
A relativity and gravity

Surprisingly, the concepts behind general relativity as a theory of gravity are entirely
geometrical and require differential geometry as a description of the geometry and
dynamics of space time. In this script for the lecture on general relativity as a master-
level course at Heidelberg University we will encounter gravity as a geometric effect
of spacetime and the geometrisation of physical laws, understand the structure of
the laws of Nature by drawing analogies between classical and relativistic mechanics
of point particles, the theory of scalar and vectorial fields, touch on concepts like
invariance, covariance and symmetries, and will develop an intuition about gravity.
There are three great applications of general relativity: black holes, FLRW-cosmologies
and gravitational waves, and in all these areas there have been major experimental
and observational advances in the last couple of years.

In this script we will mostly use a coordinate-based description of tensors with
explicit indices. For those, we adopt the summation convention, with Greek indices
running over all spacetime coordinates and Latin indices over the spatial ones, should
the coordinate choice allow this. only coordinate choices aligned

with the spatial hypersurfaces
have this!

A.1 Why is classical Newtonian gravity insufficient?

It is important to realise that at the time of A. Einstein’s thinking about relativity,
there was no actual need to abandon I. Newton’s theory of gravity. The perihelion
shift of Mercury could have easily have had systematic origins, and many of the
arguments against Newton gravity to be the ultimate theory of gravity are purely
conceptual.

First of all, there is no dynamics of the gravitational potential Φ in Newton’s
theory. According to the Poisson-equation as the field equation of Newton-gravity,

∆Φ(xi , t) = 4πG ρ(xi , t), (A.1)

the potential is source by the density field ρ in an instantaneous way as the Laplace-
operator ∆ can, unlike the d’Alembert-operator □, not generate any retardation.

The missing retardation could be easily fixed, though. Motivated by the ideas of
special relativity that there is no clear distinction between the t- and xi-coordinates,
one could make the replacement

∆ = δij ∂i∂j → □ = ηµν ∂µ∂ν = ∂2
ct − ∆ (A.2)

which gives a Lorentz-covariant field equation,

∆Φ(xi) = 4πG ρ(xi) → □ Φ(xµ) = 4πG ρ(xµ) (A.3)

with proper retarded (and advanced) potentials. We can quickly check that there
is propagation of excitations of Φ with c along a light cone: Plane waves Φ ∼
exp(±iηµν kµxν) yield □Φ = −ηµν kµkνΦ = 0 with a null-vector kµ, ηµν kµkν = kµk

µ = 0.
That this ”covariantised” field equation already allows wave-like excitations of the
gravitational field is foreshadowing the emergence of gravitational waves in proper
relativistic theory.

Then, the (energy) density ρ should be the tt-component of the energy momentum
tensor Tµν as suggested by special relativity and follow a Lorentz-transformation rule
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a. relativity and gravity

when boosting from one Lorentz-frame to another: But the gravitational potential in
Newton’s theory is scalar and would necessarily be equal in all frames. In fact, there
should be additional components of the gravitational field beyond Φ if it was to be
sourced by the energy momentum-tensor Tµν.

A.2 What would be the most general classical theory of gravity?

It turns out that Newtonian gravity is not even the most general classical (i.e. non-
relativisic, and of course non-quantum) theory of gravity! For seeing this, we would
approach the construction of a field equation from a variational principle, by writing
down an action integral S =

∫
d3x L(Φ, ∂iΦ) with a Lagrange-density L(Φ, ∂iΦ) that

is dependent on the potential Φ and the first derivative ∂iΦ. Hamilton’s principle
δS = 0 would then suggest that

δS = δ

∫
d3xL(Φ, ∂iΦ) =

∫
d3x

∂L
∂Φ

δΦ+
∂L

∂∂iΦ
δ∂iΦ =

∫
d3x

(
∂L
∂Φ
− ∂i

∂L
∂∂iΦ

)
δΦ = 0

(A.4)

by using δ∂iΦ = ∂iδΦ and performing an integration by parts, so that we can extract
the Euler-Lagrange-equation

∂L
∂Φ
− ∂i

∂L
∂∂iΦ

= 0 (A.5)

which determines the field equation once the Lagrange density L is chosen. Certainly,
Newton would have wanted to have a linear field equation such that the superposition
principle is valid, and the Ostrogradsky-theorem disallows terms of higher derivative
order beyond second derivatives, and we would like an isotropic gravitational field
around a spherically symmetric matter distribution. These arguments imply that
there can be at most squares of the potential in the Lagrange-density as the Euler-
Lagrange equation decreases the order by one through differentiation, and that there
should be the invariant δij∂iΦ∂jΦ (as a scalar product of two vectors it is invariant
under rotations) as a kinetic term in the Lagrange-density: Therefore, the most general
Lagrange-density would be

L(Φ, ∂iΦ) =
1
2
δij ∂iΦ∂jΦ + 4πGρΦ + λΦ +

m2

2
Φ2, (A.6)

with the Newtonian gravitational constant G and two new constants, m and λ. Of
course, as Lagrange-densities only ever appear inside integrals, it is only determined
up to an integration by parts, so the kinetic term can equally written as

L(Φ, ∂iΦ) = −1
2
Φ δij ∂i∂jΦ + · · · , (A.7)

with Φδij∂i∂jΦ = Φ∆Φ. For carrying out the variation, one needs to substitute the
Lagrange-density into the Euler-Lagrange equation.please always use new names

for the indices in the variation!
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a.2. what would be the most general classical theory of gravity?

