
Z index notation

Z.1 Vectors and linear forms

Many quantities in physics have components, or internal degrees of freedom. This
is particularly true in modern physics, with e.g. the realisation that the energy den-
sity ρc2 = T t

t is part of the energy momentum-tensor T ν
µ as a larger entity. The

geometric picture is that there is a (vector)-space for all vectors υ = υiei =
∑
i
υiei

which are decomposed into their components υi with a basis ei , with the Einstein
summation convention in place. Velocities υ, accelerations a, the magnetic field B and
the dielectric displacement D are examples of vectors. There is an associated (vector)
space of linear forms p = piei =

∑
i
piei which has identical geometric properties and

is spanned by a basis ei . Examples of linear forms are, for instance, the canonical
momentum p, the gradient of a potential ∂Φ, the electric field E or the magnetic
induction H.

A very useful notation used throughout theoretical physics is the so-called abstract
index notation, where one works entirely with the components of vectors and linear
forms, with an implicitly assumed basis. By convention, one denotes vectors with a
superscript, contravariant index υi and linear forms with a subscript, covariant index
pj .

Canonically, one defines an orthogonality relation eiej = δij between the basis
vector of the vector space and the basis linear forms, such that the inner product
between a vector υ and a linear form p is given by

p · υ = pie
i υjej = piυ

j eiej = piυ
jδij = piυ

i . (Z.637)

According to the Einstein sum convention (also called a contraction), an expression
like piυ

i is to be interpreted as
∑
i
piυ

i , with an automatic implied summation over

all index pairs which are appear as super- and subscripts.
A metric γij is used for converting a vector υj to its associated linear form υi =

γijυ
j , while the inverse metric γij does the opposite: It translates a linear form pj to

its associated vector pi = γijpj . Of course, making a linear form out of a vector and
then translating it back to being a vector again can not change anything,

γij
(
γjkυ

k
)

= γijγjk︸︷︷︸
=δik

υk = υi (Z.638)

and in this sense the metric and its inverse are related to each other:

γijγjk = δik . (Z.639)

Instead of computing piυ
i directly as the contraction between a linear form pi and

the vector υi , one can use the metric to generate the linear form pi from a vector,
pi = γijp

j to arrive at
piυ

i = γijp
iυi = γijpiυj (Z.640)
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z. index notation

Alternatively, one can generate the vector υi = γijυj from the associated linear
form υj using the inverse metric γij . With this argument, one can say that the metric
defines a scalar product between vectors, while the inverse metric defines a scalar
product between linear forms. It is well worth it to differentiate carefully between the
metric γij and the Kronecker symbol δij , even in the case of Euclidean vector spaces.
The Kronecker symbol renames indices of vectors or linear forms, but never changes
them:

υi = δijυ
j and pi = δ

j
ipj (Z.641)

Z.2 Coordinates and differentials

Coordinates are usually written as vectorial tuples xi (in themselves, they are not
vectors!), and this choice is purely conventional. The coordinates have the property
that every entry of xi can change independently from the others, so

∂xi

∂xj
= δij (Z.642)

because xi only changes in the direction of xi at unit speed, whereas xi remains
constant if xj is changed. This is encapsulated by the Kronecker symbol δij . But in

this sense, derivatives with respect to the coordinates ∂i = ∂/∂xi are linear forms,

∂xi

∂xj
=

∂

∂xj
xi = ∂jx

i = δij (Z.643)

and the contraction

∂ix
i =

∂xi

∂xi
= δii = n (Z.644)

is sensibly defined and returns the dimensionality n. Then, the divergence ∂iυ
i of

a vector υi is defined in a straightforward way, and the divergence of a linear form
would be γij∂ipj = ∂iγ

ijpj = ∂ip
i with the inverse metric.

This point can be illustrated better by considering a curve xi(λ) which runs
through a scalar field Φ: The derivative of Φ along the curve as λ evolves, is

dΦ
dλ

=
dxi

dλ
∂Φ

∂xi
= ẋi∂iΦ (Z.645)

by virtue of the chain rule. We interpret this expression as the projection, or scalar
product between the gradient ∂iΦ of the potential as a linear form with the velocity
ẋi = υi = dxi(λ)/dλ as a vector.

Let’s try out a change of coordinates with an invertible and differentiable replace-
ment xi(ya): The chain rule suggests that

dΦ
dλ

=
dxi

dλ
∂Φ

∂xi
=

(
dya

dλ
∂xi

∂ya

) (
∂yb

∂xi
∂Φ

∂yb

)
=

dya

dλ
∂xi

∂ya
∂yb

∂xi︸    ︷︷    ︸
=δba

∂Φ

∂yb
=

dya

dλ
∂Φ
∂ya

= ẏa∂aΦ

(Z.646)

148



z.2. coordinates and differentials

such that the rate dΦ/dλ is unchanged, no matter which coordinates have been
used to compute the velocity and the gradient. This is achieved because the Jacobian
∂xi /∂ya used to transform the vectorial velocity and ∂yb/∂xi for the transformation
of the potential gradient as a linear form are inverses to each other:

