
Y complex calculus

Y.1 Aspects of complex differentiability

Many of the integrals needed for the construction of a Green-function with the Fourier
method are not solvable with elementary methods, i.e. integration by substitution, by
parts or using partial fractions, for instance

+∞∫
−∞

dω
1

(ck)2 − ω2 exp (−iω(t − t′)) (Y.584)

which shows two singularities at ω = ±ck. Methods from complex analysis, though,
provide a pathway of doing that.

A function g(z) = u(x, y) + iv(x, y) maps a complex argument z = x + iy onto a
complex value g = u + iy. It is continuous in ζ if there is an ϵ > 0 for every δ > 0 such
that |g(z) − g(ζ)| < ϵ follows form |z − ζ| < δ. In other words, the limit

lim
ζ→z
|g(z) − g(ζ)| = 0 (Y.585)

does not depend on the way how ζ approaches z. The function g(z) is complex
differentiable in z, if the limit

lim
ζ→z

g(z) − g(ζ)
z − ζ

=
dg
dz

(z) (Y.586)

exists and is unique, or in other words: if the differential quotient is continuous.
Complex differentiability is a weird and very powerful concept. Historically, four

different aspects have been discovered which turn out to be identical and merely dif-
ferent sides of the same idea: (i) complex differentiable, (ii) analytical, meaning that
the Cauchy-Riemann differential equations hold, (iii) regular, defined as a vanishing
loop integral over closed curves, and (iv) holomorphic, meaning that the function
fulfils the residue theorem. An weidly enough, it blurs the boundaries between inte-
gration and differentiation, as exemplified by the Cauchy-theorem. Fundamentally, it
is yet another example of the powerful concept of exact differentials.

Y.2 Cauchy-Riemann differential equations

In a complex differentiable function, the derivative does not depend on the direction
how ∆z, itself a complex number, approaches zero,

dg
dz

= lim
∆z→0

g(z + ∆z) − g(z)
∆z

. (Y.587)

Therefore, the derivative in x-direction parallel to the real axis,

lim
∆x→0

g(z + ∆x) − g(z)
∆x

=
∂g

∂x
(Y.588)
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y. complex calculus

and the derivative in the y-direction parallel to the imaginary axis,

lim
∆y→0

g(z + i∆y) − g(z)
i∆y

=
1
i
∂g

∂y
(Y.589)

must be equal. Writing this relation in terms of the components of g yields

∂g

∂x
=

∂u
∂x

+ i
∂v
∂x

=
1
i
∂g

∂y
=

1
i
∂u
∂y

+
∂g

∂y
(Y.590)

and with a subsequent separation of the real and imaginary parts on arrives at the
Cauchy-Riemann differential equations

∂u
∂x

= +
∂v
∂y

and
∂v
∂x

= −∂u
∂y

. (Y.591)

The notions of complex differentiability and the fulfilment of the Cauchy-Riemann
differential equations is equivalent.

Y.3 Complex line and loop integrals

Given a curve Γ parameterised with λ running from point A with coordinates z(a) to
point B at z(b), one can define a complex line integral by reducing it to an integral
over the parameter by substitution,

∫
ΓAB

dz g(z) =

b∫
a

dλ
dz
dλ

g(z(λ)). (Y.592)

Covering the same path in opposite direction yields the same numerical result, but
with a negative sign

∫
ΓBA

dz g(z) =

a∫
b

dλ
dz
dλ

g(z(λ)) = −
b∫
a

dλ
dz
dλ

g(z(λ)) (Y.593)

If an integral does not depend on the particular path from A to B, one can assemble
a trip from A to B on one path followed by a return trip from B to A on another path,
with the two contributions cancelling each other, with the overall result being∫

ΓAB

dz g(z) +
∫
ΓBA

dz g(z) =
∮
Γ

dz g(z) = 0 (Y.594)

Just as before, traversing a closed loop in the opposite sense of rotation would yield
an overall minus sign. Writing this relation component-wise∮