We obtain for the kinetic term

L =
1
2
δab∂aΦ∂bΦ (A.8)

the derivative

∂L
∂∂iΦ

=
1
2
δab

(
∂∂aΦ

∂∂iΦ
· ∂bΦ + ∂aΦ

∂∂bΦ

∂∂iΦ

)
=

1
2

(
δab δia ∂bΦ + δab ∂aΦ · δib

)
= ∂iΦ

(A.9)

and finally

∂i
∂L

∂∂iΦ
= ∂i∂

iΦ = ∆Φ, (A.10)

while the derivative with respect to the field Φ itself is very easy,

∂L
∂Φ

= 4πGρ + λ + m2 Φ, (A.11)

such that Newton’s field equation should be of Yukawa-form, and being inhomoge-
neous even in vacuum, (

∆ −m2
)
Φ = 4πG ρ + λ. (A.12)

While the value of the gravitational constant G ≃ 10−11m3/kg/s2 is well known, the
cosmological constant λ is in fact non-zero and plays a role on scales above 1025m, but
is completely irrelevant inside the Solar System. It would, however, have the funny Many people claim that the cos-

mological constant is a part of a
relativistic theory of gravity, but
this is just untrue.

consequence that there would be gravitational effects in empty space! Specifically for
ρ = 0 the field equation becomes

∆Φ = λ such that
1
r2

∂
∂r

(
r2∂Φ

∂r

)
= λ (A.13)

and the solution for the gravitational acceleration gr reads

∂Φ
∂r

= −gr =
λ

r2

∫
dr r2 =

λ

3
r, (A.14)

increasing linearly with distance: This is in fact observed in cosmology on very large
scales in the distance-redshift-relation of supernovae!

The additional constant m is very difficult to interpret classically, but we should see
what effects it might have, by solving the resulting field equation. In three dimensions
or more, and on scales below 1025m, the case m = 0 reduces the field equation in
vacuum to ∆Φ = 0, i.e. to

∆Φ =
1

rn−1
∂
∂r

(
rn−1 ∂

∂r
Φ

)
= 0, (A.15)

suggesting that
(
rn−1 ∂

∂rΦ
)

should be constant for equation to be valid. Specif-
ically in 3 dimensions on obtains a scale-invariant Coulomb-potential, Φ ∝ 1/r
whereas a nonzero value for m introduces a scale in the form of a Yukawa-potential
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a. relativity and gravity

Φ ∝ exp(−mr)/r. For Newton, it must have been an empirical fact that m would be
vanishing as there are perfectly Keplerian orbits in the Solar System.Debye-screened electrostatic

fields in polarisable media is
a good example of Yukawa-
potentials.

Let us come to the fact that orbits of planets in the Solar System are almost
perfectly Keplerian: A very instructive derivation of Kepler’s third law is to use
mechanical similarity transforms of the classical action S, in particular for power-law
potentials just as the Coulomb-potential.

S =
∫

dt L(xi , ẋi) with L(xi , ẋi) =
m
2
δij ẋi ẋj −m Φ (A.16)

If we introduce a scaling of distance and time with the transformations x→ αx and
t → βt, the kinetic term transforms according to T → α2

β2 T and the potential term
with Φ → αn Φ if the potential is in fact a power law of with exponent n, Φ ∼ xn.

If the two scaling factors are related through α2

β2 ∼ αn, L changes only by an overall
factor, which can not matter because the Hamiltonian principle is invariant under
affine transformations of the action (or equivalently, of the Lagrange function):

L → aL + b implies S → aS + b with S =
∫

dt L (A.17)

such that
δS = 0 → δ (aS + b) = a δS = 0, (A.18)

and a cancels. Therefore, the two scalings in length and time can not be independent
and their relation must depend on the exponent of the power law of the potential: This
is summarised by the similarity condition t2 ∼ x2−n, which is sometimes referred to
as classical similarity: Motion inside a potential with a given exponent is described by
an equivalence class of Lagrange-functions (and their solutions), which get mapped
onto each other by a similarity transform. The most basic choices of n correspond to
well known problems in classical mechanics:

n = 2 t2 ∼ x0 isochronism of a pendulum (A.19)

n = 1 t2 ∼ x inclined plane, constant acceleration (A.20)

n = 0 t2 ∼ x2 inertial motion with constant velocity (A.21)

n = −1 t2 ∼ x3 Kepler’s third law (A.22)

Supposedly, the first case was discovered by G. Galilei himself, who noticed that
the oscillation period of a pendulum (measured with the pulse on his wrist) did
not depend on the amplitude. The last case, Kepler’s third law of planetary motion,
is necessarily a consequence of the 1/r-form of the potential and any Yukawa-type
contribution would break the scaling relation.

Besides, Kepler’s third law provides a neat trick to remember the units of the
gravitational constant, G ∼ 10−11m3/kg/s2, where one can immediately recognise
the three powers of length divided by the two powers of time! For our Sun, GM⊙ ∼
1019 m3/s2 ∼ (1 AU)3/(1 yr)2. But mechanical similarity applied to the Solar System
is a really powerful concept: All planetary orbits are scaled versions of each other,
and for measuring distances one really only needs a calendar!
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a.2. what would be the most general classical theory of gravity?

We have obtained Φ ∝ 1/r from direct solution of Poisson’s equation in the case
ρ = 0, but there needs to be a fundamental argument why this is necessary, and
this argument comes in the shape of Gauß’s law. The gravitational acceleration gi is
given as the gradient gi = −∂iΦ, and has in a spherically symmetric case only a radial
component, gr = −∂rΦ. It is linked to the Poisson equation by

∆ Φ = δij ∂i∂jΦ = −δij ∂igj = −divg = 4πG ρ (A.23)

suggesting that the divergence of the acceleration is ∆Φ and proportional to ρ.
Recasting the Poisson-equation into integral form yields∫

V

d3r divg =
∫
∂V

dA · g = −4πG ·
∫
V

d3rρ = −4πGM. (A.24)

Here,
∫

dA · g is the flux of the field through the surface ∂V = 4πr2 for a spherical
integration volume V appropriate for the isotropic case. As a consequence, the ac-
celeration decreases ∝ 1/r2 as the flux needs to be the same at every distance and
surfaces increase ∝ r2! Now we can set up an entire chain of arguments: The flux
of g⃗ through surfaces ∂V is constant, so g needs to be ∝ 1/r2 and Φ ∝ 1/r. Then,
mechanical similarity requires that t2 ∝ r3. And in addition, Bertrand’s theorem
makes sure that the orbits are closed ellipses.

