
X fourier-transforms and orthonormal systems

X.1 Scalar products and orthogonality

The fundamental idea of Fourier-transforms is the question whether a function can
be represented as a linear combination of a parameterised family of base functions
which acts as a basis system, very much like the representation of a vector in terms
of its basis. For this purpose, one needs to generalise the notion of a projection to
functions, i.e. one needs to define a sensible scalar product. Scalar products in vector
spaces over R have the properties

1. positive definiteness:

⟨u, u⟩ ≥ 0, and ⟨u, u⟩ = 0 implies u = 0

2. bilinearity:

⟨u, v1 + v2⟩ = ⟨u, v1⟩ + ⟨u, v2⟩ as well as ⟨u1 + u2, v⟩ = ⟨u1, v⟩ + ⟨u2, v⟩, and

⟨αu, v⟩ = α⟨u, v⟩ as well as ⟨u, αv⟩ = α⟨u, v⟩

3. symmetry:

⟨u, v⟩ = ⟨v, u⟩

whereas in vector spaces over C there are slight differences,

1. positive definiteness:

⟨u, u⟩ ≥ 0, and ⟨u, u⟩ = 0 implies u = 0

2. sesquilinearity (instead of bilinearity):

⟨u, v1 + v2⟩ = ⟨u, v1⟩ + ⟨u, v2⟩ as well as ⟨u1 + u2, v⟩ = ⟨u1, v⟩ + ⟨u2, v⟩, and

⟨u, αv⟩ = α⟨u, v⟩ but ⟨αu, v⟩ = α∗⟨u, v⟩ with a complex conjugation

3. hermiticity (instead of symmetry):

⟨u, v⟩ = ⟨v, u⟩∗

In analogy to the scalar product in Rn one can define a scalar product for R-valued
functions in the interval [a, b],

⟨u, v⟩ = uiv
i → ⟨u, v⟩ =

b∫
a

dx u(x)v(x) (X.495)

and for complex scalar products in Cn and C-valued functions

⟨u, v⟩ = u∗i v
i → ⟨u, v⟩ =

b∫
a

dx u∗(x)v(x) (X.496)

with a complex conjugation.

115



x. fourier-transforms and orthonormal systems

The notion of orthogonality
⟨ui , uj⟩ ∝ δij (X.497)

generalises straightforwardly to a set of functions u(i)(x) indexed by i, where we
denote functions as vectors with a basis |ui⟩ and the associated linear forms with a
basis ⟨ui |, borrowing the k bra-ket notation from quantum mechanics.

If such as set should be able to approximate a function g(x) in a linear combination

g(x) = ai |ui(x)⟩ (X.498)

needs to make sure that the quadratic error ∆N

⟨aiui(x) − g(x)|ajuj (x) − g(x)⟩ (X.499)

between the function and its approximation over the interval [a, b] becomes small,
and ideally vanishes in the limit N →∞. It is sensible to integrate up the quadratic
difference because the linear combination can over- or underestimate g(x): ∆N is
positive definite and vanishes in the case of a perfect approximation.

∆N = a∗ia
j⟨ui , uj⟩ − a∗i⟨u

i , g⟩ − aj⟨g, uj⟩ + ⟨g, g⟩ (X.500)

If the basis system of functions |ui(x)⟩ is chosen to be orthogonal,

⟨ui , uj⟩ =

b∫
a

dx u(i)(x)∗u(j)(x) = δij (X.501)

the double sum in the first term collapses to a single sum, such that

∆N = a∗ia
i − a∗i⟨u

i , g⟩ − ai⟨g, ui⟩ + ⟨g, g⟩ (X.502)

The squared error ∆N can be minimised with respect to ak and a∗k , which are mutually
independent (think of them as being complex numbers, clearly the real and imaginary
part are independent)

∂

∂ak
∆N =

∂a∗i
∂ak︸︷︷︸
=0

ai + a∗i
∂ai

∂ak︸︷︷︸
=δik

−
∂a∗i
∂ak︸︷︷︸
=0

⟨ui , g⟩ − ∂ai

∂ak︸︷︷︸
=δik

⟨g, ui⟩ +
∂

∂ak
⟨g, g⟩︸     ︷︷     ︸

=0

(X.503)

such that

∂
∂ak

∆N = a∗k − ⟨g, u
k⟩ = 0 → ak∗ = ⟨g, uk⟩ =

b∫
a

dx g(x)∗u(k)(x) (X.504)
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x.1. scalar products and orthogonality

