g.
electrically charged particles experiencing electromagnetic fields. In this case, the arc
length is computed with

S =

B∫
A

(
dτ +

q

m
gµν Aµdxν

)
(B.181)

with a vector potential Aµ. Clearly, the decisive quantity here is the specific charge
q/m, and particles with different specific charge will follow different trajectories
through the same field Aµ.

This specific charge for gravitational fields would correspond to the ratio between
the gravitational mass as the coupling strength of massive particle to the gravitational
field and the inertial mass. This ratio has been found to be unity at the level of 10−11,
giving a strong empirical indication of the universality of gravity. In fact, variation
δS = 0 of (**) gives

d2xα

dτ2 + Γ αµν
dxµ

dτ
dxν

dτ
=

q

m
Fαµ

dxµ

dτ
(B.182)

so that any deviation from freely-falling motion must be proportional to the specific
charge q

m , with Fαµ = gαβFβµ.
Gravitational lensing is naturally explained by the geodesic equation even the

photon has a vanishing mass, mγ = 0. It is sufficient to use the geodesic equation
for the wave vector kµ of the photon as the force-free, gravitational left hand side of
the geodesic equation allows for phenomena like gravitational lensing, effectively
through

dkα

dλ
+ Γ αµν k

µkν = 0, (B.183)

for the wave vector kµ = dxµ/dλ for the affine parameter λ , τ parameterising the
photon trajectory xµ(λ).

Lastly, inertial motion through a vector space with Cartesian coordinates suggest
a Euclidean straight line: d2xα

dτ2 = 0→ xα = aατ + bα, because in Cartesian coordinates
the metric is constant and the Christoffel-symbol vanishes.

Geodesic, autoparallel motion corresponds to freely falling particles, generalising
the idea of inertial motion to curved manifolds, as a representation of gravitational
fields. One should be careful, however, to associate gµν , ηµν or Γ αµν , 0 to gravita-
tional fields, as both statements can be true locally in a certain coordinate choice.
Rather, one should think of geodesic motion as taking care of the coordinate choice
by establishing autoparallelity of a straight line, irrespective of the presence of curva-
ture or gravity. Both inertial motion and freely falling motion are, in addition, both
characterised by a sensation of perfect weightlessness of an observer moving along
with the particle, and are therefore, a priori indistinguishable.
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B.7 Equivalence and the relativistic origin of Newton’s axioms

The geodesic equation is a description of a straight line (in the autoparallel sense)
through spacetime and should, as such, be a generalisation of the law of inertia and
the Newtonian equation of motion. In fact, Newton’s inertial law states that force-free
motion proceeds at constant speed along a straight line, which is perfectly fulfilled
by the geodesic equation: Straight actually means autoparallel, as the proper concept
for more complicated coordinate choices, and the normalisation gµνu

µuν = c2 of the
velocity uµ is conserved. Force-free in the Newtonian sense might pertain to both
inertial motion through a flat spacetime or freely-falling motion through a curved
spacetime: There is no fundamental difference between these two cases. To take things
to extremes, one could say that Newton’s first axiom is the definition of the word
”straight”: As soon as there are no accelerations measured, the trajectory is necessarily
autoparallel.

We have already seen that the Newtonian equation of motion ẍi +∂iΦ = 0 with the
gravitational potential Φ is hidden in geodesic equation for small velocities and weak
fields, exactly the limit Newton could have been aware of. Writing ẍi + ∂iΦ = 0 to
allude at force-free motion is in the spirit of the geodesic equation ẍα + Γ αµν ẋ

µẋν = 0,
and only non-gravitational forces would replace the zero on the right hand side, for
instance an electromagnetic force,

d2xα

dτ2 + Γ αµν
dxµ

dτ
dxν

dτ
=

q

m
gµν Fαν

dxµ

dτ
(B.184)

for a particle with specific charge q/m experiencing electromagnetic fields Fαν. With
this idea in mind, I personally don’t like to speak about gravitational forces: Rather, I
would call them gravitational accelerations which get modified by non-gravitational
accelerations that are computed from the actual field with the specific charge q/m as
the coupling constant, to yield an actual acceleration.