At this point it is a very large surprise that Mercury, the planet closest to the
Sun where perhaps the gravitational field behaves unusual, shows a tiny violation
of Kepler’s third law and in fact of Bertrand’s theorem, too: Neither is the orbit a
closed ellipse nor is Kepler’s law fulfilled. There is a small precession of the point of
closest approach to the Sun, called perihelion precession, amounting to 43 arcseconds
in about 1000 orbits (The number is usually stated as 43 arcseconds in 100 years,
but this refers to Earth years!). By now, we know many systems that show pericentre
precession, even much more pronounced than Mercury in the Solar System. For in-
stance, PSR 1913+10 with 4 arcseconds per orbit, PSR J0737-3039 with 20 arcseconds
per orbit, and the system OJ287 with 40◦ per orbit! For a precession to appear, the
gravitational field needs to be stronger in the vicinity of a massive object compared
to the Newtonian prediction, and neither m nor λ could achieve this: They both
correspond to long-distance modifications of gravity: That would be a very strong
argument for the necessity of a new theory of gravity. And we can see a tiny glimpse
onto geometry. Combining the constant of gravity G with the speed of light c,

G
c2 ∼ 10−28m/kg (A.25)

which assigns a length scale to the field generating mass. With the specific value
M⊙ ≃ 1030kg for the mass of the Sun on obtains

GM⊙
c2 ∼ 102m (A.26)

which we will encounter later as the Schwarzschild radius of the Sun. Perhaps we
can change how surfaces scale with r?
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a. relativity and gravity

A.3 Lorentz-geometry

The foundational idea of general relativity is differential geometry, i.e. a varying
geometry of spacetime, with locally Minkowskian properties, i.e. we will see that
the laws of special relativity will be valid locally in freely falling reference frames.
Lorentz-transforms and rotations apply locally to the transitions between frames with
different orientation relative to each other or moving at constant velocities υ relative
to each other. The homogeneity of spacetime should be respected by the coordinate
choice, meaning that it should not single out certain spacetime points.

An observer looking at two coordinate choices could measure the rate at which
the coordinates xµ and x′µ are drifting by as a function of her or his proper time τ,
defining the velocity

dxµ

dτ
= const. ,with xµ =

(
t
xi

)
∼ 4-vector (A.27)

which is constant for inertial motion and suitably chosen coordinates, and the
corresponding acceleration

d2xµ

dτ2 = 0, and identically in S′ :
d2x′µ

dτ2 = 0 (A.28)

which then vanishes. Then, the relation between the two velocities and accelerations
is given by

dx′µ

dτ
=

∂x′µ

∂xν
dxν

τ
, with Jacobian

∂x′µ

∂xν
(A.29)

d2xµ

dτ2 =
∂x′µ

∂xν
d2xν

dτ2 +
∂2x′µ

∂xν∂xρ
dxν

dτ
dxρ

dτ
, (A.30)

where
∂2x′µ

∂xν∂xρ
= 0 (A.31)

for transformations between frames that are linear and therefore conserve homo-
geneity. The solution for x′µ(xν) follows then as

x′µ = Aµ
ν x

ν + aµ, (A.32)

implying that the transformation between frames should be affine.
Let’s construct this transform from the most general transition between two

frames, where we align for simplicity the coordinate axes with the direction of

relative motion, taken to be the x-axis. There is an event with coordinates
(
t
xi

)
in S

and
(
t′

x′i

)
in S′ , and the two frames move with a relative (constant) velocity υ.
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a.3. lorentz-geometry

A linear transform would then the only one to respect the homogeneity of space-
time (nonlinear transforms would always single out certain spacetime points), so we
make the ansatz:

x′ = ax + bt, a, b arbitrary, but x = υt must imply x′ = 0 (A.33)

x′ = 0 = aυt + bt = (aυ + b) t ⇒ b = −aυ, and: (A.34)

x′ = a(x − υt) (∗) (A.35)

Reversing the roles of S and S′ implies that

x = ax′ + bt′ but x′ = −υt must imply x = 0 (A.36)

x = 0 = −aυt′ + bt′ = (−aυ + b) t′ ⇒ b = +aυ, and: (A.37)

x = a(x′ + υt′) (∗∗) (A.38)

But this relation between x and x′ is not yet fixed without an additional assumption
that determines the value of a. Here, Nature would have in fact a choice! Either, Nature
could work with a universal time coordinate (or rather, a parameter, as it does not
participate in transforms unlike the other coordinates). A universal time parameter
would require that t = t′ , which is the defining property of Galilei-transforms. Then,

x′ = a(x − υt) (A.39)

x = a(x′ + υt) = a(a(x − υt) + υt) = a2x + (1 − a) υt = x (A.40)

which can only be realised if a = 1. Nature chose instead, for very good reasons, the
speed of light to be equal in all frames, c = c′, which requires Lorentz- instead of
Galilei-transforms between frames. In this choice,

x′ = ct′ = a(ct − υt) (A.41)

x = ct = a(ct′ − υt′) (A.42)

⇒ c2tt′ = a2(c − υ)(c + υ) · tt′ , (A.43)

where the third equation was obtained by multiplying the first two. Dividing by tt′

and solving for a yields the Lorentz-factor γ,

a = γ =
1√

1 − β2
, with β =

υ

c
(A.44)

We should note that Lorentz-transformations, due to their linearity, do not ’mix’ the
spatial coordinates. The Lorentz-factor γ diverges at β = 1 and would indeed become
imaginary for values β > 1. Taylor-expanding γ for small velocities β gives the result
that