∂xi

∂ya
∂yb

∂xi
=

∂yb

∂ya
= δba (Z.647)

by recognising that the expression originates from ∂yb/∂ya from an intermediate
differentiation with respect to xi as dictated by the chain rule. With the latter relation
it becomes clear that even though the coordinates xi are not (yet) a vector, the velocity
υi = dxi /dλ as the derivative is, and the gradient ∂Φ/∂xi is truly a linear form: Both
have the correct transformation properties. Vectors such as the velocity transforms
according to υi → Jiaυ

a = ∂xi /∂ya υa, and linear forms inversely, pi → Jai pa =
∂ya/∂xi pa. Indeed, in differential geometry all quantities (scalars, vectors, linear
forms, tensors of various rank and valence) are defined through their transformation
behaviour.

The Kronecker symbol arises as the fundamental property of the coordinates ya

then makes sure that only equal indices are considered in multiplying ẏaδba∂bΦ =
ẏa∂aΦ. This neat cancellation would not automatically take place in scalar products
between two vectors: Defining the Jacobian Jia = ∂xi /∂ya suggests the transformation
υi → Jiaυ

a, and the scalar product γijυiυj can only be invariant if the metric trans-
forms inversely (defining an orthogonal transform), γij → J a

i J b
j γab with the inverse

Jacobian J a
i :

Jia J b
i =

∂xi

∂ya
∂yb

∂xi
= δba (Z.648)

such that scalar products are in fact invariant:

J a
i J b

j γab Jicυ
c Jjdυ

d = J a
i Jic J b

j Jjd γabυ
cυd = δacδ

b
dγabυ

cυd = γab δ
a
cυ

c δbdυ
d = γabυ

aυb.
(Z.649)

The same argument applies to the invariance of the scalar product γijpipj , only that
the Jacobians now transforms the inverse metric γij and the inverse Jacobians the
linear forms pi :

Jia Jjbγ
abJ c

i pcJ d
j pd = Jia J c

i Jjb J d
j γabpcpd = δcaδ

d
bγ

abpcpd = γab δcapc δ
d
bpd = γabpapb

(Z.650)

The transformation properties of the metric and its inverse show that they are in fact
tensors of rank 2.
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z. index notation

Z.3 Lagrange- and Hamilton-formalism in components

If one chooses the coordinates to be summarised in a vectorial tuple xi , the velocity
ẋi = dxi /dt and the acceleration ẍi = d2xi /dt2 are vectors as well. The construction
of a scalar quantity like the Lagrange function requires the metric γij for the kinetic
term,

L(xi , ẋi) =
m
2
γij ẋ

i ẋj − Φ(xi) (Z.651)

as well as the potential Φ. Variation with the Euler-Lagrange equation

d
dt

∂L
∂ẋa

=
∂L
∂xa

(Z.652)

leads to

∂L
∂ẋa

=
m
2
γij

( ∂ẋi

∂ẋa︸︷︷︸
=δia

ẋj + ẋi
∂ẋj

∂ẋa︸︷︷︸
=δja

)
=

m
2

(
γaj ẋ

j + γiaẋ
i
)

= mγaj ẋ
j (Z.653)

because the metric is symmetric, γia = γai , and any internal index in an expression
can be renamed. Together with

∂L
∂xa

= − ∂Φ
∂xa

(Z.654)

one arrives at the Newtonian equation of motion

mγaj ẍ
j = − ∂Φ

∂xa
(Z.655)

which can be brought into a more familiar shape by multiplying both sides with the
inverse metric γia:

mγiaγaj ẍ
j = mδij ẍ

j = mẍi = −γia ∂Φ
∂xa

= −γia∂aΦ → mẍi = −γia∂aΦ (Z.656)

with γiaγaj = δij such that the inverse metric relates the gradient of the potential,
itself a linear form, to the acceleration as a vector.

The canonical momentum,

pi =
∂L
∂ẋi

(Z.657)

is, by this reasoning, a linear form (and a function pj(ẋi) of the vectorial velocity
ẋi , which can be inverted to yield ẋi(pj ) for convex Lagrange-functions), so that the
Legendre transform

H = pi ẋ
i(pj ) − L(xi , ẋi(pj )) (Z.658)

is sensibly defined and yields a scalar Hamilton function. The contraction of the
vectorial velocity ẋi with the linear form pi appears naturally. And it provides an
argument, why the canonical momentum pi = ∂L/∂ẋi is more than just the kinetic
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z.4. duals

momentum mẋi : On the contrary, with the definition of the canonical momentum pi
one obtains for a standard form of the Lagrange-function

pi = mγij ẋ
i and consequently, ṗi = −∂iΦ (Z.659)

from the Euler-Lagrange equation, showing how the metric is necessary, in one way
or another, to mediate between velocity and acceleration as vectorial quantities on
one side and momentum and potential gradient as linear forms on the other, even in
the case of a standard kinetic term in the Lagrange-function. Hamilton’s equations of
motion

ṗi = −∂H
∂xi

and ẋi = +
∂H
∂pi

(Z.660)

remain consistent as the derivative with respect to a vector is a linear form, while
the derivative with respect to a linear form returns again a vector: ∂pi /∂pj = δ

j
i for

pi as a phase space coordinate. Please note how ṗi as a linear form emerges from
−∂H/∂xi = −∂Φ/∂xi without a metric in contrast to equation (Z.655), in a consistent
variant of Newton’s second law: ṗi = −∂iΦ.

