
E covariant electrodynamics

E.1 Covariant formulation of electrodynamics

Relativity provides the tools to formulate the Maxwell-equations very compactly,
elegantly, and in a Lorentz-covariant way. For this purpose, one needs to construct
a differential operator ∂µ for derivatives with respect to the coordinates, which
themselves form a Lorentz-vector xµ. . Sometimes, ∂µ is used, defined

as ∂µ = ηµν∂ν, but please avoid
notations like ∂µ = ∂/∂xµ.

∂µ =
∂

∂xµ
= (∂ct ,+∂i) (E.329)

For consistency, the divergence ∂µx
µ needs to be equal to the dimensionality

∂µx
µ =

∂xµ

∂xµ
= ∂ct(ct) + ∂ix

i = 4 (E.330)

which comes out naturally. With this differential form ∂µ, the d’Alembert-operator is
given as a Lorentz-square,

□ = ηµν∂µ∂ν = ∂2
ct − γij∂i∂j = ∂2

ct − ∆, (E.331)

and is in fact a Lorentz-scalar, as shown by the orthogonality relation of the Lorentz-
transforms,

□ = ηµν∂µ∂ν → ηµνΛ α
µ Λ

β
ν︸       ︷︷       ︸

=ηαβ

∂α∂β = ηαβ∂α∂β = □, (E.332)

reflecting the fact that wave propagation according to □ takes place at the velocity
c in every frame, which was the defining principle of the Lorentz transforms. The
transformation property ∂µ → Λ α

µ ∂α generalises the transformation ∂i → R j
i ∂j to

the full Lorentz group. In the same way as ∆ is invariant under rotations, □ becomes
invariant under combined rotations and Lorentz transforms.

With the operator ∂µ it is straightforward to formulate the continuity equation for
the charge density: . ȷµ contains the electric charge

density ρ and the current density
ȷi as a vector.

ȷµ =
(
ρc
ȷi

)
with ∂µȷ

µ = ∂ct(ρc) + ∂i ȷ
i = 0 (E.333)

where it is interesting to see, that ȷt = ρc has the same units as ȷi , reflecting the
consistency of the units in ∂ct and ∂i , with the additional benefit that a charge at rest
in a given frame has a nonzero t-component ȷt = cρ, as it moves with the velocity c
along the ct-axis!

As a Lorentz-vector, the 4-current density transforms according to

ȷµ → Λ
µ
αȷ
α (E.334)

and necessarily inversely to ∂µ, such that ∂µȷµ is indeed a Lorentz-scalar and has the
same value in all Lorentz-frames: The derivative transforms according to ∂µ → Λ α

µ ∂α
and the vectorial ȷµ inversely, ȷµ → Λ

µ
αȷα, such that
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e. covariant electrodynamics

∂µȷ
µ → Λ α

µ Λ
µ

β∂αȷ
β = δαβ∂αȷ

β = ∂αȷ
α (E.335)

with Λ α
µ Λ

µ

β = δαβ , as the two Lorentz-transforms are inverse to each other.

This differential formulation with its clear Lorentz-invariance has a giant advan-
tage over an integral formulation within a given frame: Earlier, we would have written

d
dt

∫
V

dV ρ = −
∫
∂V

dSi ȷ
i . (E.336)

Observed from a different Lorentz frame, the integration volume V is relativistically
contracted by a Lorentz-factor γ, while the charge density ρ is larger by the same
factor, as the charge is squeezed into a seemingly smaller volume. The two effects
compensate each other, after all, it is the same charge within V. The surface ∂V of the
volume is smaller by γ, too, for this to be true one can easily imagine a cuboid which
is contracted by γ along the direction of motion. But for the same reasons as for the
charge density, the current density ȷ is changed by the inverse factor. Lastly, there is
relativistic time dilation appearing in d/dt as well as in the current density ȷi , again
compensating each other: One sees all charge carries changing position at a slower
rate due to their dilated proper time, leading to smaller fluxes ȷi and smaller rates of
change of ρ.

E.2 Maxwell’s equations

E.2.1 Inhomogeneous Maxwell equations

The inhomogeneous Maxwell-equations are first of all a divergence ∂iDi = 4πρ and a
rotation ϵijk∂jHk = +∂ctDi +4π/c ȷi . But with the help of the dual tensor Hij = ϵijkHk

the first term of Ampère’s law becomes a divergence as well, ϵijk∂jHk = ∂jHij . This
motivates to package the two equations into a single divergence-like tensorial relation,

∂µGµν =
4π
c
ȷν, in components Gµν =


0 +Dx +Dy +Dz

−Dx 0 +Hz −Hy

−Dy −Hz 0 +Hx

−Dz +Hy −Hx 0

 (E.337)

with the antisymmetric field tensor Gµν. When inspecting the coordinates separately,
one obtains ∂µGµt = ∂iDi = 4π/c ȷt = 4πρ and ∂µGµi = −∂ctDi + ϵijk∂jHk = 4π/c ȷi .. Gµν contains the fields Di and

Hi (effectively as Hij = ϵijkHk)
in matter. One of the first conclusion we drew from the Maxwell-equations was that the field

respected charge conservation, which becomes very apparent in this formalism:

∂µGµν =
4π
c
ȷν → ∂ν∂µGµν =

4π
c
∂νȷ

ν = 0 (E.338)

implying that the continuity equation ∂νȷ
ν = 0 is valid because of the contraction of

the symmetric operator ∂ν∂µ with an antisymmetric tensor Gµν. With 6 free entries
as an antisymmetric tensor, Gµν can accommodate 3 components of the electric field
Di and 3 components of the magnetic field Hi .. It follows from the antisymme-

try of Gµν that in n + 1 dimen-
sions, there would be n compo-
nents for Di but n(n − 1)/2 com-
ponents for Hi .
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Figure 24: Electric and magnetic field components under Lorentz boosting F̃αβ →
ΛαµΛ

β
νF̃µν as a function of rapidity ψ.

E.2.2 Homogeneous Maxwell equations

Writing the two homogeneous Maxwell-equations as divergences requires a similar
construction: For that purpose, one defines the dual field tensor F̃µν with a suitable
arrangement of the fields Ei and Bi : The rotation appearing in the induction law
is recast into a divergence ϵijk∂jEk = ∂jϵ

ijkEk = ∂jEij with the dual Eij = ϵijkEk .
Combining the electric field components in a similar alternating fashion with the
magnetic field components leads to, . F̃µν contains the fields Bi and

Ei (effectively as Eij = ϵijkEk) in
vacuum.

∂µF̃µν = 0, in components F̃µν =


0 −Bx −By −Bz

+Bx 0 +Ez −Ey

+By −Ez 0 +Ex

+Bz +Ey −Ex 0

 . (E.339)

With this definition of the dual field tensor, one can write analogously ∂µF̃µt =
∂iBi = 0 (the overall minus-sign does not matter) and ∂µF̃µi = ∂ctBi + ϵijk∂jEk = 0.
Electromagnetic duality in vacuum now amounts simply to interchanging Gµν and
F̃µν, because ∂µGµν = ∂µF̃µν = 0 as soon as ȷν = 0. . Again, antisymmetry of F̃µν re-

quires that in n + 1 dimensions,
there would be n components for
Bi but n(n − 1)/2 components for
Ei .

Both field tensors transform under boosting according to F̃µν → Λ
µ
αΛ

ν
βF̃αβ and

Gµν → Λ
µ
αΛ

ν
βGαβ, which has a strong effect ∝ γ2 (in fact, two Λs needed because

the tensors have two indices) on the fields, as illustrated in Fig. 24.
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e. covariant electrodynamics

E.3 Relativistic potentials and gauging

The next step would be to package the potentials Φ and Ai into a 4-potential, accord-
ing to

Aµ = (Φ,−Ai) , (E.340)

which allows to write the Lorenz gauge-condition in a very compact way as a diver-
gence:

ηµν∂µAν = ∂ctΦ + γij∂iAj = 0, (E.341)

where the minus signs from the spatial part of the metric ηµν and of the spatial part
of Aµ cancel each other. Defining the potential Aµ as in eqn. (E.340) allows to write. Aµ contains the electric poten-

tial Φ and the magnetic potential
Ai as a linear form.

wave equation in Lorenz-gauge in a very compact form,

□Aµ =
4π
c
ηµνȷ

ν, (E.342)

which at the same time explains the minus-sign in the spatial part of Aµ as well as
the cancellation of the additional factor of c in ȷt = ρc.

Linking the potential Aµ to the k Faraday tensor Fµν is possible by writing

∂µAν − ∂νAµ = Fµν, (E.343)

because then the the electric field components would be given as Fit = ∂iAt −∂ctAi =
−∂iΦ − ∂ctAi = Ei as well as Fij = ∂iAj − ∂jAi with mutually different indices (ijk).
It is interesting to see, how the requirement of antisymmetry reduces the number of
free field components from initially 16 in ∂µAν to 6, corresponding to 3 components
of the electric and 3 components of the magnetic field. Weirdly enough, it’s a bit of a
coincidence that in 3 + 1 dimensions there are as many components of the electric
and of the magnetic field, allowing to write Bi as a vector:

Bi = ϵijkFjk = ϵijk
(
∂jAk − ∂kAj

)
(E.344)

albeit with a small caveat: Under parity transform P , Bi does not change its sign,
because both ∂i and Aj change their signs. In contrast, Ei does change its sign, because
in ∂iΦ only ∂i changes its sign, and in ∂ctAi only Ai ! Consequently, one calls Ei a
polar vector and Bi an axial vector.