γ ∼ 1 +
∂2γ

∂β2

∣∣∣∣∣
β=0
·
β2

2
= 1 +

β2

2
, with

∂γ

∂β

∣∣∣∣∣
β=0

= 1 (A.45)

which is perfectly consistent with the fact that for low velocities β≪ 1 and γ ≃ 1,
Lorentz- and Galilei-transforms are indistinguishable.
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a. relativity and gravity

Writing ct and arranging the temporal and spatial coordinates into a vector

xµ =
(
ct
x

)
allows to use the standard matrix-form of the Lorentz-transformation by

eliminating x′ from (*) and (**):

x′ = γ (x − vt) = γ (x − βct) (A.46)

ct′ = γ (ct − βx), (A.47)

so that one arrives at (
ct′

x′

)
=

(
γ −βγ
−βγ γ

) (
ct
x

)
(A.48)

encapsulating the Lorentz-transform in a matrix Λµν with

x′µ = Λ
µ
νx
ν. (A.49)

We have seen that coordinates undergo a joint transformation and that any physi-
cal statement on coordinates of an event is only sensibly within a specified frame S.
From that one might wonder if there is a way to make true statements about physical
properties of a system independent from a specification of a frame: That is exactly the
idea of a Lorentz-invariant. Similarly to rotations, where r2 = δijx

ixj are invariant,
which essentially corresponds to the statement cos2 α + sin2 α = 1 if the rotation is
parameterised by an angle α, one can define invariants for Lorentz transforms and
relate them to the rapidity ψ which is indicative of the relative velocity between the
frames.

Setting coshψ = γ and sinhψ = βγ (which is sensible if you look at the range
of values of γ and βγ, and compare with the hyperbolic functions), one obtains the
relation tanhψ = βγ

γ
= β between the rapidity and the dimensionless velocity β = υ/c.

Lorentz-transformations can then be written compactly as(
ct′

x′

)
=

(
coshψ sinhψ
sinhψ coshψ

) (
ct
x

)
, (A.50)

as a hyberbolic rotation, suggesting an invariant through cosh2(ψ) − sinh2(ψ) =
γ2 − β2γ2 = γ2(1 − β2) = 1, which we have already derived by direct calculation,
(ct′)2 − x′2 = (ct)2 − x2.

Analogous to rotations we write the Lorentz-invariant as s2 = (ct)2 − x2 by intro-
ducing the Minkowski-metric,

ηµν =
(
+1 0
0 −1

)
. (A.51)

such that one can write s2 = ηµν x
µxν. In contrast to the invariant r2 in Euclidean

space, Lorentz-invariants can be positive, negative or zero, and as the sign of the
Lorentz-invariant is of course conserved under transforms, too, the classification into
timelike (s2 > 0), spacelike (s2 < 0) and lightlike (or null, s2 = 0) is very suggestive.
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Let’s now imagine the motion of a point through spacetime: The Lorentz-invariant
reads

s2 = (ct)2 − x2 = (ct′)2 − x′2 = (cτ)2 (A.52)

in two frames S and S′, and the choice of comoving coordinates x′ = 0 defines
proper time t′ = τ, which is read off a clock in the rest frame S′. Rewriting the
Lorentz-invariant for infinitesimal coordinate differences,

ds2 = (cdt)2 − dx2 = (cdτ)2, (A.53)

then shows that the passage of coordinate time dt and proper time dτ differ by an
inverse Lorentz-factor,

dτ =
√

1 − β2dt with β =
1
c

dx
dt

(A.54)

That implies that the length ds of the spacetime curve that a point takes is actually
measure by the comoving clock displaying proper time dτ, at least for timelike motion
with velocities β < 1!

At this point, by merging the temporal coordinate with the spatial coordinates
we obtained R4 with a particular geometric structure, given by the Minkowski scalar
product ⟨x, y⟩ = ηµνx

µyν, trading the positive definiteness of the Euclidean scalar
product for the ability to define general invariants.

A.3.1 Lie-groups and the generation of the Lorentz-group

Rotations and Lorentz-boosts are the fundamental transforms that leave a Lorentzian
spacetime invariant. Both transformations are (non-Abelian) groups and are param-
eterised by real numbers, the rotation angles in the first and the rapidities in the
second case. One might ask now the question whether there is something analogous
to a basis of these groups, such that all group elements can be addressed by a suitable
choice of the rotation angle or the rapidity: It turns out that this presumption is true,
and it brings us to the topic of Lie-groups. Lie-groups are continuously parameterised
groups and are generated from a basic building block, called, well, a generator.

If we choose the set of Pauli-matrices, There are many different def-
initions of Pauli-matrices, we’re
using the real-valued ones here,
which in a real-valued linear com-
bination, are a basis of the space
of 2 × 2-matrices.

σ(0) =
(
+1 0
0 +1

)
, σ(1) =

(
+1 0
0 −1

)
, σ(2) =

(
0 +1
−1 0

)
, σ(3) =

(
0 +1

+1 0

)
, (A.55)

to begin with, we can investigate which type of transformation could be generated
by substituting them into and exponential series, for instance

Λ = exp
(
Ψ · σ(3)

)
=

∑
n

1
n!

(
ψ · σ(3)

)n
. (A.56)

For evaluating the matrix-valued exponential series, one needs to know all powers of
the matrix in question. In the case of the Pauli-matrices, it is easy to show that only
ever other Pauli-matrices appear. Specifically for σ(3) one gets:(

σ(3)
)0

= σ(0),
(
σ(3)

)1
= σ(3),

(
σ(3)

)2
= σ(0),

(
σ(3)

)3
= σ(3). (A.57)
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a. relativity and gravity

Then, the exponential series can be summed,

Λ = σ(0) ·
∑
n

ψ2n

(2n)!
+σ(3)

∑
n

ψ2n+1

(2n + 1)!
= σ(0) ·coshψ+σ(3) ·sinhψ =

(
coshψ sinhψ
sinhψ coshψ

)
,

(A.58)

and one recovers the expression for the Lorentz-transform as a hyperbolic rotation. T
he invariant detΛ = cosh2 ψ − sinh2 ψ = 1, which otherwise appears as a property of
the hyperbolic function, comes out naturally like this: Using ln detΛ = tr lnΛ with
Λ = exp(ψ · σ(3)) implies that ln detΛ = ψ · trσ(3) = 0, because Pauli-matrices (with
the exception of σ(0)) are traceless. Then, the determinant needs be equal to one.