Similarly, minimisation with respect to a∗k yields

∂
∂a∗k

∆N =
∂a∗i
∂a∗k︸︷︷︸
=δki

ai + a∗i
∂ai

∂a∗k︸︷︷︸
=0

−
∂a∗i
∂a∗k︸︷︷︸
=δki

⟨ui , g⟩ − ∂ai
∂a∗k︸︷︷︸
=0

⟨g, ui⟩ +
∂
∂a∗k
⟨g, g⟩︸     ︷︷     ︸

=0

(X.505)

implying

∂
∂a∗k

∆N = ak − ⟨uk , g⟩ → ak = ⟨uk , g⟩ =

b∫
a

dx uk(x)∗g(x) (X.506)

which is the hermitean conjugate of eqn. (X.504): When determining the expansion
coefficients ak of a complex function g(x), one directly obtains both the real and
imaginary part of ak from the projection integral, so a∗k = ⟨g, uk⟩ and ak = ⟨uk , g⟩ are
equivalent. In the case of a real-valued function g(x), both a∗k and ak coincide, which
implies that the coefficients themselves are real-valued.

With the coefficents ai and a∗i derived by projection, the value of the squared error
∆N at the minimum is given by

∆
(min)
N = ⟨g, g⟩ − a∗ia

i (X.507)

which ideally would tend towards zero as N →∞,

lim
N→∞

∆
(min)
N = lim

N→∞
⟨aiui − g, aiui − g⟩ = 0 → ⟨g, g⟩ = lim

N→∞
a∗ia

i (X.508)

referred to as convergence in the quadratic mean, implying the Parseval-relation,
which is tightly related to the completeness relation of the basis system: After all,
not all basis systems are able to make sure that the minimised mean quadratic error
tends to zero.

a∗ia
i = ⟨g, ui⟩ ⟨ui , g⟩ =

b∫
a

dx g(x)∗ui(x)

b∫
a

dx′ ui(x′)∗g(x′) (X.509)

Changing the integration order leads to

a∗ia
i =

b∫
a

dx g(x)∗
b∫
a

dx′ g(x′) ui(x′)∗ui(x) (X.510)
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x. fourier-transforms and orthonormal systems

If the system of functions fulfils

ui(x)∗ui(x
′) = δD(x − x′) (X.511)

then one can continue to write

a∗ia
i =

b∫
a

dx g(x)∗
b∫
a

dx′ g(x′)δD(x − x′) =

b∫
a

dx g(x)∗g(x) = ⟨g, g⟩ (X.512)

and convergence is assured. This means, that the system of functions |ui(x)⟩ needs to
be able to represent the Dirac δD-function. If that is the case, the system is complete
for representing any function in the quadratic mean.

X.2 Fourier-transforms

Popular basis functions are plane waves because many differential equations in
physics actually describe oscillations. In the finite interval [−π,+π] ⊂ R, a discrete set
of plane waves un = exp(inx) would be perfectly suited as a complete basis system,
because

N∑
n

exp(inx) exp(−inx′) =
N∑
n

exp(in(x − x′)) =

N∑
n

exp(i(x − x′))n =
exp(i(x − x′)(N + 1)) − 1

exp(i(x − x′)) − 1
(X.513)

as a consequence of the limit formula for geometric series, which can be reformulated
to yield

= exp
(
i
N
2

(x − x′)
) sin

(
N+1

2 (x − x′)
)

sin
(

1
2 (x − x′)

) ∼ δD(x − x′) (X.514)

as the exponential becomes 1 in the limit x → x′, the sin(x)/x-function indeed
approximates the Dirac δD-function. To show that the value at x = x′ is actually
proportional to N + 1 requires the application of de l’Hôpital’s rule for computing
the limit x→ x′ .