Applying gauge transformations would change the potentials, Aµ → Aµ + ∂µχ,
but leaves the Faraday tensor Fµν invariant, as

Fµν → ∂µ (Aν + ∂νχ) − ∂ν
(
Aµ + ∂µχ

)
= ∂µAν − ∂νAµ + ∂µ∂νχ− ∂ν∂µχ︸            ︷︷            ︸

=0

= Fµν (E.345)

as partial derivatives interchange. The same result applies to the tensor Gµν as it
originates from Fµν through a linear transform. It is well possible to derive F̃µν from
the potential directly, through

F̃µν =
1
2
ϵµναβFαβ =

1
2
ϵµναβ

(
∂αAβ − ∂βAα

)
= ϵµναβ∂αAβ, (E.346)
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e.3. relativistic potentials and gauging

using an antisymmetry-argument in the second step. Gauge transforms on the
potential imply

ϵµναβ∂αAβ → ϵµναβ∂α
(
Aβ + ∂βχ

)
= ϵµναβ∂αAβ + ϵµναβ∂α∂βχ = ϵµναβ∂αAβ = F̃µν

(E.347)

with the contraction of the symmetric ∂α∂β with the antisymmetric ϵµναβ vanishes.
In consequence, not only Fµν but also F̃µν is gauge-invariant, and by extension G̃µν.

An interesting manipulation shows a derivative relation for Fµν as it originates
from the potential. Composing a cyclic permutation of indices in ∂λFµν yields

∂λFµν + ∂µFνλ + ∂νFλµ = ∂λ(∂µAν − ∂νAµ) + ∂µ(∂νAλ − ∂λAν) + ∂ν(∂λAµ − ∂µAλ) = 0
(E.348)

with a pairwise cancellation of the terms. This derivative relation is called the k

Bianchi-identity and is in fact equivalent to the field equation ∂µF̃µν = 0 for the dual
tensor F̃µν,

∂µF̃µν =
∂µ
2
ϵµναβFαβ =

∂µ
2
ϵµναβ(∂αAβ − ∂βAα) = ∂µϵ

µναβ∂αAβ = ϵµναβ∂µ∂αAβ = 0,

(E.349)

with the well-used argument that a contraction between a symmetric and an anti-
symmetric index pair, here (α, µ), has to vanish. One sees immediately, that working
with a potential is enabled by the condition ∂µF̃µν = 0 instead of F̃µν being sourced
by a magnetic charge density ıν, in the spirit of

∂µF̃µν = −4π
c
ıν, (E.350)

with an associated conservation law ∂νı
ν = 0. Only then can we make the argument

that a potential Aµ invalidates a nonzero divergence of F̃µν.

The field tensor Gµν containing Di and Hi can be related to the field tensor Fµν
containing Ei and Bi by means of a generalised constitutive relation,

Gαβ = XαβµνFµν ↔ Fαβ = XαβµνGµν (E.351)

with the orthogonality relation

XαβµνXµνγδ = δαγ δ
β

δ
, implying Gαβ = XαβµνXµνγδ Gνγδ = δαγδ

β

δ
Gγδ = Gαβ (E.352)

The tensor Xαβµν is antisymmetric in each index pair (α, β), (µ, ν) and maps an
antisymmetric linear form Fµν to an antisymmetric vectorial tensor Gµν. Tensors of
that type can be written as being proportional to proper antisymmetrisations of the
metric,

Xαβµν =
ηαµηβν − ηανηβµ

2
, (E.353)

allowing us to convert the divergence ∂µGµν = 4π/c ȷν into a wave equation for the
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e. covariant electrodynamics

potentials,

∂µGµν = ∂µXµναβFαβ = ∂µXµναβ(∂αAβ − ∂βAα) = 2∂µXµναβ∂αAβ =(
ηαµηβν − ηανηβµ

)
∂µ∂αAβ = ηαµ∂µ∂α︸   ︷︷   ︸

=□

ηβνAβ − ηαν∂α ηβµ∂µAβ︸   ︷︷   ︸
=0

= □ηβνAβ =
4π
c
ȷν.

(E.354)

In summary, under the assumption of Lorenz-gauge, the wave equation

□Aβ =
4π
c
ηβνȷ

ν (E.355)

relates potential and source, where we have already discussed solutions in terms
of Liénard-Wichert retarded potentials. Effectively, with the time-component of the
source being cρ, and the overall coupling constant being 4π/c, one can combine both
potentials into a single linear form and all sources into a single vector.

E.4 Dual field tensors and the Bianchi-identity

The duality transformation interchanges the positions of the electric and magnetic
field components when transitioning from Fµν to F̃µν and vice versa:

F̃αβ = −1
2
ϵαβµνFµν ↔ Fµν =

1
2
ϵµναβF̃αβ (E.356)

making Fµν autodual

˜̃Fµν = −1
4
ϵµναβϵ

αβγδFγδ = δ
γδ
µνFγδ =

1
2

(
δ
γ
µδ
δ
ν − δ

γ
νδ
δ
µ

)
Fγδ =

1
2

(
Fµν − Fνµ

)
= Fµν, (E.357)

where analogous formulas apply to F̃µν. For the contraction between the two Levi-
Civita symbols we have used the relation

ϵi1...iqk1...kpϵk1...kpj1...jq = −p!q!δ
i1...iq
j1...jq

, (E.358)

valid for Minkowksi-spaces, with the dimension n = p + q and the overlap p between

the indices to be contracted. Specifically, we need p = 2 = q in n = 4. δ
i1...iq
j1...jq

refers to

the generalised Kronecker symbol. In complete analogy, there is a dual G̃µν of the
field tensor Gµν,

G̃µν =
1
2
ϵµναβGαβ ↔ Gαβ = −1

2
ϵαβµνG̃µν. (E.359)

To make things more concrete, one can follow through how the duality transform
reorganises the tensors F̃µν and Gµν isolated from the homogeneous and inhomoge-
neous Maxwell-equations. First of all, ϵαβµνF̃µν maps the antisymmetric (µ, ν) index
pair to an object Fαβ, which is likewise antisymmetric, this time in (α, β). For a non-
vanishing contribution, all indices in the Levi-Civita-symbol need to be different,
which implies that there is no linear combination being formed, but simply a remap-
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e.4. dual field tensors and the bianchi-identity

ping of all components: For instance, choosing (α, β) = (t, x) for Fαβ can only acquire
a combination from F̃µν for (µ, ν) = (y, z) or (z, y). But F̃y,z = −F̃z,y due to the antisym-
metry of the field tensor, therefore the two are equal, and are added twice, which in
turn is remedied by the prefactor of 1/2.

Specifically Ftx will be set equal to F̃yz = Ex, and Fxy will become F̃tz = −Bz : We
observe, how the first row and the first column of Fαβ will accommodate the electric
field components which had been stored in the interior of the tensor F̃µν, while the
first row and first column of F̃µν get scattered into the interior of the tensor Fαβ:
Effectively, the magnetic and electric field components get interchanged up to a sign,
leading to:

Fµν =


0 +Ex +Ey +Ez

−Ex 0 −Bz +By

−Ey +Bz 0 −Bx

−Ez −By +Bx 0

 . (E.360)

The same rearrangement takes place in the duality transform of the tensor Gαβ:

G̃µν =


0 −Hx −Hy −Hz

+Hx 0 −Dz +Dy

+Hy +Dz 0 −Dx

+Hz −Dy +Dx 0

 (E.361)

with the replacement of Di and Hi , again with a sign change: This sign change is very
important, as it recovers the idea of duality of electromagnetism in vacuum, where
under the replacement of electric and magnetic fields the Maxwell equations do not
change.

The duality transform respects the antisymmetry of F̃µν and Fµν, which is impor-
tant because it links charge conservation to gauge invariance of the potentials: Nature
has chosen to have ıµ = 0 and ∂µı

µ = 0 which has important implications, as we can
now differentiate between the inhomogeneous and homogeneous Maxwell equations,
which read:

∂µGµν =
4π
c
ȷν and ∂µF̃µν = 0 (E.362)

With Fµν following from a potential Aµ in an antisymmetrised, gauge-invariant way,

Fµν = ∂µAν − ∂νAµ (E.363)

the homogeneous Maxwell equation is automatically fulfilled, as

∂µF̃µν =
1
2
∂µϵ

µναβFαβ = ϵµναβ∂µ∂αAβ = 0 (E.364)

through the contraction of the antisymmetric Levi-Civita symbol over the symmetric
index pair (α, µ).

The equivalence of the Bianchi-identity

∂µFαβ + ∂βFµα + ∂αFβµ = 0 (E.365)

and the divergence-like field equation for the dual tensor F̃µν
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e. covariant electrodynamics

∂µF̃µν = 0 (E.366)

can be shown as follows:

∂µF̃µν = −1
2
ϵµναβ∂µFαβ = +

1
2
ϵνµαβ∂µFαβ (E.367)

by substituting the definition of the duality transform and by interchanging µ↔ ν in
the last step, which brings in a minus-sign because of the antisymmetry of ϵ. In fact,
any cyclic permutation of the indices does not change anything, so that one can write

. . . =
1
6

[
ϵνµαβ + ϵναβµ + ϵνβµα

]
∂µFαβ =

1
6
ϵνµαβ

(
∂µFαβ + ∂βFµα + ∂αFβµ︸                      ︷︷                      ︸

=0

)
= 0 (E.368)

making ∂µF̃µν = 0 equivalent with eqn. (E.365), after renaming the indices in the
second and third term.