Γ

dz g(z) =
∮
Γ

(dx + idy) (u + iv) =
∮
Γ

(udx − vdy) + i
∮
Γ

(vdx + udy) = 0 (Y.595)
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y.4. residue theorem and holomorphic functions

Both terms can be reformulated as area integrals by virtue of Green’s theorem, ∂C = Γ ,∮
Γ

(udx − vdy) = −
∫
C

dxdy
(
∂u
∂y
− ∂v
∂x

)
and

∮
Γ

(vdx + udy) =
∫
C

dxdy
(
∂u
∂x

+
∂v
∂y

)
(Y.596)

where one immediately recognises the Cauchy-Riemann equations in the integrands,
making both results vanish. In summary,∮

Γ

dz g(z) = 0 (Y.597)

for any complex differentiable function. k Green’s theorem, which allows the con-
version of a loop integral to an area integral works for simply connected regions.

Y.4 Residue theorem and holomorphic functions

The Cauchy-theorem states that every value of a complex differentiable function
inside a closed curve Γ is fixed by the values on that curve,

g(z) =
1

2πi

∮
Γ

dζ
g(ζ)
ζ − z

(Y.598)

Functions with that property are called holomorphic, which is synonymous to
complex differentiable. In fact,

1
2πi

∮
Γ

dζ
g(ζ)
ζ − z

=
1

2πi

∮
Γ

dζ
g(ζ)

=0︷        ︸︸        ︷
−g(z) + g(z)
ζ − z

=

g(z)
2πi

∮
Γ

dζ
1

ζ − z
+

1
2πi

∮
Γ

dζ
g(ζ) − g(z)
ζ − z

= g(z), (Y.599)

after reordering the terms and using that
∮

dζ g(z) . . . = g(z)
∮

dζ . . .. The first term
can be shown to be∮

Γ

dζ
ζ

=
∮
Γ

d ln ζ =

2π∫
0

dλ
dζ
dλ

1
ζ

= i

2π∫
0

dλ exp(iλ) exp(−iλ) = i

2π∫
0

dλ = 2πi (Y.600)

after substitution ζ − z → ζ, which can then be solved by choosing the unit circle
ζ = exp(iλ) with dζ = i exp(iλ)dλ = iζdλ as the integration contour. The second
integral can be treated like this:∣∣∣∣∣∣∣∣ 1

2πi

∮
Γ

dζ
g(ζ) − g(z)
ζ − z

∣∣∣∣∣∣∣∣ ≤ 1
|2πi|

∣∣∣∣∣∣∣∣
∮
Γ

dζ
g(ζ) − g(z)
ζ − z

∣∣∣∣∣∣∣∣ ≤ ϵ

|2πi|

∣∣∣∣∣∣∣∣
∮
Γ

dζ
1

ζ − z

∣∣∣∣∣∣∣∣ = ϵ (Y.601)
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y. complex calculus

if the function g is continuous, which is quite obvious as it is already assumed to
be complex differentiable: Then, the integration contour can be chosen to be small
enough such that |g(ζ) − g(z)| < ϵ. In addition, the integral was already shown to
be 2πi. Overall, the second integral is bounded by ϵ, and does effectively does not
contribute, as ϵ can be chosen to be arbitrarily small.

It is worth memorising the iconic result

1
2πi

∮
Γ

dζ
ζ

= 1, (Y.602)

but what about other powers in ζ? Clearly, for both positive and negative n, as long
as n , −1,

∮
dζ ζn =

2π∫
0

dλ
dζ
dλ
ζn = i

2π∫
0

dλ exp(iλ) exp(inλ) =

i

2π∫
0

dλ exp(i(n + 1)λ) =
exp(i(n + 1)λ)

n + 1

∣∣∣2π
0

= 0 (Y.603)

from elementary integration, again with the parameterised unit circle exp(iλ) as the
integration contour. But alternatively, one could argue that the plane waves form an
orthonormal system. Therefore, only for n = −1 one gets a nonzero result.