Surely, boosts and rotations are groups, but how does one need to combine their
continuous parameters? This question is readily answered by the tools that Lie-groups
provide: For instance, two successive boosts

Λ(φ) · Λ(ψ) = exp
(
φ · σ(3)

)
· exp

(
ψ · σ(3)

)
= exp

((
φ+ ψ

)
σ(3)

)
= Λ

(
φ+ ψ

)
, (A.59)

implying that rapidities (and not the velocities!) are in fact additive parameters for
boosts. If one wants to revert to velocities, one can use the addition theorem for the
hyperbolic tangent:

tanh(φ) + tanhψ = tanh(φ+ ψ) ·
[
1 + tanh(φ) · tanhψ

]
(A.60)

We have just shown that rapidities add for boosts, and from the commutativity of
the addition of real numbers one should then obtain the commutativity of the boosts
into the same direction:

Λ(φ) · Λ(ψ) = Λ
(
φ+ ψ

)
= Λ

(
ψ + φ

)
= Λ(ψ) · Λ(φ), (A.61)

which implies for the inverse boost that

Λ(ψ) · λ(−ψ) = Λ(ψ − ψ) = Λ(0) = id ⇒ Λ(ψ)−1 = Λ(−ψ) (A.62)

as a perfectly intuitive result: The inverse boost is that with the inverse velocity
or rapidity. In complete analogy we would have obtained rotations by starting the
constructing with σ(2) instead of σ(3).Lorentz-transforms are orthog-

onal, but with respect to η, not δ. Finally, one could ask the question what happens if rotations around different
axes and boosts into different directions are combined. If both transformations are
generated by basis elements A and B in an exponential series, their successive
application exp(A) exp(B) is only equal to exp(A + B) if the generators commute,
[A, B] = AB − BA = 0, which is not the case in every of our examples. The Rubik’s
cube demonstrates nicely that rotations in 3 dimensions do not commute, and neither
do boosts: In fact, if one moves from one inertial frame into another by a combination
of two boosts and moving back by interchanging the two boosts leaves you with a
rotation! In the case of non-commuting generators, the two transformation need to be
combined using the Baker-Hausdorff-Campbell-formula,my most favourite formula of

all of physics!

exp(A) exp(B) = exp(A + B) · exp
(
− 1

2
[A, B]

)
, (A.63)
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a.4. relativistic motion through spacetime

to lowest order, or exactly if [A, [A, B]] = 0 and [B, [B, A]] = 0 is valid. In fact, one can
define a set of generators in 4d for the group comprising rotations around all three
axes and boosts into all 3 directions with a very rich algebra of generators, called the
Lorentz-algebra.

A.4 Relativistic motion through spacetime

It might come as a surprise that variational principles, being so typical of classical
mechanics, only make sense in the context of relativity: Here, there is a well define
geometric interpretation, the Lagrange-function and the action are measurable quan-
tities, many properties such as their convexity and their affine invariance are made
sure by geometry, they are naturally invariant under Lorentz-transforms and there is
a natural pathway to include gravity.

A.4.1 Variational principles for relativistic mechanics

The fundamental idea of variational principles (and which ironically is not present
clearly in classical mechanics) is to link invariant quantities of a system in the form of
the Lagrange-function with a covariant equation of motion. Specifically, the Lagrange
function L(xi , ẋi) of classical mechanics

L(xi , ẋi) =
m
2
δij ẋ

i ẋj −m Φ (A.64)

is invariant as the norm of ẋi is unaffected by rotations of the coordinate systems and
because the scalar potential Φ does not have any internal degrees of freedom. With
Hamilton’s principle δS = 0 for the variation of the action

S =
∫

dt L(xi , ẋi) (A.65)

one obtains through the Euler-Lagrange equation a covariant equation of motion

ẍi = −∂iΦ, (A.66)

which sets two vectors in relation to each other, namely the acceleration ẍi and the
potential gradient ∂iΦ, which of course have the same transformation properties.
While this is a perfectly valid example of covariance generated from an invariant
Lagrange-function, one should note that while it is invariant unter rotations, it is not
invariant under Galilei-transforms.

Let’s take a leap of faith and replace the Lagrange-function by something rela-
tivistic, for instance the proper time τ =

∫
dτ, which is measurable with a clock, fully

Lorentz-invariant as

ds2 = c2dτ2 = c2dt2 − γijdxidj = ηµνdx
µdxν, (A.67)

and has an intuitive geometric interpretation as the arc-length of the trajectory
through spacetime in the geometry defined by the Minkowski-metric ηµν.
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a. relativity and gravity

Suppose that a particle travels through spacetime along a trajectory xµ(τ). Then,
we can define the 4-velocity uµ as the rate at which the coordinates pass by the
observer,

uµ =
d
dτ

xµ(τ) =
d
dτ

xµ(τ) =
dt
dτ

d
dt

xµ = γ ·
(

c
υi

)
(A.68)

with Lorentz-factor dt
dτ = γ. The normalisation of the 4-velocity can be computed

straightforwardly,
ηµνu

µuν = uµu
µ = γ2 ·

(
c2 − υiυi

)
= c2, (A.69)

because γ2
(
1 − β2) = 1 for βi = υi

c . The 4-velocity, or the tangent to the trajectory

xµ(τ) is therefore timelike ηµν uµuν = c2 > 0 and the particle moves inside the light
cone.