Ultimately, the third axiom actio = -reactio (with a minus-sign, as actio and reactio
take place in opposing directions!) is the most interesting in view of relativity. It
concerns non-geodesic motion with the appearance of inertial forces (reactio), which
are opposed to the actual forces (actio) acting on a particle. To understand where this
might come from we should first have a look at the way how classical inertial forces
like the centrifugal force or the Coriolis-force are contained in the geodesic equation.
In the slow-motion limit with τ = t, γ = 1, fixed ut = c and ui = υi we get

d2xi

dt2 + Γ iµν
dxµ

dt
dxν

dt
=

d2xi

dt2 + Γ itt c2 + Γ imt υ
mc + Γ itn cυn + Γ imn υ

mυn =
q

m
f i , (B.185)

with a non-gravitational acceleration q
m f i . The Christoffel symbol is symmetric in

the lower two indices Γ imn = Γ inm because of the torsion-free condition and Γ itt =
∂i Φ

c2 specifically would be the gradient of a classical gravitational potential. Then,
fundamentally, there are two terms in the geodesic equation, Γ imn υ

mυn ∼ (Ω × υ) × υ
corresponding to a centrifugal acceleration which is quadratic in the velocities, and
the Coriolis acceleration 2Γ imt υ

mc ∼ 2Ω × υ with the factor 2 appearing naturally out
of the two identical terms linear in the velocity υ.

This is in fact a surprising result: The velocity-dependent inertial accelerations
appear as the non-relativistic limit of the geodesic equation, up to terms ∝ υ2 because
of the term Γ iµν u

µuν. It seems to be the case that the velocity dependence of accelera-
tions is natural, similar to the Lorentz force ∝ υ ×B. Here, υ1 is the highest power that
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b.7. equivalence and the relativistic origin of newton’s axioms

can be generated by q
mgµνFανuµ. The term Γ itt = ∂i Φ

c2 is an eternal source of confusion:
The geodesic equation with such a term clearly refers to autoparallel motion along a
straight line, but one tends to think of a curved trajectory, for instance when thinking
about throwing a ball along a parabolic curve. But please keep in mind that there is
a second definition of straightness corresponding to the Minkowski-space with the
metric ηµν that one might use instinctively instead of gµν. Balls and planets follow
autoparallel lines through spacetimes, and parabolas and elliptical orbits (besides,
the parabola that is followed by a ball is only the second order Taylor-expansion of an
elliptical orbit around the Earth’s centre) are straight, otherwise Newton’s first axiom
could not be fulfilled.

If there is really the equivalence between inertial accelerations and gravitational
accelerations, as made clear by Einstein’s elevator argument, there should be a deep
connection between the two. First of all, inertial motion in e.g. rotating or accel-
erating coordinate frames is the uninteresting case, because the geodesic equation
makes the job of computing the rate of change of the passage of the coordinates
perfectly and all we see are coordinate effects. It becomes more interesting if there
is a non-gravitational force acting on a particle such that inertial forces appear as a
consequence of, well, the change of the state of motion, but relative to what? At this
point Mach’s principle comes in and clarifies that inertial frames are defined in by
the large-scale distribution of matter in the Universe. If there is a perfect equivalence
between inertial and gravitational forces, we should be able to ask how inertial ac-
celerations are sourced and what their gravitational origin is, after having thought
of gravitational accelerations to be inertial: They vanish in freely falling frames and
affect all objects in exactly the same way irrespective of their mass. Coming back to
Newton’s third axiom we should suspect that the inertial reactio is in fact gravita-
tionally induced, because the state of motion changes relative to the masses in the
Universe, and because there is an additional velocity dependent gravitational force
acting on the particle.