For the case of the infinite interval (−∞,+∞) one can transition to a continuous set
of basis functions. Introducing a wave vector k = 2π/L for a plane wave exp(2πix/L) =
exp(ikx) in the interval is likewise a complete basis system, and becomes continuous
in the limit L→ 0. In fact,

+π/L∫
−π/L

dk
2π

exp(ikx) exp(ikx′)∗ =

+π/L∫
−π/L

dk
2π

exp(ik(x − x′)) =
1

2π
exp(ik(x − x′))

i(x − x′)

∣∣∣∣∣∣
+π/L

−π/L

(X.515)

and evaluating the integral yields

=
1
π

sin(π(x − x′)/L)
π(x − x′)/L

(X.516)
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x.3. convolutions with fourier-transforms
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Figure 31: Eqn. X.516 as an approximation to the δD-function in the limit N →∞.

which in the limit L→ 0 behaves like the Dirac δD-function: The case of x− → x′ can
be sorted out by application of de l’Hôpital’s rule, just as before in the discrete case.

In the continuum limit, the Fourier-transform g(k) of a function g(x) is given by

g(x) =
∫

dk
2π

g(k) exp(+ikx) ↔ g(k) =
∫

dx g(x) exp(−ikx) (X.517)

where you’ll find in the literature any combination of distributing the factor 2π and
choosing the sign in the wave exp(±ikx). The two are really inverse, as

g(x) =
∫

dk
2π

∫
dx′ g(x′) exp(ik(x − x′)) =∫

dx′ g(x′)
∫

dk
2π

exp(ik(x − x′)) =
∫

dx′ g(x′)δD(x − x′) = g(x) (X.518)

illustrating the necessity of the 2π-factor. Generalising to more dimensions it be-
comes clear that the plane wave exp(±iki r i) factorises in Cartesian coordinates into
exp(±ikxx) exp(±ikyy) exp(±ikzz), such that the Fourier-transform in n dimensions
becomes a sequence of Fourier-transforms in 1 dimension:

g(r) =
∫

d3k

(2π)3 g(k) exp(+iki r
i) ↔ g(k) =

∫
d3r g(r) exp(−iki r

i) (X.519)

Any further simplification is only possible if the function to be transformed itself
factorises, too. The (scalar) product k · r = ki r

i in index notation shows that ki is in
fact a linear form, which is foreshadowing quantum mechanics that sets ℏki = pi with
the momentum pi .

X.3 Convolutions with Fourier-transforms

One of the primary applications of Fourier-transforms is to carry out convolutions
ϕ ⊗ ψ, as convolutions reduce to straightforward multiplications in Fourier-space.
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Figure 32: Square wave, assembled from the first 20 Fourier components.
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Figure 33: Sawtooth wave, assembled from the first 20 Fourier components.
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x.4. green-functions with fourier-transforms

Setting up a product ϕ(k)ψ(k) between two Fourier-transformed functions ϕ(k) and
ψ(k) and transforming back to configuration space yields

ϕ ⊗ ψ(r) =
∫

d3k

(2π)3 [ϕ(k)ψ(k)] exp(+iki r
i) (X.520)

and substituting the forward-transformed fields gives

=
∫

d3k

(2π)3

∫
dV′ ϕ(r′) exp(−iki r

′ i)
∫

dV′′ ψ(r′′) exp(−ikj r
′′ j ) exp(+ikkr

k) (X.521)

which, after reordering the integrations, is equivalent to

=
∫

dV′ ϕ(r′)
∫

dV′′ ψ(r′′)
∫

d3k

(2π)3 exp(+iki · [r − r′ − r′′]i) (X.522)

The d3k-integration gives the Dirac δD-function, which fixes r′′ to the value r − r′ ,

=
∫

dV′ ϕ(r′)
∫

dV′′ψ(r′′)δD(r − r′ − r′′) =
∫

dV′ ϕ(r′)ψ(r − r′) (X.523)

i.e. a convolution, as advertised. Due to the perfect symmetry between Fourier-space
and configuration space, the opposite is true as well: Convolutions in Fourier-space
are products in configuration space.