The Cauchy-theorem can be generalised to higher-order derivatives: Starting with
a Taylor-expansion of g(ζ) around z,

g(ζ) = g(z) +
dg
dζ

∣∣∣
z
(ζ − z) +

d2g

dz2

∣∣∣
z

(ζ − z)2

2
+ · · · (Y.604)

Using the results from above, one can isolate g(z) from the series by multiplying it
with 1/(ζ − z), followed by a loop integration comprising z:∮
Γ

dζ
g(ζ)
ζ − z

= g(z)
∮
Γ

dζ
1

ζ − z︸       ︷︷       ︸
=2πi

+
dg
dz

∣∣∣
z

∮
Γ

dζ
ζ − z
ζ − z︸       ︷︷       ︸

=0

+
1
2

d2g

dz2

∣∣∣
z

∮
Γ

dζ
(ζ − z)2

ζ − z︸           ︷︷           ︸
=0

+ · · · (Y.605)

For accessing a higher order derivative, for instance dg/dz, one would need to
multiply the series by 1/(ζ − z)2 before integrating,∮
Γ

dζ
g(ζ)

(ζ − z)2 = g(z)
∮
Γ

dζ
1

(ζ − z)2︸           ︷︷           ︸
=0

+
dg
dz

∣∣∣
z

∮
Γ

dζ
ζ − z

(ζ − z)2︸           ︷︷           ︸
=2πi

+
1
2

d2g

dz2

∣∣∣
z

∮
Γ

dζ
(ζ − z)2

(ζ − z)2︸           ︷︷           ︸
=0

+ · · ·

(Y.606)
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y.4. residue theorem and holomorphic functions

This pattern generalises to the Cauchy-theorem for derivatives of g(z),

dng

dzn
∣∣∣
z

=
n!

2πi

∮
Γ

dζ
g(ζ)

(ζ − z)n+1 , (Y.607)

with the interesting implication that derivatives of a complex differentiable function
can be obtained through an integration process. If a function is complex differen-
tiable once, it is complex differentiable arbitrarily often, in stark contrast to real
differentiability.

The Cauchy-theorem can be applied in the solution of real-valued integrals that
can not be solved (easily) by means of elementary integration. A classic example of
this is

+∞∫
−∞

dx
1

1 + x2 = arctan x
∣∣∣+∞−∞ = π (Y.608)

where a solution is only possibly by using the rule of the derivative of the inverse func-
tion and trigonometric identities. Instead, one can perform a complex continuation,

+∞∫
−∞

dx
1

1 + x2 →
+∞∫
−∞

dz
1

1 + z2 (Y.609)

where x is interpreted as a complex-valued variable z. The denominator has two
poles at z = ±i, allowing a decomposition into partial fractions,

1
1 + z2 =

1
(1 + z)(1 − z)

=
1
2i

( 1
z − i

− 1
z + i

)
, (Y.610)

and the integration along the real axis from −∞ to +∞ can be extended by an semi-
circular arc, which does not contribute to the value of the integrand, as its arc length
increases with radius, but the value of the integrand decreases proportional to the
squared radius. This arc now makes the integration a complex loop integral, so that
we can write ∮

Γ

dz
1

z2 + 1
=

1
2i

∮
dz
z − i︸  ︷︷  ︸

=2π

− 1
2i

∮
Γ

dz
z + i︸    ︷︷    ︸

=0

= π (Y.611)

because only the pole at z = +i is contained inside the integration contour.

One would have arrived at exactly the same result if the arc had been closed at
the bottom instead of the top: Then, the sense in which the curve Γ is traversed, is
inverted, yielding a negative sign:∮

Γ

dz
1

z2 + 1
=

1
2i

∮
dz
z − i︸  ︷︷  ︸
=0

− 1
2i

∮
dz
z + i︸  ︷︷  ︸

=−2π

= π (Y.612)

as now the other pole at z = −i is caught by the integration contour.
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Y.5 Laurent-series

In the example above we have already embedded a function of a single, real-valued
variable into the complex plane, and consider it to a (differentiable) mapping between
complex numbers. This idea can be generalised in analytical continuations of a
complex function g(z), in cases where it is known in a region around z0 to a second
region around z bounded by ∆. There, the Cauchy-relation

g(z) =
1

2πi

∮
∆

dζ
g(ζ)
ζ − z

and
dng

dzn
∣∣∣
z

=
n!