The Bianchi-identity is particularly interesting because it provides a propagation
mechanism for electromagnetic waves: Acting on eqn. (E.365) with the derivative
ηµν∂ν gives

ηµν∂ν
(
∂µFαβ + ∂βFµα + ∂αFβµ

)
= ηµν∂ν∂µ︸   ︷︷   ︸

=□

Fαβ + ∂β η
µν∂νFµα︸    ︷︷    ︸

=0

−∂α ηµν∂νFµβ︸    ︷︷    ︸
=0

= 0, (E.369)

and substituting the field equation for vacuum twice has us arrive at a wave equation
for the fields,

□Fαβ = 0. (E.370)

It can be solved with a wave ansatz Fαβ ∝ exp(±ikµxµ), leading to the null-
condition

ηµνkµkν = 0 equivalent with
(
ω

c

)2
− γijkikj = 0→ ω = ±ck (E.371)

such that group velocity dω/dk and phase velocity ω/k are both c, and dispersion
can not occur.

The wave equation for a non-vacuum situation looks a bit weird: Substituting the
sources ȷα and ȷβ gives

□Fαβ =
4π
c

(
∂αηβµȷ

µ − ∂βηαµȷµ
)
, (E.372)

where it is interesting to see that the antisymmetry in the index pair (α, β) appears
consistently in the sources on the right side. The same result could have been derived
from the potentials, too, as □Aµ = 4π/c ηµνȷν in e.g. Lorenz-gauge becomes

□Fαβ = □
(
∂αAβ − ∂βAα

)
= ∂α□Aβ − ∂β□Aα =

4π
c

(
∂αηβµȷ

µ − ∂βηαµȷµ
)
. (E.373)
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Actually, eqn. (E.373) is able to explain an interesting fact: Naively, one would
think that it is not entirely clear how the six components of Gµν are sourced by the four
components of ȷµ, and only going through the potential Aµ resolves the issue: There
is, in particular in Lorenz-gauge (just for illustration, any gauging term ∂µχwould
drop from the expression), a one-to-one relation linking Aµ to ȷµ in □Aµ = 4π/c ηµνȷν,
and the definition of Fµν as ∂µAν − ∂νAµ then generates six mutually independent
field components, to be related linearly to the six free components of Gµν through the
constitutive relation.

On the other hand, eqn. (E.373) may be interpreted in a way that it is not the
current density ȷα that sources Fαβ, but rather its antisymmetric derivative ∂αηβµȷ

µ −
∂βηαµȷ

µ. Its six components determine each individually and independently the six
components of Fαβ, even in a physical and gauge independent way.

A summary of the two field tensors and their duals, along with all four possi-
ble quadratic Lorentz-invariants (three of which are distinct, and reduce to two in
vaccum) is given by this diagram:

Aν F̃αβG̃αβ = EiDi − HiBi

F̃αβ G̃γδ

F̃αβFαβ ∝ EiBi 0 G̃µνGµν ∝ HiDi

Fγδ Gµν

Aδ FµνGµν = EiDi − HiBi ȷν

ϵαβµν∂µ

∂α

−ϵµνγδ/2

X̃αβγδ

−ϵαβγδ/2

Xµνγδ

∂αFγδ+∂γFδα+∂δFαγ

∂µ∂γAδ−∂δAγ

(E.374)

E.5 Covariant electrodynamics

Summarising the results from the previous chapters shows that there is a clear
conceptual picture defining Maxwell-electrodynamics: .

vector form
matter Gµν G̃µν
vacuum F̃µν Fµν

• The 4-potential Aµ and the 4-current ȷµ are a Lorentz-linear form and a Lorentz-
vector, respectively.

• The inhomogeneous Maxwell-equation take on the form ∂µGµν = 4π/c ȷν and
the homogeneous Maxwell-equations are written as ∂µF̃µν = 0, as there are no
magnetic charges.

• Equivalent to the homogeneous Maxwell equation is the Bianchi-identity, ∂λFµν+
∂µFνλ + ∂νFλµ = 0, which is automatically fulfilled if Fµν = ∂µAν − ∂νAµ.
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e. covariant electrodynamics

• Charge is conserved and the inhomogeneous Maxwell-equation ∂µȷ
µ = 0 re-

spects it through the antisymmetry of Gµν.

• Gauging with a gauge function χ implies the transformation Aµ → Aµ + ∂µχ,
leaving the Faraday tensor Fµν invariant through its antisymmetry.

• Under the Lorenz-gauge condition ηµν∂µAν = 0 one obtains a typical wave
equation □Aµ = 4π/c ηµνȷν from the inhomogeneous Maxwell-equation, with
Lorentz-invariant propagation speed c.

• The geometry is defined by the metric tensor ηµν which is relevant for the
vacuum fields in Fµν. The constitutive relation Xαβµν links Gµν to Fµν and falls
back onto the metric in vacuum.

It is amazing to see how clearly gauge-transforms and Lorentz-transforms are
incorporated into the formalism, and how the mathematical structure of the Maxwell-
equations results from the antisymmetry of the field tensor, as well as its gauge-
independence. It’s worthwhile to contemplate, how the Lorenz-gauge condition
ηµν∂µAν = 0 is at the same time a Lorentz-invariant: As a Lorentz-scalar it has the
same value, zero in this case, in all frames. The electromagnetic field, too, possesses
Lorentz-invariants, which are necessarily quadratic or of higher order in the fields,
as all contractions Fµµ = ηµνFµν = 0, F̃µµ = ηµνF̃µν = 0, G̃µ

µ = ηµνG̃µν = 0 and lastly
Gµ

µ = ηµνGµν = 0 vanish because of the antisymmetry of Fµν, Gµν and their respective
duals.

Quadratic invariants are first of all

FµνGµν = F̃µνG̃µν = EiD
i − HiB

i , (E.375)

which is a properly scalar quantity which is in addition parity-positive: The product
of two parity-even magnetic fields is parity-even and the product of two parity-odd
electric fields is likewise parity-even. Mixed contractions involving a single dual,

F̃µνFµν = 4EiB
i and G̃µνGµν = 4HiD

i (E.376)

are parity negative, as products of a parity-even magnetic field and a parity-odd
electric field.. The Maxwell-field has a sin-

gle, scalar quadratic invariant,
FµνGµν; there are two pseu-
doscalar quadratic invariants,
F̃µνFµν and G̃µνGµν, where the
last two coincide in vacuum.

In particular the first invariant does not reflect an energy density Ttt ∝ EiDi +
HiBi , which should depend on the choice of frame and can not be invariant. Its
numerical value is actually zero for all vacuum solutions, as can be quickly verified
by considering a plane wave: The electric and magnetic energy densities are equal
at every point and instant, EiDi = HiBi , making sure that FµνGµν = 0. Furthermore,
the electric and magnetic fields are orthogonal to each other, such that EiBi = 0 and
HiDi = 0.

The invariant discussed above are contractions between the vectorial tensors Gµν

and F̃µν on one side and the linear forms Fµν and G̃µν on the other. In a vacuum
situation, all vectorial quantities are trivially related to their linear forms through the
Minkowski-metric, so it is possible to construct 4 more invariants

ηαµηβνFαβFµν = ηαµηβνG̃αβG̃µν = ηαµηβνGαβGµν = ηαµηβνF̃αβF̃µν ∝ γijEiEj − γijBiBj .
(E.377)
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E.6 Lagrange-density for the dynamics of fields

To our knowledge, all fundamental physical theories can be derived from k varia-
tional principles, and electrodynamics is no exception. At the basis of all variational
principles is the notion that the action is invariant under a certain relativity prin-
ciple, in our case Lorentz-relativity, which leads to a covariant equation of motion,
where all quantities are consistently behaving under changes in the frame: This was
already the case for Galilean dynamics, as a rotationally invariant Lagrange-function
L(xi , ẋi) = γij ẋ

i ẋj /2 − Φ(xi) with the Euclidean, rotationally invariant scalar product
γij ẋ

i ẋj gave rise to a equation of motion ẍi = −γij∂jΦ relating two vectors to each
other. From this point of view one would hope to arrive at a Lorentz-covariant equa-
tion of motion from a Lorentz-invariant Lagrange function. As the Euler-Lagrange- . invariance/covariance princi-

ple: covariant field equations from
invariant Lagrange functionsequation usually reduces the powers by one in the derivative process, one would like

to begin with quadratic Lorentz-invariants in order to arrive at a linear field equation
which respects the superposition principle. Then, if the Lagrange-function does not . Quadratic Lagrange functions

lead to linear field equations: su-
perposition principledepend explicitly on the coordinates xµ, i.e. if xµ is a cyclic variable, one has reasons

to expect that the theory is conserving energy and momentum. And lastly, charge
. coordinates as cyclic variables
imply energy-momentum conser-
vation

conservation should result from gauge-invariance as the symmetry principle.