Inertial motion of a free particle should proceed along a straight line as a natural
result of the relativistic variational principle. Indeed, starting with the arc-length s

S =

B∫
A

ds =

B∫
A

cdτ = c ·
B∫

A

dt
γ

(A.70)

of a trajectory linking the spacetime points A to B we obtain the elapsed proper time
τ (which can be measured by a clock carried along by the particle) or the integrated
laboratory time

∫
dt/γ, weighted by the Lorentz-factor, which is responsible for

relativistic time dilation: dτ = dt ·
√

1 − δij βiβj = 1
γ
· dt, and because γ ≥ 1, dτ is

always smaller than dt and proper time elapses slower.
This would imply that the Lagrange function of a free particle is L(ẋi) = 1/γ, and

that the action S is in fact the arc-length of a trajectory. In the slow-motion limit∣∣∣β∣∣∣≪ 1 one should recover the classical Lagrange-function: Taylor-expanding yields

S ≃ −mc2

B∫
A

dt ·
(
1−

δij

2
βiβj

)
= +mc2

B∫
A

dt ·δij βiβj +const. = m ·
B∫

A

dt ·δij υiυj (A.71)

with irrelevant prefactors, as affine transformations S→ aS + b with two constants
a, b drop out in the Euler-Lagrange-equation. Effectively, the non-relativistic limit
yields the kinetic energy as the leading-order term of the proper time integral.

Funnily, Lorentz-covariance is lost in the non-relativistic limit and Galilei-invariance
is not generated: If one carries out a Galilei-transform by setting xi → xi + υi t, and
ẋi → ẋi + υi one obtains:

L =
1
2
δij ẋ

i ẋj → 1
2
δij ẋ

i ẋj + δij ẋ
iυj +

1
2
δijυ

iυj = L +
d
dt

(
δijx

iυj + δijυ
iυj · t

)
, (A.72)

where the additional term is a total time derivative with no influence on the varia-
tional principle: We find ourselves in the weird situation that we need a new concept
to remedy the error made by classical Galilei-invariance!
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Is inertial motion really proceeding along a straight line? Hamilton’s principle
requires that δS = 0, so

δS = −mc2 δ

B∫
A

dτ = −mc2

B∫
A

ηµν

2dτ
·
[
dxµ · δdxν + δdxµ · dxν

]
= −mc2

B∫
A

ηµν
dxµ

dτ
δdxν,

(A.73)

where we have used the symmetry of the integrand to get rid of the factor 1/2. For
continuing, we interchange variation and differentiation, δdxν = dδxν and perform
an integration by parts

δS = +mc2

B∫
A

dτ ηµν
d2xµ

dτ2 δx
ν, (A.74)

where d(dxµ/dτ) = (d2xµ/dτ2) dτ, and with the assumption of vanishing variation on
the boundary. The result then is that the 4-acceleration needs to vanish,

d2xµ

dτ2 = 0 (A.75)

for fulfilling Hamilton’s principle, and the equation of motion is solved to yield
xµ(τ) = aµτ + bµ with two integration constants: In fact, the solution is a straight line
through spacetime.

A.4.2 Legendre-transforms and Hamilton-functions

We have seen in the last chapter that the Lagrange-function is much more a statement
of causal motion in spacetime and has little to do with energies: Those appear after
Legendre-transform, which is always well defined because the Lagrange function is a
convex functional in ẋ - this is, incidentally, the same reason why the variation yields a
unique result and finds a unique extremum. In fact, the relativistic Lagrange-function
L = 1/γ is perfectly convex as it always lies above its tangent: To visualise this, one
can write 1/γ =

√
c2 − υ2, whose graph is a semi-circle!

Not only do convex functions have uniquely defined Legendre-transforms, but
the Legendre-transformed function is again convex, making sure that the inverse
transform is possible, too. Starting with the relativistic Lagrange-function

L(ẋ) =
1
γ

=
√

c2 − ẋi ẋi (A.76)

we can define the canonical momentum

pi =
∂L
∂ẋi

=
ẋi√

c2 − ẋj ẋj
(A.77)

which we need to convert into a relation for υ(p): Let’s do this in one dimension for
simplicity.

p2
[
c2 − υ2] = υ2, p2c2 = υ2

(
1 + p2

)
→ υ =

cp√
1 + p2

(A.78)
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a. relativity and gravity

Then, the Legendre-transform, replacing ẋ = υ by p can be carried out and the
Hamilton-function H can be obtained:

H(p) = ẋ
∂L
∂ẋ
− L(ẋ(p)) = v · v

√
c2 − v2

+
√

c2 − v2 = vp +
v
p

= c ·
√

1 + p2, (A.79)

and if we include the prefactor mc2:

H(p) =
√

(mc2)2 + c2p2 ≃ mc2 +
p2

2m
+ · · · , (A.80)

where mc2 is the rest mass and p2

2m is the kinetic energy which appear in a Taylor-
expansion in the last step.

For massive particles the energy-momentum-relation H allows statements about
dispersion: In fact, phase and group velocities can not be equal for massive particles,
H/p , dH/dp, but one can show that

υph · υgr =
H
p

dH
dp

=
cp√

1 + p2

c
√

1 + p2

p
= c2 (A.81)

i.e. that the geometric mean of phase and group velocity is the speed of light. That in
turn implies that the phase velocity of massive particles needs to be υph > c if their
group velocity is subluminal, υgr < c. And, as a shortcut,

c2 =
H
p

dH
dp

=
d(H2)
d(p2)

(A.82)

which can be integrated to give H2 = (cp)2 + const, with the rest mass as the integra-
tion constant.