A second striking example is the rotational flattening of the Sun, whose diameter
at the equator is larger than the diameter taken at the poles, as a consequence of the
centrifugal force acting on it due to its rotation. But how would you interpret the same
observation from a frame co-rotating with the Sun? There, the entire universe rotates
in the opposite direction and there is an additional component of the gravitational
field which pulls on the Sun’s equator.

There is an interesting remainder of the idea that accelerated frames and gravita-
tional potentials are equivalent left in classical mechanics: A boost into a frame with
constant acceleration ai is defined by

x′i = xi +
1
2
ai t2 → ẋ′i = ẋi + ai t, (B.186)

such that the Lagrange-function L transforms accordingly,

L′ =
m
2
δij ẋ

′i ẋ′j = L +
m
2

(
2δij ẋ

iaj t + δij a
iaj t2

)
(B.187)

The last term can be written as a total derivative, t2 = d(t3/3)/dt and does not
matter in the variation, as total derivatives of functions that only depend on time and
coordinate (but not velocity) never have an influence on the variational principle.
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The second term, however, can be rewritten using the fundamental theorem of
calculus, as a differentiation of an integral,

d
dt

∫
dt ẋi · t =

d
dt

∫
dt xi = xi (B.188)

so that we can apply an integration by parts in the last step. Collecting these results
yields

L′ = L −m δij x
iaj , (B.189)

so that the Lagrange-function has acquired a new term that corresponds to a potential
with a constant slope: This is classical equivalence between a linear potential and a
frame accelerated at a constant rate.

B.8 Geodesic deviation, curvature and gravity

Geodesics as autoparallel lines through spacetime are the trajectories of freely falling
particles. The geodesic equation computes the rates of change ẍµ of the passage ẋµ

of the coordinates past the particle, completely independent from the presence of
curvature. Actually, neither the metric gµν nor the Christoffel-symbol Γ αµν do contain
information about gravity, and neither does the covariant derivative ∇µ: They are
all constructed to deal with the arbitrariness of coordinate choices. In addition, wegµν , ηµν does not imply that

there is gravity, and neither does
Γ αµν , 0, and neither does ∂µ ,
∇µ!

already know that the gravitational field does not exist at a single point, because both
conditions gµν = ηµν and Γ αµν = 0 can always be achieved locally by a coordinate
transform.

A possible idea would be to look at the relative motion of freely falling particles.
Locally, every particle experiences perfect weightlessness, but that does not imply
that the relative acceleration must be zero. Imagine two astronauts holding hands
and falling through space(time) and following Keplerian orbits around the Earth. The
astronaut on the lower orbit moves with a higher velocity according to Kepler’s first
law and would actually accelerate away from the astronaut in the higher orbit. Such
an experiment could serve as an experiment to determine whether gravitational fields
(or spacetime curvature) is present, because it is non-local and because it would be
sensitive to the second derivatives ∂2g of the metric, which partially resist coordinate
transforms as they can not be made to vanish.

The quantity determining the relative acceleration between two freely falling
particles is the Riemann-tensor,

Rαµνβ =
∂Γ αµν

∂xβ
−
∂Γ αµβ
∂xν

+ Γ αρβ Γ
ρ
µν − Γ αρν Γ

ρ

µβ . (B.190)

It is through ∂Γ ∼ ∂(g∂g) composed of second derivatives of the metric which shows
that it contains information about the manifold that can not be made to vanish by a
coordinate transform. We will see in the next chapter that it contains all information
about curvature of the manifold and the deviation from a Lorentzian geometry. In
particular, the geodesic deviation equation

d2υα

dλ2 = Rαµνβ · u
µuνυβ (B.191)

36

https://en.wikipedia.org/wiki/Geodesic_deviation


b.8. geodesic deviation, curvature and gravity

defines the experiment one can test for the presence of gravitational fields. If there
is no relative acceleration d2υα/dλ2 = 0 for every index choice one must conclude
that the Riemann curvature vanishes, Rαµνβ = 0 and that the motion of the two test
particles takes place in Minkowskian space, but possibly with a weird coordinate
choice.
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