. gauge symmetry is related to
charge conservationE.6.1 Scalar field on a Euclidean background

Let’s illustrate how variational principles work with a simpler example than the full
Maxwell-theory. Electrostatics is fully characterised by a potential Φ which is linked
to the source ρ by means of the Poisson-equation ∆Φ = −4πρ, in other words: We’re
looking for a variational principle for a scalar field ϕ on a Euclidean background, that
is coupled to a source and does not have any dynamics on its own. Writing the action
S as an integral over a Lagrange-density L would give

S =
∫
V

d3x L(ϕ, ∂iϕ) (E.378)

and Hamilton’s principle δS = 0 then suggests the variation

δS = δ

∫
V

d3x L =
∫
V

d3x

(
∂L
∂ϕ

δϕ +
∂L
∂∂iϕ

δ∂iϕ

)
(E.379)

Interchanging the partial derivative and the variation, δ∂iϕ = ∂iδϕ, allows an
integration by parts. One can isolate the Euler-Lagrange-equation for a scalar field ϕ

δS =
∫
V

d3x

(
∂L
∂ϕ
− ∂i

∂L
∂∂iϕ

)
δϕ = 0 → ∂i

∂L
∂∂iϕ

=
∂L
∂ϕ

(E.380)

because the variation δϕ is zero by construction on the boundary ∂V,∫
V

dV ∂i

(
∂L
∂∂iϕ

δϕ

)
=

∫
∂V

dSi

(
∂L
∂∂iϕ

δϕ

)
= 0 as

∂L
∂∂iϕ

δϕ

∣∣∣∣
∂V

= 0. (E.381)

The Poisson-equation as a second order partial differential equation should result
from an action that contains squares of first derivatives of the potential ϕ, for instance
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e. covariant electrodynamics

L(ϕ, ∂iϕ) =
γab

2
∂aϕ∂bϕ − 4πρϕ. (E.382)

Concerning the invariance-covariance principle, we note that the first term is as
a scalar product, invariant under rotations. Substitution into the Euler-Lagrange
equation gives

∂L
∂ϕ

= −4πρ (E.383)

as well as (please always rename the indices when you’re doing this)

∂L
∂∂iϕ

=
γab

2

(
∂∂aϕ

∂∂iϕ
∂bϕ + ∂aϕ

∂∂bϕ

∂∂iϕ

)
=

γab

2

(
δia∂bϕ + ∂aϕδ

i
b

)
=

1
2

(
γib∂bϕ + γai∂aϕ

)
= γib∂bϕ (E.384)

such that one arrives precisely at the Poisson-equation

∂i
∂L
∂∂iϕ

= ∂iγ
ib∂bϕ = ∆ϕ =

∂L
∂ϕ

= −4πρ. (E.385)

where the Laplace-operator ∆ is scalar and does not change under rotations.

E.6.2 Scalar field on a Lorentz background

Repeating the entire derivation for a relativistic field theory with the Lagrange density

L(ϕ, ∂µϕ) =
ηµν

2
∂µϕ∂νϕ + 4πρϕ (E.386)

leads with the Euler-Lagrange equation

∂α
∂L

∂∂αϕ
=

∂L
∂ϕ

(E.387)

for varying the action

S =
∫
V

d4x L(ϕ, ∂µϕ) (E.388)

that results as an integral over the spacetime volume d4x = cdtd3x. Carrying out the
variation δS = 0 implies the wave equation

□ϕ = 4πρ with □ = ηµν∂µ∂ν. (E.389)

as a generalisation to the Poisson-equation.
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E.6.3 Maxwell field on a Lorentz background

The Maxwell-equations expressed in terms of the potential Aµ are likewise second or-
der differential equations, where the action should contain squares of first derivatives
of the potential. The new aspect now is that the potential has (4) internal degrees
of freedom and is not scalar as in the previous two examples. The squares of the
first derviatives of Aµ should be Lorentz-invariants, and we will only utilise the
parity-positive one for the time being.

Driven by analogy, one would write for a vacuum situation . please keep in mind that the
Lagrange-density is invariant un-
der affine transforms, L → αL+β,
therefore only the ratio of prefac-
tors matters.

S =
∫
V

d4x L(Aµ, ∂µAν) =
∫
V

d4x ηαµηβνFαβFµν︸          ︷︷          ︸
square of first derivatives

+
16π
c

Aµȷ
µ︸     ︷︷     ︸

coupling to the source

(E.390)

Please keep in mind that it is only through broken duality and the non-existence
of magnetic charges that the potentials Aµ exist such which ultimately enables a
Lagrangian description as in eqn. (E.390). A suitable Euler-Lagrange equation would
result from variation δS of the action S with respect to δA, which becomes

δS = δ

∫
V

d4x L =
∫
V

d4x

(
∂L
∂Aγ

δAγ +
∂L

∂∂γAδ

δ∂γAδ

)
=

∫
V

d4x

(
∂L
∂Aδ

− ∂γ
∂L

∂∂γAδ

)
δAδ = 0 (E.391)

where as always we wrote δ∂γAδ = ∂γδAδ for the integration by parts, finally allowing
the extraction of the Euler-Lagrange equation by means of Hamilton’s principle δS = 0:

∂γ
∂L

∂∂γAδ

=
∂L
∂Aδ

, (E.392)

again keeping the variation δAδ fixed on the boundary,∫
V

dV ∂γ

(
∂L

∂∂γAδ

δAδ

)
=

∫
∂V

dSγ

(
∂L

∂∂γAδ

δAδ

)
= 0 as

∂L
∂∂γAδ

δAδ

∣∣∣∣
∂V

= 0. (E.393)

Substitution of the Lagrange-density L is rather straightforward for the ∂Aδ-
derivative,

∂L
∂Aδ

=
16π
c

∂Aµ

∂Aδ

ȷµ =
16π
c
δδµȷ

µ =
16π
c

ȷδ (E.394)

but involves handling many indices for the derivatives with respect to ∂γAδ.
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Instead, one can rewrite the derivative as

∂
∂∂γAδ

=
∂Fστ
∂∂γAδ

∂
∂Fστ

=
∂(∂σAτ − ∂τAσ)

∂∂γAδ

∂
∂Fστ

=
(
∂∂σAτ

∂∂γAδ

− ∂∂τAσ

∂∂γAδ

)
∂

∂Fστ
=

(
δ
γ
σδ
δ
τ − δ

γ
τδ
δ
σ

) ∂
∂Fστ

=
∂

∂Fγδ
− ∂
∂Fδγ

= 2
∂

∂Fγδ
. (E.395)

In both cases, the elementary derivatives give either 0 or 1 according to

∂∂µAν

∂∂γAδ

= δ
γ
µδ
δ
ν as well as

∂Aµ

∂Aγ

= δ
γ
µ, (E.396)

because the field components and their derivatives into the different coordinate
directions are all independent. The derivatives ∂Fαβ/∂Fµν of the field tensor with
respect to itself are slightly more involved, because of the antisymmetry of both Fαβ
and Fµν. The necessary (anti-)symmetrisation reads

∂Fαβ
∂Fµν

=
1
4

(
δ
µ
αδ
ν
β − δ

ν
αδ
µ

β − δ
µ

βδ
ν
α + δνβδ

µ
α

)
=

1
2

(
δ
µ
αδ
ν
β − δ

ν
αδ
µ

β

)
(E.397)

with a simplification due to the pairwise identity of terms.

Then, application of the differentiations to the kinetic term required by the Euler-
Lagrange equation yields:

∂L
∂∂γAδ

= 2
∂

∂Fγδ
ηαµηβνFαβFµν = 2ηαµηβν

(
∂Fαβ
∂Fγδ

Fµν + Fαβ
∂Fµν
∂Fγδ

)
=

ηαµηβν
((
δ
γ
αδ
δ
β − δ

δ
αδ
γ

β

)
Fµν + Fαβ

(
δ
γ
µδ
δ
ν − δδµδ

γ
ν

))
= 4ηγµηδνFµν. (E.398)

Collection of all results suggests as the field equation the relation

∂γ
∂L
∂γAδ

= 4∂γη
γµηδνFµν =

∂L
∂Aδ

=
16π
c

ȷδ → ηγµ∂γFµν =
4π
c
ηδνȷ

δ (E.399)

which one immediately recognises as the inhomogeneous Maxwell-equation in
vacuum, with the divergence of the field tensor being equated to the source. The
invariance of the Lagrangian description and the covariance of the field equation is
summarised by this diagram,

S =
∫
V

d4x ηαµηβνFαβFµν + 16π
c Aµȷ

µ

ηαµηβν∂µFαβ − 4π
c ȷν = 0,

δS=0 δS=0 (E.400)

and substitution of the expression for Fµν = ∂µAν − ∂νAµ finally leads to
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e.6. lagrange-density for the dynamics of fields

ηγµ∂γFµν = ηγµ∂γ
(
∂µAν − ∂νAµ

)
= ηγµ∂γ∂µAν︸       ︷︷       ︸

=□Aν

−∂ν ηγµ∂γAµ︸    ︷︷    ︸
=0

=
4π
c
ηδνȷ

δ, (E.401)

which clearly demonstrates a covariant wave equation with the potential Aν as a
linear form related to the source ηδνȷδ, a vector converted into a linear form, with the
assumption of Lorenz-gauge ηγµ∂γAµ = 0 for making the second term disappear.

Formal application of the variation to the action integral would be an expression

δS = δ

∫
V

d4x ηαµηβνFαβFµν = 2
∫
V

d4x ηαµηβνFαβ δFµν = 0 (E.402)

where one can interpret the requirement of Hamilton’s principle, namely δS = 0, as an
orthogonality condition between Fαβ and its variation δFαβ, as a modern embodiment
of the k principle of virtual work.