2πi

∮
∆

dζ
g(ζ)

(ζ − z)n+1 (Y.613)

for any Γ circling the point z allows to access the values of g and its derivatives. The
function and its derivatives at z0 can be used to construct a power series that extends
from a region around z0 to z and defines the continuation of the function in this terra
incognita bounded by ∆.

The function’s values inside ∆ are fixed by the Cauchy-theorem, and one can
assemble an integration path consisting of two concentric loops Γ1 (with radius r1)
and Γ2 with radius r2, joined by two bridges A1 and A2. This integration path replaces
∆, as it would result from continuous deformation within the holomorphic region.
Then, g(z) can be computed as

g(z) =
1

2πi

∮
Γ2

dζ
g(ζ)
ζ − z

− 1
2πi

∮
Γ1

dζ
g(ζ)
ζ − z

, (Y.614)

because the contributions along A1 and A2 cancel each other due to the opposite
direction in which they are traversed. Please note that the second loop Γ1 contributes
with a minus sign as the integration path is followed in a clockwise direction, i.e. in
the mathematically negative sense. From the two integrals, the secoond one vanishes
because of the Cauchy-theorem because z is outside Γ1, but the first integral gives a
non-vanishing result, with z being contained in Γ2.

In our construction, the values of ζ traversed in the integration along the large
loop Γ2 have a modulus of r2. Then, one can argue that

1
ζ − z

=
1

ζ − z0

1
1 − z−z0

ζ−z0

=
1

ζ − z0

∑
n

(
z − z0

ζ − z0

)n
(Y.615)

where in the last step we replaced the 1/(1−q)-term with its corresponding geometric
series. There is no issue of convergence of∑

n

qn =
1

1 − q
because q =

∣∣∣∣∣ z − z0

ζ − z0

∣∣∣∣∣ =
r
r2

< 1 (Y.616)

Conversely, if ζ is situated on the loop Γ1 with radius r1, an analogous argument
applies, as

1
ζ − z

=
1

z − z0

1

1 − ζ−z0
z−z0

=
1

z − z0

∑
n

(
ζ − z0

z − z0

)n
. (Y.617)
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y.6. residue theorem

In this case, convergence of the geometric series is ensured by∑
n

pn =
1

1 − p
where p =

∣∣∣∣∣ζ − z0

z − z0

∣∣∣∣∣ =
r1

r
< 1 (Y.618)

Collecting these results leads to

g(z) =
1

2πi

∮
Γ2

dζ g(ζ)
∑
n

(z − z0)n

(ζ − z0)n+1 −
1

2πi

∮
Γ1

dζ g(ζ)
∑
n

(ζ − z0)n

(z − z0)n+1 . (Y.619)

It is an interesting realisation that the two fractions are inverses of each other, leading
to a natural continuation of the series towards negative n. Reordering integration and
summation yields:

g(z) =
∑
n

 1
2πi

∮
Γ2

dζ
g(ζ)

(ζ − z0)n+1

×(z−z0)n−
∑
n

 1
2πi

∮
Γ1

dζ
g(ζ)

(ζ − z0)−n

×(z−z0)−(n+1).

(Y.620)

In summary, this result can be rewritten

g(z) =
+∞∑

n=−∞
an(z − z0)n with an =

1
2πi

∮
Γ

dζ
g(ζ)

(ζ − z0)n+1 , (Y.621)

for any close curve running between Γ1 and Γ2, where the minus-sign is cancelled by
choosing a joint sense of rotation for the integration loop. This result is known as the
Laurent-series, a power-law expansion of holomorphic functions, with its remarkable
negative powers.