We have already encountered the classification of Lorentz-vectors in timelike,
spacelike and lightlike, and we saw that 4-velocities uµ are normalised according
to ηµνuµuν = c2 > 0 with the associated motion inside the light cone. Clearly, that
normalisation is conserved under Lorentz-transforms, but one might be curious as to
the possibility whether forces could accelerate a particle to super-luminous speeds:
A classical argument would be that this would be energetically impossible due to
relativistic mass increase (which is really only a consequence of proper time dilation),
but there is a more elegant, geometric argument. Acting on a charged, massive particle
with a Lorentz-force leads to the equation of motion

duµ

dτ
=

q

m
Fµνuν. (A.83)

Multiplying both sides with uµ then gives a relation how the normalisation of uµ

would change under the influence of a Lorentz-force:

uµ
duµ

dτ
=

1
2

d
dτ

(
uµu

µ
)

=
q

m
Fµνuµuν = 0, (A.84)

where the last term is vanishing as a contraction between an antisymmetric tensor
Fµν and a symmetric one, uµuν, making sure that the normalisation uµu

µ = c2 is
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a.4. relativistic motion through spacetime

conserved and the motion of a massive particle is restricted to the inside of the light
cone: Electromagnetic forces can therefore not push a particle outside the light cone
and it is impossible to achieve superluminal speeds.

At this point, the Lorentz-geometry arises because of the requirement that the
speed of light was equal in al inertial frames, but one might ask if there is a more
fundamental reason: As it is, the constancy of c might just be an empirical observation.
The truth is very far from that as the Lorentz-geometry is a natural way for Nature
to construct hyperbolic partial differential equations as her field equations (where
Maxwell’s equations or even the gravitational field equation are just examples). Hyper-
bolic (partial) differential equations are peculiar because they (i) realise a unique time
evolution for specified initial conditions, (ii) are perfectly time-invertible and (iii)
show causal propagation: There is a finite speed (in our case c) at which excitations
of the fields travel, and the Lorentzian structure of spacetime makes sure that the
light cones are in fact identical in all frames: In this way one can be sure that the
initial conditions for the evolution of the fields at a given coordinate are identical in
all frames!

That implies that the fundamental Lorentzian structure of spacetime is in fact
compatible with the hyperbolicity of the field equations. This is reached by defining
a partial differentiation ∂µ with respect to the coordinates,

∂µ =
(
∂ct

−∂i

)
(A.85)

where the minus-sign is added to make sure that the divergence of xµ is equal to the
dimensionality, i.e. 4:

∂µx
µ =

∂xµ

∂xµ
= 4 = ∂ct(ct) + ∂ix

i = 1 + 3 = ηµν ∂
µxν, (A.86)

and the corresponding linear form is given by ∂µ = ηµν∂
ν = (∂ct , ∂i). Then, the

d’Alembert-operator would be naturally Lorentz-invariant because it is defined as a
Lorentz-scalar,

□ = ∂µ∂
µ = ηµν∂

µ∂ν = ∂2
ct − ∆, (A.87)

and typical wave equations like □Φ = 0 would generate a light cone, as propagation
of excitation proceeds with velocities ±c:

□ Φ =
(
∂2

ct − ∂2
x

)
=

(
∂ct + ∂x

)(
∂ct − ∂x

)
Φ = 0. (A.88)

The same property is reflected by the wave vectors being null: Φ = exp
(
± ikαxα

)
solves the wave equation

□ Φ = ηµν ∂µ∂νΦ = 0 (A.89)

only of ηµνkµkν = 0, which holds again in every frame. Giving the components of the
wave vector kµ the interpretation of the angular frequency ω and the spatial wave
vector ki ,

kµ =
(
ω
c
ki

)
(A.90)
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a. relativity and gravity

shows first of all the dispersion-free propagation along the light cone, as the nor-
malisation ηµνkµknu = 0 implies that ω2/c2 − k2 = 0 and therefore a proportionality
ω = ±ck, such that the phase velocity ω/k and the group velocity dω/dk are identical
and dispersion is not taking place. Secondly, the (relativistic) Doppler-effect cankµ being a null-vector and

dispersion-free propagation are
equivalent.

be derived by projecting kµ onto an observer’s 4-velocity uµ. At rest, uµ has only a
temporal nonzero component of c, such that ω = ηµνu

µkµ, but for a moving observer
with u′µ one obtains

ω′ = ηµνu
′µkν = γ(ω − υiki). (A.91)

A.4.3 Non-relativistic motion in weak gravitational potentials

In anticipation of general relativity we should have a look at changing the geometry
of spacetime and to move away from a Lorentzian space. And we need to make sure
that the relativistic line element is in fact the relativistic generalisation of the classical
Lagrange-function.

Weak gravitational potentials Φ = −GM/r sourced by a mass M at distance r
perturb the line element

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
δij dxidxj (A.92)

such that one recovers in the Minkowski-metric at large distances r ≫ 2GM/c2. If
that is the case, the passage of proper time of a stationary observer where dxi = 0
would be dilated

ds2 = c2dτ2 ≃
(
1 +

2Φ
c2

)
c2dt2 (A.93)

and proper time would in fact depend on the presence of gravitational potentials!
That would then imply that the variational principle should find a different trajectory
if Φ is nonzero compared to the case Φ = 0. The action would again be given as the
line element, but now derived from the actual perturbed metric gµν instead of the
Minkowski-metric ηµν:

S = −mc

B∫
A

ds = −mc

B∫
A

dτ ·
√
gµν uµuν using ds2 = gµν dxµdxν (A.94)

Substituting the 4-velocity uµ with the spatial component γυi then yields for the
action

S = −mc

B∫
A

dτ · γ
√(

1 +
2Φ
c2

)
c2 −

(
1 − 2Φ

c2

)
· δij vivj (A.95)

which is then approximated to give

S ≃ −mc

B∫
A

dt

√
c2 ·

(
1 +

2Φ
c2 − δij β

iβj
)
. (A.96)
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a.4. relativistic motion through spacetime

Finally, a Taylor-expansion yields

S =≃ −mc2

B∫
A

dt
(
1 +

Φ

c2 −
δij β

iβj

2

)
(A.97)

so that we finally arrive at

S =

B∫
A

dt
(
mδij

1
2
υiυj −mΦ

)
=

B∫
A

dt L (A.98)

where we recognise the classical Lagrange function in the integrand, with a kinetic
and a potential term.