X.4 Green-functions with Fourier-transforms

In the discussion of Poisson-type equations ∆Φ = −4πρ for solving potential problems
we have seen that the potential Φ is given by a convolution of the charge distribu-
tion ρ with the Green-function G, which incidentally is 1/r for the ∆-operator in 3
dimensions:

Φ(r) =
∫

dV′ G(r − r′)ρ(r′) =
∫

dV′
ρ(r′)
|r − r′ |

(X.524)

This convolution needs to become a product in Fourier-space

Φ(k) = G(k)ρ(k) with G(k) =
4π
k2 (X.525)

To obtain the expression for the Green-function G in configuration space it suffices
to transform G(k) back, where we make the replacement r − r′ → r′, as the Green-
function only depends on the relative distance:

G(r) =
∫

d3k

(2π)3 G(k) exp(+iki r
i) (X.526)

As G(k) = 4π/k2 is spherically symmetric, it makes sense to carry out the integration
in spherical coordinates: d3k = k2dk dµ dϕ with µ = cos θ being the cosine of the
polar angle θ:
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x. fourier-transforms and orthonormal systems

G(r) =

∞∫
0

k2dk
(2π)3

+1∫
−1

dµ

2π∫
0

dϕ
4π
k2 exp(+ikrµ) =

4π
(2π)2

∞∫
0

dk

+1∫
−1

dµ exp(ikrµ) (X.527)

because ki r
i = kr cos θ = krµ, and because dϕ-integration just yields 2π. Next, the

dµ-integration can be carried out to yield

=
1
π

∞∫
0

dk
exp(+ikr) − exp(−ikr)

ikr
=

2
π

∞∫
0

dk
sin(kr)

kr
=

2
π

∞∫
0

dk j0(kr) =
1
r

(X.528)

because the integral over j0(x) = sin(x)/x can be shown to be

∞∫
0

dx
sin(x)

x
=
π

2
(X.529)

after substitution x = kr, usually with the methods of complex calculus (see chap-
ter Y), but there are more down-to-Earth methods: There is no direct integration
method for this type of integral, but neat tricks exist!

∞∫
0

dx
sin x
x

=

∞∫
0

dx sin(x)

∞∫
0

dy exp(−yx)

︸             ︷︷             ︸
=1/x

=

∞∫
0

dy

∞∫
0

dx sin(x) exp(−yx) (X.530)

after changing the order of integration. The resulting dx-integral can be solved by
double integration by parts:

∞∫
0

dx sin(x) exp(−yx) = −1
y

sin(x) exp(−yx)
∣∣∣∣∣∞
0

+
1
y

∞∫
0

dx cos(x) exp(−yx) (X.531)

where the first term vanishes at both boundaries. Continuing with the second inte-
gration by parts yields

. . . = − 1
y2 cos(x) exp(−yx)

∣∣∣∣∣∞
0
− 1
y2

∫
dx sin(x) exp(−yx) (X.532)

where the first term in this case yields −1 at the lower integration boundary. Collect-
ing the terms gives (

1 +
1
y2

) ∞∫
0

dx sin(x) exp(−yx) =
1
y2 (X.533)

such that
∞∫

0

dx sin(x) exp(−yx) =
1
y2

1 + 1
y2

=
1

1 + y2 (X.534)
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x.4. green-functions with fourier-transforms

and finally
∞∫

0

dx
sin(x)

x
=

∞∫
0

dy
1

1 + y2 = arctan(x)
∣∣∣∣∣∞
0

=
π

2
(X.535)

The inverse problem and slight generalisation of the above calculation is the
Fourier-transform of 1/r,

∞∫
0

r2dr

+1∫
−1

dµ

2π∫
0

dϕ
1
r

exp(−ikrµ) →
∞∫

0

r2dr

+1∫
−1

dµ

2π∫
0

dϕ
exp(−λr)

r
exp(−ikrµ)

(X.536)

where the issue about convergence of the integral can be alleviated by introducing
a factor exp(−λr) to the integrand, and by considering the limit λ → 0 after the
integration: This method is known as regularisation of an integral. Physically, we
compute the Fourier-transform of a Yukawa-potential instead of a Coulomb-potential.
Continuing as before gives

. . . = 4π

∞∫
0

r2dr
exp(−λr)

r

sin(kr)
kr

=
4π
k

∞∫
0

dr exp(−λr) sin(kr) (X.537)

The remaining integral can be solved again by double integration by parts: Firstly,

∞∫
0

dr exp(−λr) sin(kr) = −1
λ

exp(−λr) sin(kr)
∣∣∣∣∣∞
0

+
k
λ

∞∫
0

dr exp(−λr) cos(kr) (X.538)

where the first term vanishes at both boundaries. Applying the second integration by
parts on the remaining term yields

k
λ

∞∫
0

dr exp(−λr) cos(kr) = − k

λ2 exp(−λr) cos(kr)
∣∣∣∣∣∞
0
− k2

λ2

∞∫
0

dr exp(−λr) sin(kr)