Y.6 Residue theorem

Looking at the Laurent series for g(z),

∞∑
n=−∞

an(z − z0)n = · · ·+ a−n
(z − z0)n

+ · · ·+ a−1

(z − z0)
+ a0 + a1(z − z0) + · · ·+ an(z − z0)n + · · · ,

(Y.622)

all terms belonging to positive indices n ≥ 0 remain finite in the limit z → z0, while
the terms for negative n , 0 are divergent. The function g(z) would possess a pole
of order −n at z0 if the Laurent series terminates at finite −n. Please note that the
Laurent-series is constructed in a consistent way: Applying

1
2πi

∮
Γ

dz . . . (Y.623)

to both sides yields for the terms with positive exponents n ≥ 0,

1
2πi

∮
Γ

dz (z − z0)n = 0, (Y.624)
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and similarly for the negative exponents with n ≥ 2,

1
2πi

∮
Γ

dz
1

(z − z0)n
= 0, (Y.625)

whereas only the term for n = −1 yields a non-vanishing result, namely:

1
2πi

∮
Γ

dz
1

z − z0
= 1. (Y.626)

The particular coefficient corresponding to n = −1 of the Laurent series,

a−1 =
1

2πi

∮
Γ

dζ g(ζ), (Y.627)

is called the residue of g(z) at z0, which needs to be located within Γ .

Y.7 Conformal mappings

Analytical (or complex differentiable, or regular, or holomorphic) functions automati-
cally fulfil the Laplace-equation ∆g = 0 in two dimensions and, as such, are viable
solutions to the field equation ini vacuum. Starting with g(z) = u(x, y) + iv(x, y) we
write:

∂2u

∂x2 =
∂
∂x

∂u
∂v︸︷︷︸

=∂v/∂y

=
∂
∂y

∂v
∂x︸︷︷︸

=−∂u/∂y

= −
∂2y

∂x2 → ∆u = 0 (Y.628)

taking advantage of the fact that partial differentiations interchange and substituting
the Cauchy-Riemann equations twice. Conversely, one shows for the imaginary part

∂2v

∂x2 =
∂
∂x

∂v
∂x︸︷︷︸

=−∂u/∂y

= − ∂
∂y

∂u
∂x︸︷︷︸

=∂v/∂y

= −∂
2v

∂y2 → ∆v = 0 (Y.629)

from which we conclude that ∆u + i∆v = ∆(u + iv) = ∆g = 0. In addition, as complex
conjugation is a linear operation, it is valid that ∆g∗ = 0.

Clearly, the solution to the field equation ∆Φ = 0 in electrostatics in vacuum or
to the field equations ∆Ai = 0 for all three components Ai of the vector potential
in Coulomb-gauge in magnetostatics, again in vacuum, could be represented by
a holomorphic function. One needs to keep in mind, though, that g is a complex
number with two components, whereas the potentials are real numbers. Hence the
question arises, what the other component Ψ of g = Φ + iΨ could represent!

If one were to identify Φ with the real value of g, it would need to represent the
electric field Ei = −∂Φ/∂xi as the gradient of Φ. It is possible to re-express the electric
field as a complex number Ex + iEy = −∂Φ with the Wirtinger derivative instead of
Ei = −∂iΦ in Cartesian coordinates. Additionally, there seems to be an auxiliary field
Ψ , called the stream function, to be identified as Ψ = v.
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The stream function is always perpendicular to lines of constant potential, which
can be seen by this argument: The gradients ∇u and ∇v are clearly perpendicular,

∇u · ∇v =
∂u
∂x

∂v
∂x︸︷︷︸

=−∂u/∂y

+
∂u
∂y

∂v
∂y︸︷︷︸

=+∂u/∂x

= 0 (Y.630)

by substituting the Cauchy-Riemann differential equations, and so would be the
functions Φ and Ψ .