It might be an interesting endeavour to understand how exactly the structure
ηαµηβνFαβFµν in the kinetic term of the Lagrange density is to be interpreted, beyond
the fact that it is a quadratic Lorentz-invariant. With the antisymmetry of Fµν = −Fνµ
one can write

S =
∫
V

d4x ηαµηβνFαβFµν =
∫
V

d4x ηαµηβν
1
2

(
FαβFµν − FαβFνµ

)
(E.403)

which becomes, after renaming the indices µ↔ ν in the second term,

S =
1
2

∫
V

d4x ηαµηβνFαβFµν − ηανηβµFαβFµν =
∫
V

d4x
ηαµηβν − ηανηβµ

2
FαβFµν (E.404)

which can be written as

S =
∫
V

d4x XαβµνFαβFµν with a measure Xαβµν =
ηαµηβν − ηανηβµ

2
(E.405)

as tensor with two antisymmetric index pairs (α, µ) and (β, ν). Perhaps the index
structure reminds you of the Grassmann-relation γilϵijkϵlmn = γjmγkn − γjnγkm of
a square of a vector product, which quantifies the area spanned by two vectors: In
some sense, the same happens in the Lagrange density, which is an abstract measure
of the area between ∂µ and Aν, induced by the metric ηµν.

E.6.4 Maxwell field in matter

For the behaviour of the Maxwell field in matter a suitable starting point could be
the action

S =
∫
V

d4x FµνGµν +
16π
c

Aµȷ
µ (E.406)

where the Lorentz invariant in matter constitutes the kinetic term. Expressed in
terms of the fields it reads FµνGµν = EiDi − HiBi . On possible pathway to carry out
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e. covariant electrodynamics

the variation and to perform the derivatives with respect to Aγ and ∂γAδ is provided
by the constitutive relation,

Gαβ = XαβµνFµν, (E.407)

that relates the fields Di and Hi contained in Gµν to the vacuum fields Ei and Bi in
Fµν. After all, only Fµν follows from the derivation of the potential Aµ and is accessible
to variation. As both tensors are antisymmetric, Xαβµν has to be antisymmetric in
each index pair, Xαβµν = −Xαβνµ = −Xβαµν = Xβανµ. Then, the action integral reads

S =
∫
V

d4x XαβµνFαβFµν +
16π
c

Aµȷ
µ (E.408)

Variation proceeds as in the previous case, as

∂L
∂∂γAδ

= 2
∂

∂Fγδ
XαβµνFαβFµν = 2Xαβµν

(
∂Fαβ
∂Fγδ

Fµν + Fαβ
∂Fµν
∂Fγδ

)
=

Xαβµν
((
δ
γ
αδ
δ
β − δ

δ
αδ
γ

β

)
Fµν + Fαβ

(
δ
γ
µδ
δ
ν − δδµδ

γ
ν

))
= 4XγδµνFµν = 4Gγδ. (E.409)

Combined with the previous result on the derivative with respect to Aδ, the Euler-
Lagrange equation yields:

∂γ
∂L
∂γAδ

= 4∂γXγδµνFµν = 4∂γGγδ =
∂L
∂Aδ

=
16π
c

ȷδ → ∂γGγδ =
4π
c
ȷδ, (E.410)

which is in fact the Maxwell field equation in matter. While the Lagrange density
eqn. (E.406) is the source of the field equation and links ultimately of the fields Di

and Hi to the sources, the dynamics of the dual field tensor F̃µν with Ei and Bi is
already fixed by the Bianchi-identity.

E.7 Optics

It is fair to say that the covariant constitutive relation falls back in isotropic media on
the antisymmetrised metric,

Xαβµν =
ηαµηβν − ηανηβµ

2
(E.411)

possibly with (ϵµ) as a prefactor in isotropic media in the spatial part of the metric.
In fact, in isotropic media one gets for the effective metric. Please keep in mind that

Di = ϵijEj ∝ ϵγijEj and Hi =

µijBj ∝ µγijBj , so the mapping
from the vacuum fields Ei , Bi in
Fµν to Di , Hi in Gµν picks up a
factor of ϵµ = n2 in the spatial
components.

ηµν =


1
−n2

−n2

−n2

 ↔ ηµν =


1
−n−2

−n−2

−n−2

 (E.412)

with the refractive index n =
√
ϵµ.
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e.7. optics

In this particular case, a plane-wave ansatz exp(±ikαxα) yields a modified null-
condition

ηµνkµkν = 0 =
(
ω

c

)2
− k2

n2 → ω = ± ck
n

(E.413)

Consequently, the velocities are diminished by the refractive index n,

υgr =
dω
dk

=
c
n

=
ω

k
= υph (E.414)

and the light cone becomes narrower by the factor n. As constitutive tensor Xαβµν

is composed of the two contributions, namely the permissivity tensor ϵij and the
permeability tensor µij , on the spatial components are affected: This effectively means
that in a medium, the wave length λ = 2π/k is affected by the refractive index and
not the angular frequency ω.

The notion, that wave length changes in a medium according to λ → nλ with
the refractive index n, paving the way for k Fermat’s principle for refraction: The
optical path length is effectively increased by the same factor of n. The spatial distance
between two point A and B is given by

s =

B∫
A

ds →
B∫

A

ds n =

B∫
A

dλ

√
γij

dxi

dλ
dxj

dλ
n(xi) (E.415)

and is extremised according to δs = 0 to yield the actual light path, technically
through application of the Euler-Lagrange equation albeit for a rather unusual form
of the Lagrange-function

L =

√
γij

dxi

dλ
dxj

dλ
n(xi) (E.416)

with no additive separation in a kinetic and potential part. Instead, in applying the
Euler-Lagrange equation (abbreviating ẋi = dxi /dλ)

d
dλ

∂L
∂ẋa

=
∂L
∂xa

(E.417)

one needs to be careful because after the ∂ẋi-differentiation, L still depends on xi ,
which yields additional terms involving ẋi in the dλ-differentiation, in particular the
gradient of the refractive index dn/dλ = ∂an ẋa. The first two derivatives are

∂L
∂xa

=
√
γij ẋi ẋj∂an, followed by

∂L
∂ẋa

=
nγai ẋ

i

√
γmnẋmẋn

, (E.418)

but increase dramatically in their complexity in the dλ-differentiaton. Ultimately,
these equations lead to the concept of k Lagrangian optics and can only be solved
sensibly either through numerical methods or in approximations. While we commonly
assumed homogeneous media, the formalism is still applicable in the limit of k

geometric optics where the scale on which n changes is large compared to the scale
on which the fields vary, i.e. the wave length λ.
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e. covariant electrodynamics

While it is clear that the metric in an anisotropic medium can show different light
propagation speeds along the three coordinate directions, the constitutive tensor
Xαβµν: The wave equation in the most general case reads

∂αGαβ = Xαβµν∂αFµν = 2Xαβµν∂α∂µAν = 0, (E.419)

which suggest for an ansatz Aµ ∝ A(0)
µ exp(±ikγxγ), with an amplitude A(0)

µ that
contains information about polarisation. Then, the null-condition reads

XαβµνA(0)
ν kαkµ = 0 (E.420)

and is effectively a polarisation-dependent dispersion relation, with differences in
propagation speeds even into the same direction for different polarisations: This
phenomenon is known as k birefringence, and can be observed in e.g. k calcite
crystals.. Please note how the null-

condition requires a summation
over the pair (α, µ) and not (µ, ν)
which would be trivially zero.

E.8 Gauge-invariance and charge conservation

Gauge-invariance of the term ηαµηβνFαβFµν is clearly given, as Fµν does not change
under gauge-transformation anyways. But it is interesting to see how gauge-invariance
is recovered in the entire Lagrange-formalism. In fact, with Aµ → Aµ+∂µχ one obtains

S =
∫
V

d4x L → S +
16π
c

∫
V

d4x ∂µχ ȷ
µ = S +

16π
c

∫
V

d4x
[
∂µ(χȷµ) − χ∂µȷµ

]
(E.421)

where ∂µȷµ = 0 due to continuity of the charge density. The first term can be converted
into a surface integral with the Gauß-theorem,

S→ S +
16π
c

∫
∂V

dSµ (χȷµ) = S (E.422)

i.e. one recovers gauge invariance when assuming a localised charge distribution:
moving the integration surface ∂V out leads to χȷµ vanishing faster than ∂V increases,
and consequently, the integral approaches zero. Hence, the action is gauge invariant if
charge is conserved. To show the opposite is impossible for our current understanding
of charge as a source of the electromagnetic field and requires a more detailed model
for the charge-carrying matter in the form of a quantum theory.. Please note that there are differ-

ent concepts at play to have terms
vanish in S (locality of the charge
distribution) and in δS (fixed vari-
ation on boundary). E.9 Conservation of energy and momentum

E.9.1 Scalar field on a Lorentz background

The Lagrange-density of the electromagnetic field does not depend explicitly on
the coordinates xµ, meaning that it is truly universal: The way in which the field is
coupled to its charges and the internal dynamics is the same everywhere and at every
time. As a consequence of the translation invariance along the ct- and xi-coordinates,
energy and momentum are conserved, which we should derive first for a scalar field
ϕ. There, the Lagrange-density is given by L(ϕ, ∂µϕ) but not by L(φ, ∂µϕ, xµ). The
Euler-Lagrange equations follow from the variation of the action S
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e.9. conservation of energy and momentum

S =
∫
V

d4x L(ϕ, ∂µϕ) → δS =
∫
V

d4x

(
∂L
∂ϕ
− ∂µ

∂L
∂∂µϕ

)
δϕ = 0 (E.423)

such that Hamilton’s principle δS = 0 implies

∂µ
∂L

∂∂µϕ
=

∂L
∂ϕ

(E.424)