Z.4 Duals

The cross product x × y between two vectors is defined in terms of their basis decom-
position as

x × y = xjej × ykek = xjyk ej × ek = xjyk ϵijke
i = ϵijkx

jyk︸   ︷︷   ︸
=(x×y)i

ei , (Z.661)

with the Levi-Civita symbol as an expression of the right-handed orientation of the
(orthogonal) basis system. Therefore, cross product ϵijkxjyk is naturally a linear form,
but is it possible to construct a naturally antisymmetric quantity out of the vectors
xj and yk as a vectorial object? Clearly, the antisymmetric rank-2 tensor xjyk − xkyj
would be such a thing, and would be, up to a factor of two, equal to the cross product:

ϵijk

(
xjyk − xkyj

)
= ϵijkx

jyk − ϵikjxjyk =
(
ϵijk − ϵikj

)
xjyk = 2ϵijkx

jyk (Z.662)

where in the first step the indices are interchanged j ↔ k, and then the property ϵijk =
−ϵikj is used. (xjyk − xkyj )/2 is called the dual, and the usability hinges heavily on the
fact that the contraction of two antisymmetric objects is nonzero. The dual xjyk − xkyj
is a vectorial (antisymmetric) tensor that contains the same information as the linear
form resulting from ϵijkx

jyk . Duals can be defined for any antisymmetric tensor, for
instance G̃αβ = 1

2 ϵαβµνGµν. They convert all Maxwell-equations into divergences, as

ϵijk∂jEk = ∂j

(
ϵijkEk

)
= ∂jE

ij = −∂ctB
i , (Z.663)

as exemplified by the induction equation.
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Z.5 Gauß- and Stokes-theorems

The Gauß-theorem relates the volume integral over the divergence of a vector field to
the integral of that particular vector field over the surface bounding the volume,∫

V

dV ∂iD
i =

∫
∂V

dSi Di and
∫
V

dV ∂iB
i =

∫
∂V

dSi Bi , (Z.664)

where in electrodynamics the relation gets applied to the two vector fields Di and
Bi . The surface element dSi is a linear form, because it originates from the cross
product of two vectors. Similarly, the Stokes-theorem relates the surface integral of
the rotation of a field to the line integral along the boundary,∫

S

dSi ϵ
ijk∂jEk =

∫
∂S

dr i Ei and
∫
S

dSi ϵ
ijk∂jHk =

∫
∂S

dr i Hi , (Z.665)

where in electrodynamics this becomes relevant for the two linear forms Ei and Hi .
It is a bit remarkable that the assignment of vectors and linear forms to the fields
in Maxwell’s equations only needs as geometric objects the differential ∂i and the
associated surface element dSi as linear forms, and never their possible vectorial
counterparts. The Gauß-theorem gets only ever applied to the vectors Di and Bi ,
whereas the application of the Stokes-theorem is restricted to the linear forms Ei

and Hi . This, in fact, is a hint that electrodynamics would work even on non-metric
spacetimes, because the metric (and its inverse) would be a mean to convert between
the two types of fields.

Z.6 Summary of co- and contravariant quantities in electrodynamics

0. rank 0: scalars and pseudoscalars

Φ electric potential
θ axion field amplitude
ρ electric charge density
dV volume element

1. rank 1: vectors and linear forms
xi Euclidean coordinates ∂i coordinate differential
ẋi velocity pi momentum
ẍi acceleration ∂iΦ potential gradient
Di dielectric displacement Ei electric field
Bi magnetic field Hi magnetic induction

Ai vector potential
Pi Poynting vector Yi Poynting linear form
ȷi electric current density dSi surface element

xµ Minkowski coordinates ∂µ coordinate differential
uµ 4-velocity pµ 4-momentum

Aµ 4-potential
ȷµ 4-current density
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z.6. summary of co- and contravariant quantities in electrodynamics

2. rank 2: co-, contravariant and mixed tensors

γij inverse Euclidean metric γij Euclidean metric
ϵij permissivity tensor ϵij inverse permissivity
µij permeability tensor µij inverse permeability
σij conductivity

ηµν inverse Minkowski metric ηµν Minkowski metric
Gµν excitation Fµν Faraday tensor
F̃µν Faraday dual G̃µν excitation dual

δ
j
i , δ

µ
ν Kronecker-symbol

T j
i Maxwell stress tensor

T ν
µ energy-momentum tensor
Λi

j endomorphism for vectors
υi → Λi

jυ
j

Λ
j
i endomorphisms for linear

forms pi → Λ
j
i pj
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