(X.539)

where at this step the first term vanishes at the upper, but not at the lower boundary.
Consequently, (

1 +
k2

λ2

) ∞∫
0

dr exp(−λr) sin(kr) =
k

λ2 (X.540)

suggesting for the final result:

4π
k

∞∫
0

dr exp(−λr) sin(kr) = 4π
1
λ2

1 + k2

λ2

=
4π

k2 + λ2 →
4π
k2 for λ→ 0 (X.541)

Clearly, the inverse Fourier-transform of 4π/k2 should be 1/r (in three dimensions);
as well in agreement with our experience with electrostatic potentials Φ ∝ 1/r around
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x. fourier-transforms and orthonormal systems

point charges. The regularisation

1
r
→ exp(−λr)

r
corresponds to

4π
k2 →

4π
k2 + λ2 , (X.542)

and would work for inverse Fourier-transforms just as well.

A more professional method, which generalises to other types of Green-functions
more easily, is to use the residue theorem from complex analysis. Restarting at

G(r) =

∞∫
0

k2dk
(2π)3

+1∫
−1

dµ

2π∫
0

dϕ
4π
k2 exp(+ikrµ) =

2
π

∞∫
0

dk
sin(kr)

kr
(X.543)

led us to the dk-integration over the spherical Bessel function. We can extend the
integration domain from −∞ to +∞ as the integrand is a symmetric function, and
write sin(x) out in terms of complex exponentials:

+∞∫
−∞

dx
sin x
x

=
1
2i

+∞∫
−∞

dx
x

(exp(ix) − exp(−ix))→ 1
2i

+∞∫
−∞

dz
z

(exp(iz) − exp(−iz))

(X.544)

by continuation to the complex plane. The two terms need to be treated differently
when closing the integration to a loop: The first term exp(iz) will decrease exponen-
tially towards the positive imaginary axis, so one should close the integration contour
there, while the second term exp(−iz) decreases exponentially towards the negative
imaginary axis, so this is where the loop should be closed. Keep in mind that the first
loop is traversed in the mathematically positive sense, while the second one in the
negative sense, leading in principle to negative results. Now, the integrand needs
to get shifted by ±iϵ with a small ϵ > 0, such that the pole is contained in one of
the integration contours and does not lie on the real axis. Let’s chose to move the
integrand towards the positive imaginary axis by changing z to z − iϵ. In this case,
only the first term contributes to the integral (with the integration contour ) as the
second integration contour ( ) does not contain the pole and is therefore zero:

1
2i

+∞∫
−∞

dz
z

(exp(iz) − exp(−iz)) =
1
2i

∮
dz
z

exp(iz) +
1
2i

∮
dz
z

exp(−iz) (X.545)

Simplifying the relation further, the loop-integral can be solved with Cauchy’s
integral formula: ∮

Γ

dζ
g(ζ)
ζ − z

= 2πi g(z) (X.546)

with ζ set to zero. As exp(iζ) = 1 at this location, the sought integral bocomes

2

∞∫
0

dx
sin x
x

=

+∞∫
−∞

dx
sin x
x

=
1
2i

∮
dz
z

exp(iz) = π. (X.547)
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x.4. green-functions with fourier-transforms

Fig. 34 illustrates the integrand of the Green-function for ∆ in Fourier-space, with
the singularity at the origin.

While these methods generalise straightforwardly to n ≥ 4, the case of n = 2 is
downright weird. The corresponding Poisson-equation reads

∆Φ = −2πρ in two dimensions, (X.548)

because the solid angle element in 2d is 2π, as the circumference of a circle with
unit radius. But the Fourier-transform of ∆ is still ∝ 1/k2 as shown before, only that
k2 = k2

x + k2
y in 2 dimensions. Writing formally

G(r) = 2π
∫

d2k

(2π)2
1
k2 exp(ik · r) =

∞∫
0

kdk

2π∫
0

dϕ
1
k2 exp(ikr cosϕ) (X.549)

after introducing polar coordinates that imply d2k = kdkdϕ, and writing the scalar
product as k · r = kr cosϕ, with ϕ being the angle between k and r. Carrying out the
dϕ-integration first leads to the cylindrical Bessel-function J0, because