If the Lagrange density L depends only on the fields themselves and not on the
position, meaning the functional principle of the field theory as defined by L is the
same everywhere and at very time, there is only one way in which the Lagrange
density can change is moving through spacetime to a new point where the fields and
their derivatives are different: The fields themselves need to change. This implies that
under an infinitesimal shift in the coordinates into the direction ϵµ,

xµ → xµ + ϵµ, (E.425)

one expects a variation of the field δϕ to be

δϕ = ϕ(xµ + ϵµ) − ϕ(xµ) = ϵα∂αϕ (E.426)

and the corresponding variation of the Lagrange density would become

δL = ϵα∂αL (E.427)

On the other hand, the variation of the Lagrange density is given by

δL =
∂L
∂ϕ

δϕ +
∂L

∂∂µϕ
δ∂µϕ =

(
∂L
∂ϕ

δϕ − ∂µ
∂L

∂∂µϕ

)
δϕ + ∂µ

(
∂L

∂∂µϕ
δϕ

)
(E.428)

using the Leibnitz-rule. As the physical fields fulfil the Euler-Lagrange equation in
the first term, only the second term remains, implying

δL = ∂µ

(
∂L

∂∂µϕ
δϕ

)
(E.429)

Assembling the final expression from the variation δL in eqn. (E.429) with the
expression eqn. (E.427) and the variation δϕ in eqn. (E.426) leads to

∂µ

(
∂L

∂∂µϕ
δϕ

)
− ϵα∂αL = 0 (E.430)

such that, using ∂α = δ
µ
α∂µ,

ϵα ∂µ

(
∂L

∂∂µϕ
∂αϕ − δ

µ
αL

)
= 0 (E.431)

implying that there is a covariant divergence which vanishes,
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∂µT µ
α = 0 (E.432)

with the energy-momentum tensor T µ
α

T µ
α =

∂L
∂∂µϕ

∂αϕ − δ
µ
αL. (E.433)

Effectively, this suggests a multidimensional Legendre-transform with the canonical
field momentum πµ

πµ =
∂L

∂∂µϕ
such that T µ

α = πµ ∂αϕ − δ
µ
αL(ϕ,πµ) (E.434)

where the structural similarity to the relation H = pi ẋ
i − L from classical mechanics

is quite apparent.

If the Lagrange density had an additional dependence on the coordinates xµ, it’s
variation (E.428) when transitioning form xµ to xµ + ϵµ would not only be caused by
the different field amplitudes and their derivatives, but there would be a new term
Qα,

δL = ϵα∂αL(field variation) + ϵαQα(explicit coordinate dependence) (E.435)

where this new term is effectively a source term to the otherwise vanishing continuity
equation,

∂µT µ
α = Qα. (E.436)

The identification of T µ
α with the energy-momentum tensor becomes sensible for

the case of a standard Lagrange-density for a scalar field ϕ,

L(ϕ, ∂µϕ) =
ηµν

2
∂µϕ∂νϕ − V(ϕ) (E.437)

with a self-interaction potential V(ϕ) that would contain e.g. a coupling to sources.
Variation by substitution into the Euler-Lagrange equation yields directly the Klein-
Gordon equation

□ϕ = −∂V
∂ϕ

because πµ =
∂L
∂µϕ

= ηµν∂νϕ and
∂L
∂ϕ

= −∂V
∂ϕ

(E.438)

with the next differentiation generating □ϕ = ∂µπ
µ = ηµν∂µ∂νϕ. Then, the tensor

Tµα becomes

T µ
α = πµ∂αϕ − δ

µ
αL(ϕ,πµ) = ηµν∂νϕ∂αϕ − δ

µ
α

ηγδ

2
∂γϕ∂δϕ + δµαV(ϕ) (E.439)

with the sign change in front of V(ϕ) which is typical for the Legendre transform.
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E.9.2 Maxwell field on a Lorentz background

There is a very important detail in the derivation of the energy-momentum tensor
of the electromagnetic field, which otherwise proceeds exactly as in the case of the
scalar field ϕ: When shifting the potential to compute δAδ one should not use the
derivative ∂αAδ for forming δAδ = ϵα∂αAδ because it is not gauge-invariant. Rather,
the variation should be given by the antisymmetrised form,

δAδ = ϵα∂αAδ → ϵα (∂αAδ − ∂δAα) = ϵαFαδ (E.440)

as the Faraday tensor Fαδ is the gauge-invariant derivative of Aδ . The variation in . watch out for gauge-
independence in the derivativethe Lagrange-density becomes formally

δL = ϵα∂αL (E.441)

but expressed in terms of the fields, by virtue of the Leibnitz-rule,

δL =
∂L
∂Aδ

δAδ +
∂L

∂∂γAδ

δ∂γAδ =
(
∂L
∂Aδ

− ∂L
∂∂γAδ

)
δAδ + ∂γ

(
∂L

∂∂γAδ

δAδ

)
, (E.442)

where the first bracket disappears as it fulfils the Euler-Lagrange equation, that
appears after the usual replacement δ∂γAδ = ∂γδAδ. The divergence in the second
term can be reformulated as

∂γ

(
∂L

∂∂γAδ

δAδ

)
= ϵα∂γ

(
∂L

∂∂γAδ

Fαδ

)
= δL = ϵα∂αL = ϵαδ

γ
α∂γL = ϵα∂γδ

γ
αL (E.443)

so that the combination of the second and the sixth term suggest, as the shift ϵα was
arbitrary:

∂γ

(
∂L

∂∂γAδ

Fαδ − δ
γ
αL

)
= 0, (E.444)

i.e. a conservation law for the energy momentum tensor,

∂γT γ
α = 0, with T γ

α =
∂L

∂∂γAδ

Fαδ − δ
γ
αL. (E.445)

The energy-momentum tensor T ν
µ is the relativistic generalisation of the Maxwell-

tensor T j
i , which makes up the spatial part of it. In vacuum, it is symmetric, T ν

µ = T µ
ν

and traceless, T µ
µ = ηµνTµν = 0: The physical meaning of this is not straightforward

to understand, but essentially corresponds to the fact that there is no mass associated
with the photons, i.e with excitations of the electromagnetic field. The components
of T ν

µ contain the energy density, T t
t = EiDi − HiBi = wel + wmag and the Poynting-

vector, 4π/cPi = T i
t . In particular, the formulation of the Poynting-law would become

∂µT µ

t = ∂t(wel + wmag) + ∂iPi = 0.

Perhaps it’s a weird and funny thought that 4 Kirchhoff’s k mesh and knot rules
for electric circuits are essentially reflections of the coordinate-independence of the
Lagrange-function L giving rise to energy conservation, and of the gauge invariance
of L compatible with charge conservation. And as a last remark in this context I would
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C PT CPT
derivative ∂µ + − −
electric 4-current ȷµ − + −
magnetic 4-current ıµ − − +
Faraday tensor Fµν − + −
field tensor F̃µν − − +

Table 2: Summary of the behaviour of all fields and sources in extended electrodynamics
with electric and magnetic sources.

like to add that the construction with the infinitesimal shift of the Lagrange-density is
in some sense a trick: Actually, one would like to construct a gradient ∂L of Lwhich is
caused by the fact that the fields and their derivatives have gradients. But one usually
works with the convention that partial derivatives of functionals only apply to their
explicit dependence on the coordinates, not their ”indirect” position-dependence
through the fields (and their derivatives). With this convention, ∂µL would be zero,
even though of course L changes as a function of position, because the fields do
change. On a larger scale, the derivation of a conserved energy-momentum tensor
from the Lagrange-density or the action is an example of a k Lie-derivative.

E.10 Maxwell’s equations under discrete symmetries, revisited

The behaviour of the Maxwell-equations under the three discrete symmetries charge
conjugation C, parity inversion P and time reversal P was already the subject of
Sect. A.7, but can be extended to deal with covariant objects like Gµν, F̃µν or ∂µ in a
straightforward way. As before, we will treat the general case with electric charges ȷµ

as well as magnetic charges ıµ:

∂µGµν = +
4π
c
ȷν and ∂µF̃µν = −4π

c
ıν (E.446)

In both cases the antisymmetry of the field tensors Gµν and F̃µν makes sure that the
currents are conserved, i.e. ∂νȷν = 0 and ∂νı

ν = 0.

∂µ, combining spatial and temporal derivatives, transforms sensibly only under
the combined PT -operation: Clearly, PT xµ = −xµ and in consequence, PT ∂µ = −∂µ.
The electric 4-current ȷµ transforms under PT like a velocity, PT ȷµ = ȷµ, and under
C as Cȷµ = −ȷµ, and therefore CPT ȷµ = −ȷµ under the full CPT transform. Magnetic
charges, however are pseudoscalar such that PT ıµ = −ıµ, but in fact the additional
minus sign does not matter when considering the continuities ∂µȷµ = 0 and ∂µı

µ = 0.

Please note that one can only invoke arguments that relate Gµν to the potential Aµ

if there are no magnetic charges and duality is broken. It will be sufficient to consider
the Faraday tensor Fµν as its properties are identical to Gµν because the two are related
in a linear way by a mere prefactor. If there are only electric charges, Fµν = ∂µAν−∂νAµ

suggests that PT Fµν = −Fµν, using the wave equation □Aµ = 4π/c ηµνȷν, such that Aµ

inherits its properties from ȷµ, in summary PT Aµ = +Aµ. This is consistent with the
field equation ∂µGµν = 4π/c ȷµ, as the minus signs brought in by ∂µ and Gµν cancel.
Similarly, PT F̃µν = +F̃µν to reflect the plus-sign in PT ıµ = +ıµ.