A.4.4 Photon propagation on the Lorentzian spacetime

Up to this point, have shown that the archetypical hyperbolic wave equation □Φ = 0
is solved in fact by plane waves Φ ∼ exp(±iηµν kµxν) with a wave vector kµ which
is null, ηµνkµkν = 0. The same should be true for the propagation of electromag-
netic waves, so we need to make sure that Maxwell’s equations provide a pathway
to obtain a hyperbolic wave equation for the field tensor Fµν. Specifically, the ho-
mogenous Maxwell-equation (or the Bianchi-identiy) should be the relevant here, as
electromagnetic waves are vacuum solutions.

∂λFµν + ∂µFνλ + ∂νFλµ = 0, (A.99)

to which one can apply the differentiation ∂λ to obtain

∂λ∂
λFµν + ∂λ∂

µFνλ + ∂λ∂
νFλµ = 0. (A.100)

Identifying the d’Alembert operator ∂λ∂λ = □ and using commutativity of partial
derivatives, ∂λ∂µ = ∂µ∂λ as well as the antisymmetry of the field tensor, Fνλ = −Fλν

and ∂λ∂
ν = ∂ν∂λ this becomes

□Fµν − ∂µ∂λFλν + ∂ν∂λFλµ = 0. (A.101)

Now in vacuum, i.e. in the absence of a source ȷµ = 0, the field equation is ∂µFµν = 0
and in fact there is a wave-equation with for the field tensor,

□Fµν = ηαβ ∂α∂β Fµν = 0. (A.102)

Analogously to the case of a scalar field one expects a plane wave of the type
Fµν ≃ exp(±iηγδ kγxδ) to solve this equation. Doing that, it is a good idea to use
different indices for the differentiation and for the quadratic form ηγδ k

γxδ and to
rename the indices with the Kronecker-δ appearing through ∂αx

µ = ∂xµ/∂xα = δ
µ
α.

□Fµν = ηαβ ∂α∂β exp(±iηγδ k
γkδ) = (±i)2 · exp

(
± iηγδ k

γxδ
)
ηγβ k

γkβ = 0, (A.103)
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a. relativity and gravity

recovering the null-condition ηγβ kγkβ = 0, confirming that excitations of the elec-
tromagnetic field do in fact travel along null-lines, which implies that the Maxwell-
equations respect the fundamental Lorentzian structure of spacetime.

The field equation makes sure that the excitations of the fields are perpendicular
to the propagation direction and that the wave is indeed transverse: Again, using the
ansatz Fµν = F(0),µν exp(±iηγδ kγxδ)) one immediately convinces oneself that

∂µFµν = F(0),µν · ∂µ exp(±iηγδ kγxδ) = (±i) exp(±iηγδ k
γxδ) · ηγµF(0),µνkγ = 0 (A.104)

and therefore ηγµF(0),µνkγ = 0. In terms of the field components of the electric field
Ei this means that δijkiEj = 0, and the analogous statement for the magnetic field
Bi would be obtained from the dual field tensor ηγµF̃(0),µνkγ = 0, as a consequence of
electromagnetic duality in vacuum.

Photons move along null-lines, so the arc length measured along their trajectory
xµ will always come out as zero: That means that one can not work with the proper
time τ. Using a new affine parameter λ to address the points along the trajectory xµ(λ)
suggests the definition of the wave vector kµ = dxµ/dλ, because

ds2 = ηµν dxµdxν = ηµν
dxµ

dλ
dxν

dλ
· dλ2 = ηµν k

µkνdλ2 = 0 (A.105)

At this point, we should start to be careful not to link the Lorentz-geometry to any
particular coordinate choice. When considering light cone coordinates, du = cdt + dx
and dv = cdt − dx the line element is given by

ds2 = ηµν dxµdxν = c2dt2 − dx2 = (cdt + dx)(cdt − dx) = du · dv, (A.106)

and the corresponding Lorentzian metric is represented by the matrix

ηµν =
1
2

(
0 1
1 0

)
(A.107)

in these coordinates. Surely, the geometry is identical and has not been changed by
the new definition of coordinates, and the spectrum of eigenvalues of the new metric
is identical.

A.4.5 Photon propagation through weak gravitational fields

At this point we should derive a puzzling result, which was in fact the first proper
prediction of general relativity: that gravitational fields have a stronger effect on the
motion of relativistic particles such as photons compared to non-relativistic particles.
We start by introducing a weak perturbation to the Minkowski-metric and define the
line element

ds2 = gµν dxµdxν (A.108)

with gµν being the metric tensor. For fixed Cartesian coordinates and a weak gravita-
tional potential Φ with |Φ| ≪ c2 the line element becomes

ds2 =
(
1 +

2Φ
c2

)
c2dt2 −

(
1 − 2Φ

c2

)
δij dxidxj . (A.109)
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It will be the case that for slow motion
∣∣∣ẋi ∣∣∣ ≪ c the classical equation of motion is

valid and will come out as ẍi = −∂iΦ, as expected, by variation of
∫

dτ. There is some
intuition to this result because a non-relativistic particle moves essentially only along
the ct-axis of the coordinate frame, so that dτ is approximately equal to (1 + Φ/c2)dt.

Photons need an entirely different argumentation, because they always follow
null-lines, ds2 = 0. For that case we can define an effective speed of propagation

dx
dt

= c ·

√√
1 + 2Φ

c2

1 − 2Φ
c2

� c ·
(
1 +

2Φ
c2

)
(A.110)

such that we can define an index of refraction, which is proportional to 2Φ instead
of Φ! That realisation prompted A. Eddington in 1919 to measure gravitational light
deflection during a Solar eclipse and the deflection angle was indeed twice as large as
expected from a Newtonian theory.
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