J0(kr) =

2π∫
0

dϕ exp(ikr cosϕ) (X.550)

such that

G(r) =

∞∫
0

dk
k

J0(kr)→
∞∫

0

dk
k

k2 + λ2 J0(kr) (X.551)

by introducing a regularisation in the denominator, which avoids the divergence at
k = 0. Integrations of this type have the general solution

∞∫
0

dk
kν+1

(k2 + λ2)µ+1 Jν(kr) =
rµλν−µ

2µΓ (µ + 1)
Kν−µ(λr) = K0(rλ) with ν = µ = 0 (X.552)

in our particular case, with K0(rλ) being the modified Bessel-function of the second
kind,

K0(rλ) =

∞∫
0

dt
cos(rλt)
√

1 + t2
. (X.553)

This particular Bessel-function can be written in terms of a power series in its
argument rλ. In the limit of vanishing regularisation, the value of the power series is
dominated by its first term:

K0(rλ) = − (ln(rλ) + γ) I0(rλ) (X.554)

with I0(rλ) as the modified Bessel function of the first kind approaching unity in the
limit λ→ 0, leaving G(r) ∝ ln(r). γ is k Euler’s constant.
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Figure 34: Function exp(±ik)/k over the complex plane k = Re(k) + i Im(k), with color
indicating phase and hue indicating the absolute value, for the positive sign the exponent
(decreasing towards the positive imaginary axis) on the top and the negative sign (decreas-
ing towards the negative imaginary axis) on the bottom. The singularity at the origin is
clearly visible.
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X.5 Spectra of musical instruments

An externally driven oscillator illustrates nicely the purpose of a Green-function
to cope with inhomogeneities: Let’s work with a harmonic oscillator with proper
frequency ω0, a damping γ driven by an external acceleration a(t). Its defining
differential equation is

ẍ + γẋ + ω2
0x(t) = a(t) (X.555)

Finding a solution for the homogeneous equation is straightforward: The ansatz
x(t) ∝ exp(iωt) yields the characteristic equation ω2− iωγ−ω2

0 = 0, with two solutions,

ω± =
(
iγ ±

√
γ2 − 4ω2

0

)
/2. Effectively, this corresponds to taking the Fourier-transform

of the differential equation, which then becomes algebraic:∫
dω
2π

[
−ω2 + iγω + ω2

0

]
exp(iωt)x(ω) = 0 (X.556)

as the differentiation d/dt replaces the prefactor iω, such that we recover the
quadratic characteristic equation again. The incorporation of the inhomogeneity
can easily be achieved in Fourier-space:∫

dω
2π

[
−ω2 + iγω + ω2

0

]
exp(iωt)x(ω) =

∫
dω
2π

a(ω) exp(iωt). (X.557)

Because the differential equation has become algebraic, solving for x(ω) is easy:

x(ω) =
1

−ω2 + iγω + ω2
0

a(ω) = G(ω)a(ω) (X.558)

such that the inverse Fourier-transform yields x(t) for a given driving term a(t). The
product relation in Fourier-space must be a convolution in real space,

x(t) =
∫

dω
2π

1

−ω2 + iγω + ω2
0

a(ω) exp(iωt) =
∫

dt′ G(t − t′)a(t′) (X.559)

where the inverse differential operator is just the Green-function for this problem:

G(t − t′) =
∫

dω
2π

1

−ω2 + iγω + ω2
0

exp(iω(t − t′)) (X.560)

G(ω) or equivalently, G(t − t′) determines the response of the system, i.e. the damped
harmonic oscillator, to an external driving. Most obviously, this is understood in
Fourier-space, where G(ω) translates the driving a(ω) to the resulting amplitude x(ω),
frequency by frequency. In configuration space, G(t − t′) is likewise the response of
the system, and it is defined formally as the solution to the differential equation to a
δD-like inhomogeneity,(

d2

dt2 + γ
d
dt

+ ω2
0

)
G(t − t′) = δD(t − t′) (X.561)
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because any inhomogeneity can be constructed from this by linear superposition:
Multiplying both sides with a(t′) and integrating over dt′ gives(

d2

dt2 + γ
d
dt

+ ω2
0

) ∫
dt′ G(t − t′)a(t′)︸                  ︷︷                  ︸

=x(t)