102

https://https://en.wikipedia.org/wiki/Lie_derivative


e.11. links to particle physics

E.11 Links to particle physics

E.11.1 Axions and pseudoscalar particles

There is a second quadratic field invariant, FµνF̃µν ∝ EiBi , which is pseudo-scalar: de-
spite being ”just” a number, it changes its sign under application of parity-transforms
P and time reversal T . This is the reason why we disregarded this particular term,
despite being quadratic, as a contender for the Lagrange density L for electrodynam-
ics. But multiplying with a field θ which itself is pseudoscalar, would amend this
problem:

L =
ηαµηβν

4
FαβFµν + αθFµνF̃µν +

4π
c

Aµȷ
µ +

ηµν

2
∂µθ∂νθ− V(θ) (E.447)

with a coupling strength α. This k axion field θneeds its own dynamics and interacts
with itself through the potential V(θ). Looking at the Taylor-expansion of V(θ) one
can only admit even powers

V(θ) =
∑
n=0

α2n

(2n)!
θ2n (E.448)

as only those are invariant under parity transform: Essentially, this is a very strong
restriction on the form of the potential for self-interaction of the axion field: it is
necessarily an even function. Please note that a mass term of the type

V(θ) =
m2

2
θ2 (E.449)

would be naturally contained in the interaction potential V(θ) even in the restriction
to parity positive terms, by setting α2 = m2 for n = 1.

Variation of the Lagrange-density with respect to Aµ yields an extension to the
Maxwell field-equation, and the variation with respect to θ a corresponding equation
of motion for θ, which is coupled to Fµν, i.e. a modified field equation

ηαµηνβ∂αFµβ =
4π
c
ȷν + α∂µ

(
θF̃µν

)
=

4π
c
ȷν + α∂µθ · F̃µν (E.450)

because ∂µF̃µν = 0, if duality is properly broken, and alongside a dynamical equation
for θ,

□θ = αFµνF̃µν − dV
dθ

(E.451)

Therefore, θ obeys a wave equation that is coupled to the electromagnetic field
and driven by the potential gradient −dV/dθ. Experiments with axions are always
great and fascinating, for instance Ì light through wall-type experiments. There,
one tries to take a very strong photon source, such as a laser beam, and convert the
photons by means of the θFµνF̃µν-term to axions. Clearly, FµνF̃µν is zero for a plane
electromagnetic wave, so one provides an additional magnetic field to make the
scalar product between the laser’s electric field Ei and the external magnetic field Bi

nonzero, enabling the conversion. The experimental setup continues then to block the
laser beam by a wall and invert the conversion behind the wall, hopefully recoving
photons from the axion field by supplying again a strong magnetic field.
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e. covariant electrodynamics

E.11.2 Massive fields, Proca-terms and the Higgs-mechanism

For a scalar field ϕ it is rather straightforward to make it massive. In fact, it suffices to
add a term that is quadratic in the field amplitude ϕ to the Lagrange-density. Then,

L(ϕ, ∂µϕ) =
ηαβ

2
∂αϕ∂βϕ −

m2

2
ϕ2. (E.452)

Substitution into the Euler-Lagrange equation gives the equation of motion, which
now reads

□ϕ = m2ϕ (E.453)

and a plane-wave ansatz of the type ϕ ∝ exp(±ikαxα) would yield as a dispersion
relation

ηµνkµkµ =
(
ω

c

)2
− γijkikj = m2 such that ω = ±c

√
k2 + m2 (E.454)

The wave number kµ has clearly a time-like normalisation, ηµνkµkν = m2 > 0, such
that the propagation takes place inside the future light cone, as expected from a
massive object. In addition, the group- and phase velocities are

υgr =
dω
dk

= c
k

√
k2 + m2

< c and υph =
ω

k
= c

√
k2 + m2

k
> c (E.455)

because
√
k2 + m2 > k, but their geometric mean is exactly

υph × υgr = c2 (E.456)

i.e. the phase velocity is superluminal, but the group velocity which is associated
to the propagation speed of wave packets representing massive particles, remains
subluminal. This is nicely illustrated by Fig. 25, where both velocities reach the same
limiting value of c for k → ∞, i.e. for k ≫ m, as the mass becomes less and less
relevant in that limit.

Motivated by this example one could think of a modified Lagrange density for the
Maxwell field of the form

L =
ηαµηβν

4
FαβFµν +

m2

2
ηαµAαAµ (E.457)

with a so-called k Proca-term ηαµAαAµ. Variation with the corresponding Euler-
Lagrange equation would yield a seemingly sensible result, as

ηαµ∂αFµν = □Aν = m2Aν (E.458)

in Lorenz-gauge, where the same plane-wave ansatz exp(±ikαxα) would give a time-
like normalisation ηαµkαkµ = m2 > 0 that corresponds to subluminal motion inside
the light cone. But there is a fundamental problem already present in the Lagrange
density: It is not gauge-invariant,

ηαµAαAµ → ηαµAαAµ + 2ηαµ∂αχ Aµ + ηαµ∂αχ ∂µχ, (E.459)
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Figure 25: Dispersion relation, i.e. group and phase velocity as a function of wave number,
for different masses.

so the choice of a suitable gauge is not possible. In fact, the problem of gener-
ating masses dynamically in a gauge-invariant way is solved only by the k Higgs-
mechanism for field theories and misses yet a complete solution for k massive gravity.
Electrodynamics as a theory without masses is backed up by stringent experimental
upper bounds on the k photon mass.

One should add, though, that Lorenz-gauge is still a very sensible choice for cases
with a non-zero Proca-mass. Clearly, constructing the action S from the Lagrange-
density eqn. (E.457) includes the additional terms

S =
∫
V

d4x
(
2ηαµ∂αχAµ + ηαµ∂αχ∂µχ

)
= −

∫
V

d4x
(
2χηαµ∂αAµ︸    ︷︷    ︸

=0

+χηαµ∂α∂µχ︸     ︷︷     ︸
=□χ

)
(E.460)

after integration by parts: In fact, Lorenz-gauge then makes the first term disappear
and forces the gauge field χ to obey a wave-equation □χ = 0.

E.11.3 Modifications of the Coulomb-potential

Scalar fields ϕ, even in the case of linear field equations, show an interesting phe-
nomenology on large scales: Starting from the most general Lagrange-density L(ϕ, ∂µϕ)
including all terms up to ϕ2 would ensure a linear field equation, as in the variation
process the powers get reduced by one:

L(ϕ, ∂µϕ) =
γµν

2
∂µϕ ∂νϕ −

m2

2
ϕ2 − 4πρϕ + λϕ, (E.461)

leading by variation to the field equation

(□ + m2)ϕ = 4πρ + λ (E.462)
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Figure 26: Field amplitude ϕ(r) for the most general linear scalar field theory.

where one admits a source term ρ and an inhomogeneity λ, which would be present
even in a charge free space and which would, in a gravitational theory, correspond to
the k gravitational constant. Focusing on a static, spherically symmetric situation
for a point charge one recovers from the field equation

(∆ −m2)ϕ = −4πρ − λ with ∆ϕ =
1
r2∂r

(
r2∂rϕ

)
, (E.463)

depending on the choice of the two parameters, the classical Coulomb-potential

ϕ(r) =
1
r

(E.464)

for m = 0 = λ. Admitting a nonzero mass leads to the k Yukawa-potential

ϕ(r) =
exp(−mr)

r
(E.465)

for m , 0 = λ, where the field amplitude ϕ is suppressed at large r. The full theory
implies

ϕ(r) =
exp(−mr)

r
+ λr2 (E.466)

for m , 0 , λ, with modifications large scales, while λ alone gives rise to

ϕ(r) =
1
r

+ λr2 (E.467)

for m = 0 , λ, which would, up to a sign, be the gravitational potential of a point
mass in the classical limit including a cosmological constant. Common to the results
are the definition of two additional length scales 1/m and 1/

√
λ, which modify the

otherwise k scale-free Coulomb-solution. Fig. 26 summarises these modifications.
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Figure 27: Field gradients −dϕ/dr for the most general linear scalar field theory.

The gradient −∂ϕ/∂r would, if ϕ is interpreted as a potential, accelerate a test
charge. The acceleration as a function of r is shown in Fig. 27, illustrating how on
small scales r ≪ 1/m and r ≪ 1/

√
λ, the unaffected Coulomb-potential is recovered,

while there are modifications on large scales r ≫ 1/m and r ≫ 1/
√
λ. It should be

noted that the generalised inhomogeneity λ is not admissible in a non-scalar theory
like electrodynamics, as a term linear in the 4-potential λAµ is clearly non-scalar.

E.12 Conformal invariance of the Maxwell-theory

Apart from Lorentz- and gauge-invariance, and the spacetime shift symmetries of the
Lagrange-density of Maxwell-electrodynamics there is, at least for vacuum-solutions,
a weird scale-symmetry. Applying a rescaling of the spacetime coordinates

xα → λxα and consequently, ∂α →
1
λ
∂α. (E.468)

The fields obey homogeneous wave equations in vacuum,

□Fµν = 0 and □Gµν = 0, (E.469)

where in fact the λ−2 factor generated in □→ □/λ2 drops out because of the vanishing
right hand side of the two equations. This is an example of k conformal symmetry.
It is broken because the charge density ρ changes under the scaling ∝ λ−3 instead of
∝ λ−2 as the differential operators.