There is a neat shortcut to this relation, by using the tools of k Wirtinger-calculus:
Motivated by the fact that the coordinates x and y are combined into a complex
number z = x + iy (and its conjugate z∗ = x − iy), one can define the composite
derivatives:

∂ ≡ ∂
∂z

=
∂
∂x

+ i
∂
∂y

as well as ∂∗ ≡ ∂
∂z∗

=
∂
∂x
− i

∂
∂y

. (Y.631)

Combination of the two derivatives leads directly to the Laplace operator, as both
∂∂∗g as well as ∂∗∂g are equal to ∆g!

There is a neat application of conformal applications to potentials in vacuum in
two dimensions. Commonly, potential problems are easy to solve in highly symmetric
charge distributions, which makes the convolution with the Green-function relatively
simple: In particular, a convolution of spherical symmetric charge distributions
with spherically symmetric Green-functions give rise to the a spherically symmetric
potential. To make this point more obvious, let’s consider a circularly symmetric
charge distribution in two dimensions. The potential is necessarily Φ ∝ ln r with the
electric field Er = 1/r and Eϕ = 0. A more complicated charge distribution would
generate the potential Φ =

∫
d2r ′ ρ(r) ln (|r − r′ |), with a potentially complicated

d2r ′-integration.
The problem might be alleviated if a mapping of the old coordinates x, y to new

coordinates u, v can be found which would not have an influence on the differential
structure of the field equation.

This can in fact be achieved in two dimensions, where the coordinates can be com-
bined into a complex number z = x + iy, for vacuum solutions that obey the Laplace
equation ∆Φ = 0. The Laplace-operator ∆ transforms under coordinate change in a
peculiar way and acquires just an overall strictly positive, position-dependent pref-
actor, which is called a conformal factor α2. The vacuum field equation transforms
as ∆Φ → α∆Φ = 0 but clearly, the conformal factor α is irrelevant and drops out
for vacuum solutions. Therefore, any vacuum solution in one set of coordinates is
automatically a valid vacuum solution in the transformed coordinates. The necessary
prerequisite is an analytical coordinate change.

To make things specific, let’s consider the mapping

G(u, v)→ g(x, y) = G(u(x, y), v(x, y)) (Y.632)

and derive the Laplace-equation for g in the coordinates x, y in terms of the Laplace-
equation for G in terms of u, v. For the first derivatives one obtains:

∂g

∂x
=

∂u
∂x

∂G
∂u

+
∂v
∂x

∂G
∂v

as well as
∂g

∂y
=

∂u
∂y

∂G
∂u

+
∂v
∂y

∂G
∂v

. (Y.633)
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Continuing with the second derivatives one arrives at

∂2g

∂2x
=

(
∂u
∂x

)2
∂2G
∂u2 +

∂u
∂x

∂v
∂x

∂2G
∂u∂v

+
∂2u

∂x2
∂G
∂u

+
(
∂v
∂x

)2
∂2G
∂v2 +

∂v
∂x

∂u
∂x

∂2G
∂v∂u

+
∂2v

∂x2
∂G
∂u

(Y.634)

together with

∂2g

∂2y
=

(
∂u
∂y

)2
∂2G
∂u2 +

∂u
∂y

∂v
∂y

∂2G
∂u∂v

+
∂2u

∂x2
∂G
∂u

+
(
∂v
∂y

)2
∂2G
∂v2 +

∂v
∂y

∂u
∂y

∂2G
∂v∂u

+
∂2v

∂y2
∂G
∂u

(Y.635)

These two expressions can be combined into

∂2g

∂x2 +
∂2g

∂y2 = . . . =

(∂u∂x
)2

+
(
∂u
∂y

)2 (∂2G
∂u2 +

∂2G
∂v2

)
(Y.636)

by making use of the interchangeability of the second partial derivatives and the
Cauchy-Riemann differential equations. The prefactor in square brackets is the posi-
tive conformal factor. In a actual application the problem of performing the convolu-
tion of the Green-function with the charge distribution is then reduced to finding an
analytical mapping between the simple and the complicated geometry.
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