=
∫

dt′δD(t − t′)a(t′) = a(t) (X.562)

such that the solution for the amplitude as a function of time has to be given by

x(t) =
∫

dt′ G(t − t′)a(t′) (X.563)

i.e. as a convolution relation over the excitation a(t). The interpretation of the
response G(t − t′) as defined by eqn. (X.561) would now be the solution to the
dynamical system to an infinitely sharp excitation. Actually, this is sensible, as it
would in fact contain all possible Fourier-modes, even at equal amplitude. But is it
possible to construct the Green-function explicitly from the differential operator?
After all, the inhomogeneity a(t) is taken care of by the integration eqn. (X.563) and
the Green-function itself is defined formally by eqn. (X.561): In fact, in Fourier-space
this relation reads:(

d2

dt2 + γ
d
dt

+ ω2
0

)
G(t − t′) =

(
d2

dt2 + γ
d
dt

+ ω2
0

) ∫
dω
2π

G(ω) exp(iωt) =∫
dω
2π

(
−ω2 + iγω + ω2

0

)
G(ω) exp(iωt) =

∫
dω
2π

exp(iωt) = δD(t − t′) (X.564)

such that
G(ω) =

1

−ω2 + iγω + ω2
0

(X.565)

with the inverse transform

G(t − t′) =
∫

dω
2π

G(ω) exp(iω(t − t′)) =
∫

dω
2π

1

−ω2 + iγω + ω2
0

exp(iω(t − t′)) (X.566)

which can be shown to be a Lorentzian k spectral line profile.
To complete the analogy to electrodynamics it’s instructive to think of the inho-

mogeneity ρ in electrostatic Poisson-equation ∆Φ = −4πρ as the external driving
that perturbs the solution to the k Laplace equation ∆Φ = 0. The resulting Green-
function G(ω) is complex-valued; its real and imaginary parts are depicted in Fig. 35,
along with its modulus and phase.

A more complete view is presented in Fig. 36, where the Green-function is shown
with the phase in color and the modulus in hue.
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Figure 35: Complex-valued Green-function G(ω) for the damped harmonic oscillator, for
ω0 = γ = 1, specifically the real and imaginary parts as well as the modulus and the phase
angle.

An external, sinusoidal driving would correspond to a choice of a value for ω
on the real axis, and a value close to the two singularities would result in resonant
driving. The singularities are situated at

ω2 − iγω − ω2
0 = 0 → ω± =

iγ ±
√

4ω2
0 − γ2

2
, (X.567)

i.e. at
√

3/2 + i/2 for the numerical example with ω0 = γ = 1.
Fig. 37 shows spectra for a range of musical instruments. All spectra show the

k harmonic series of integer multiples of the base note. Their relative amplitudes
determine the sound of the respective instruments.

Fig. 38 illustrates, how incredibly well-fitting the Lorentzian line shape for spectra
lines actually is. From this observation, one might conclude that a damped harmonic
oscillator with an external driving is a good mechanical model for the sound genera-
tion in a musical instrument, and motivates sound engineering in a k synthesiser.

X.6 Spherical harmonics

It is well possible to construct complete orthonormal systems of functions on other
manifolds, for instance on the surface of a sphere. As in the case of plane waves for
Euclidean space with Cartesian coordinate, which solve the Helmholtz differential
equation, one can look for the set of solutions to the wave equation

∆Yℓm(θ,ϕ) = −ℓ(ℓ + 1)Yℓm(θ,ϕ) → [∆ + ℓ(ℓ + 1)] Yℓm(θ,ϕ) = 0 (X.568)

where the Laplace-operator is a differentiation with respect to the angular coordinate
θ and ϕ. Comparing to the Cartesian Helmholtz-PDE

[
∆ + k2

]
exp(±ki r i) = 0 one

identifies the term ℓ(ℓ + 1) with k2, implying that π/ℓ should be a wave length (in
terms of radians) just like 2π/k would be a physical wave length λ.
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Figure 36: Complex-valued Green-function G(ω) over the complex plane ω = Re(ω) +
i Im(ω), with phase indicated by colour and absolute value by hue, again for ω0 = γ = 1.
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Figure 37: Spectra of different musical instruments, showing higher-order harmonics.
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Figure 38: Spectral line of a tone with a best-fitting Lorentz-profile.
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Figure 39: Legendre polynomials Pℓ(x) for ℓ = 1 . . . 8, with even parity for even ℓ, and odd
parity for odd ℓ.
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The Laplace-operator ∆ in angular coordinates applied onto a scalar function
ψ(θ,ϕ) reads explicitly

∆ψ =
1

sin θ
∂
∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂ϕ2 (X.569)

As there are no mixed derivatives one should try a separation ansatz

ψ(θ,ϕ) = T(θ)P(ϕ) (X.570)

so that the Helmholtz-PDE becomes

∆ψ =
P(ϕ)
sin θ

∂
∂θ

(
sin θ

∂T(θ)
∂θ

)
+

T(θ)

sin2 θ

∂2P(ϕ)
∂ϕ2 = −ℓ(ℓ + 1)T(θ)P(ϕ) (X.571)

such that division by T(θ)P(ϕ) separates the terms as dependent on θ or ϕ

sin θ
T

∂
∂θ

(
sin θ

∂T
∂θ

)
+ ℓ(ℓ + 1) sin2 θ = − 1

P
∂2P
∂ϕ2 (X.572)

to the left and right side of the equation: They must therefore both be equal to a
separation constant m2. Then, the right side gives

1
P
∂2P
∂ϕ2 = −m2 →

(
∂2

∂ϕ2 + m2
)

P(ϕ) = 0 (X.573)

which is again a Helmholtz-differential equation, this time in ϕ only. It has wave-type
solutions

P(ϕ) ∝ exp(±imϕ) (X.574)

with m playing the role of a wave number, but it has to be integer because otherwise
the continuity of the solution could not be ensured when rotating by 2π:

P(ϕ+2π) = P(ϕ) implies exp(±im(ϕ+2π)) = exp(±2πim)︸         ︷︷         ︸
=1

exp(±imϕ) = exp(±imϕ)

(X.575)

if m is integer. With this knowledge we return to the θ-equation, which becomes the
associated Legendre-differential equation[

1
sin θ

∂
∂θ

(
sin θ

∂
∂θ

)
− m2

sin2 θ
+ ℓ(ℓ + 1)

]
T(θ) = 0 (X.576)

after resorting the terms, where the particular case m = 0 leads to the actual Legendre-
differential equation,

1
sin θ

∂
∂θ

(
sin θ

∂T
∂θ

)
+ ℓ(ℓ + 1)T(θ) = 0 (X.577)
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Figure 40: Associated Legendre polynomials Pℓm(cos θ) in a polar representation.

Transitioning to the new variable x = cos θwith sin θ =
√

1 − x2 then yields

(1 − x2)
d2T
dx2 − 2x

dT
dx

+ ℓ(ℓ + 1)T(x) = 0 (X.578)

whose solution are the Legendre-polynomials Pℓ(x). They can be shown to obey an
orthogonality relation

+1∫
−x

dx Pℓ(x)Pℓ′ (x) =
2

2ℓ + 1
δℓℓ′ (X.579)

in the same way as the plane waves exp(±imϕ) for the azimuthal coordinate, confirm-
ing that the Helmholtz differential equation in fact defines a system of orthonormal
waves on the surface of the sphere.

In the same way there is an orthogonality relation for the solutions to the associ-
ated Legendre differential equation
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+1∫
−1

dx Pℓm(x)Pℓ′m′ (x) =
2

2ℓ + 1
(ℓ + |m|)!
(ℓ − |m|)!

δℓℓ′δmm′ (X.580)

such that the definition of the spherical harmonics including the prefactors

Yℓm(θ,ϕ) =

√
4π

2ℓ + 1

√
(ℓ − |m|)!
(ℓ + |m|)!

Pℓm(cos θ) exp(+imϕ) (X.581)

gives the fundamental orthogonality∫
4π

dΩ Yℓm(θ,ϕ)Y∗ℓ′m′ (θ,ϕ) = δℓ,ℓ′δmm′ (X.582)

and completeness relations

∞∑
ℓ=0

+ℓ∑
m=−ℓ

Yℓm(θ,ϕ)Y∗ℓm(θ′ ,ϕ′) = δD(θ− θ′)δD(ϕ − ϕ′) (X.583)
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Figure 41: Spherical harmonics Yℓm(θ,ϕ) for ℓ = 0, 1, 2, 3 (top to bottom) and 0 ≤ m ≤ ℓ
(corresponding rows).
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