E.13 Gauge-invariance as a geometric concept

The relationship between the fields and the derivatives in a relativistic notation
are summarised by this diagram: The potential Aν has an antisymmetric derivative
F̃αβ = ϵαβµν∂µAν, and this dual is divergence-free in fulfilment of the Bianchi-identity:
∂αF̃αβ = ϵαβµν∂α∂µAν, with an exchange symmetry in the index pair (α, µ) which
makes the expression disappear in conjunction with the antisymmetry of the Levi-
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Civita symbol: This is quite important because of two reasons: Not only does one
recover the homogeneous Maxwell-equations, but it is clear that the potential Aµ is
incompatible with a hypothetical nonzero magnetic source ıβ.

Converting F̃αβ into Fγδ and bringing in the constitutive relation yields the field
tensor Gγδ. The divergence ∂γGγδ is the source ȷδ, as an expression of the field
equation. And finally, charge conservation in the sense of ∂δȷ

δ = 0 is ensured by
∂γ∂δGγδ, again with a contraction of a symmetric with an antisymmetric tensor.

The gauge function χ changes Aµ, but leaves Fµν invariant: This is accomplished
by the derivative ϵαβνµ∂ν∂µχ = 0, as the two derivatives interchange, ∂µ∂ν = ∂ν∂µ,
but ϵαβνµ is antisymmetric in the index pair (µ, ν).

Fγδ, Gγδ ȷδ Maxwell

Aν F̃αβ 0 Bianchi

χ ∂νχ 0 gauging

∂γ

ϵαβµν∂µ ∂α

ϵαβγδ

∂ν

+

ϵαβµν∂µ

+

(E.470)

Finding a gauge function χ for a given gauge condition, usually a derivative
property of the potential like a particular value for ηµν∂µAν as in the Lorenz gauge
requires the solution of a wave equation: Substitution Aµ → Aµ + ∂µχ into the gauge
condition leads to ηµν∂µ∂νχ = −b with b = ηµν∂µAν. Wave-equations of this type are
readily solvable by means of the retarded Green-functions.

Aµ b condition

χ ∂µχ □χ gauging

ηµν∂ν

∂µ

−

ηµν∂ν

− (E.471)

The same diagram with identical arguments can be more concisely expressed in
the language of k differential forms: Starting from the 4-potential Aµ as a one-form
A, application of the exterior derivative d leads to the two-form F, corresponding
to the field tensor Fµν. The co-differential δ, which can be expressed as ⋆d⋆ with the
Hodge-star operator ⋆, leads to the source ȷ, again a one-form. The Hodge-dual of the
field two-form F would be ⋆F, whose co-differential δ⋆ F = ⋆d⋆⋆F = ⋆dF = ⋆ddA = 0,
recovering the Bianchi-identity. The gauge field χ has an exterior derivative dχ, which
can be added to the one-form A without changing the observable fields contained in
the two-form F, as dA→ d(A + dχ) = dA + ddχ = dA. On the other hand, F = dA is
only sensible if δ ⋆ F = 0 physically, i.e. that the magnetic charges are non-existent:
The existence of a potential A requires broken duality.
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⋆F 0 Bianchi

A F, G ȷ Maxwell

χ dχ 0 gauging

δ

d δ

⋆

d

+

d

+

(E.472)

The construction of a (scalar) gauge function χ for ensuring e.g. Lorenz-gauge
δA = 0 implies that dχ, now a one-form, is added to A and leads to δdχ = −b, with
a source b = δA after substitution into the gauge condition. δdχ, however is the
Laplace-de Rham-operator, which for our case of a Lorentzian metric background is
the d’Alembert-operator □, up to a symmetrisation.

A b condition

χ dχ □χ gauging

δ

d

−

δ

− (E.473)

E.14 Motion of particles through spacetime

E.14.1 Fermat’s or Hamilton’s principle?

The relativistic expression for the arc length s through spacetime, as mapped out by
proper time, can be amended by a second term, qAµdxµ which should incorporate the
accelerating effects of electric and magnetic fields on a test particle with charge q:

s =

B∫
A

dτmc
√
ηµνuµuν + qAµdxµ → L(xµ, uµ) = mc

√
ηµνuµuν + qAµu

µ, (E.474)

where in isolating the Lagrange function one rewrites dxµ = uµdτ, from the definition
uµ = dxµ/dτ. Variation of the arc-length, now a function of both uµ and xµ (through
the coordinate dependence of Aµ) is achieved with the Euler-Lagrange equation, . The term Aµuµ emphasises

how natural velocity-dependent
forces in relativity are!d

dτ
∂L
∂uα

=
∂L
∂xα

. (E.475)

The expression (E.474) for the relativistic arc length is remarkable, as it combines
the metric distance in the first term with a second distance measure Aµdxµ mediated
by the vector potential, called k Finsler geometry.

An intuitive (but gauge-dependent) picture might be, that different paths through
spacetime have the particle change its proper time according to the magnitude and
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direction of Aµ relative to its velocity uµ, like a tail- or headwind that changes travel
time. The necessary derivatives are

∂L
∂xα

= quµ∂αAµ (E.476)

and

∂L
∂uα

= mηµαu
µ + qAα → d

dτ
∂L
∂uα

= mηµα
duµ

dτ
+ quµ∂µAα (E.477)

where the last term appears in the time derivative through the coordinate dependence
of Aα:

dAα

dτ
=

dxµ

dτ
∂Aα

∂xµ
= uµ ∂µAα. (E.478)

Collecting all results yields

mηµα
duµ

dτ
= q

(
∂αAµ − ∂µAα

)
uµ = qFαµu

µ (E.479)

by identifying the Faraday-tensor in the last step: Finally, we recover the Lorentz
equation of motion, and the appearance of Fµν makes sure that the acceleration does
not depend on gauge. Multiplying both sides of the equation with uα leads to an
interesting result:

ηµαu
αduµ

dτ
=

m
2

d
dτ

(
ηµαu

αuµ
)

= qFαµu
αuµ = 0, (E.480)

where the last term is necessarily zero as the contraction between the symmetric
tensor uαuµ and the antisymmetric Fαµ. This safeguards the norm ηµαu

αuµ = c2 from
any changes, and keeps the particle from being accelerated to superluminal velocities
outside the light cone.

While the equation of motion is perfectly gauge-invariant (and Lorentz-covariant),
the gauge-invariance of the Lagrange-function requires additional arguments: Per-
forming a gauge transform Aµ → Aµ + ∂µχ with a gauge function χ changes the
relativistic arc length according to

s =

B∫
A

dτ
(
mc

√
ηµνuµuν + qAµu

µ
)
→ s + q

B∫
A

dτ ∂µχ u
µ. (E.481)

This new term can be rewritten, by falling back onto the form how it was introduced,

B∫
A

dτ ∂µχ u
µ =

B∫
A

dxµ∂µχ =

B∫
A

dχ = (χB − χA) , (E.482)

using dχ = ∂µχdxµ. In summary, there is a constant, additive term that becomes
irrelevant for the variation for obtaining the trajectory.
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Figure 28: Trajectory through spacetime, with the metric contribution ηµνdxµdxν to the
line element ds2 in the background shading and the Finsler contribution Aµdxµ generated
by the potential Aµ as arrows.

An impression on the contributions to the line element ds2 given by the metric
ηµνdxµdxν and the Finsler-term Aµdxµ is given in Fig. 28.

E.14.2 Relativistic horizons

We can probe the limits of special relativity by looking at accelerated, non-inertial
motion through spacetime. Starting from the coordinates xµ we already defined the
4-velocity uµ,

uµ =
dxµ

dτ
=

d
dτ

(
ct
x

)
=

dt
dτ

d
dt

(
ct
x

)
= γ

(
c
υ

)
(E.483)

with υ = ẋ and γ = dt/dτ. Repeating this argument one computes the 4-acceleration
aµ as

aµ =
duµ

dτ
=

d
dτ
γ

(
c
υ

)
=

dt
dτ

d
dt
γ

(
c
υ

)
=
υa

c2 γ
4
(
c
υ

)
+ γ2

(
0
a

)
(E.484)

with a = υ̇ = ẍ, and the derivative dγ/dt = γ3υa/c2. This system of equations
can be integrated numerically for e.g. an assumed constant acceleration a, giving
a parametric solution (ct(τ), x(τ)). The resulting trajectories in xµ(τ) are shown in
Fig. 29, where the accelerated trajectory evades light signals that are emitted at x = 0
later than ct ≥ 4, which is impossible for inertial motion. Effectively, evading light
signals means that there is a relativistic k horizon between the emitter of light signals
and the accelerated particle.
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Figure 29: Paths through spacetime at constant velocity, and in comparison a path with
constant acceleration, with the emergence of a relativistic horizon.

The 4-acceleration aµ is always perpendicular to the 4-velocity uµ,

ηµνu
µaν = 0, (E.485)

as a direct computation with the above expression shows. This has in fact dramatic
consequences, as

d
dτ

(
ηµνu

µuν
)

= ηµν

(
duµ

dτ
uν + uµ

duν

dτ

)
= 2ηµνu

µaν = 0, (E.486)

implying that the (timelike) norm ηµνu
µuν = c2 > 0 of uµ is conserved. At this point

it is worth mentioning that many texts attribute the impossibility of accelerating a
massive object past c to the k relativistic mass increase, which is really superfluous
as a concept as it is completely covered by the geometric, kinematical structure of
spacetime. Proper acceleration is defined in terms of proper time τ, which is dilated. ”The concept of ”relativis-

tic mass” is subject to misunder-
standing. That’s why we don’t use
it. First, it applies the name mass
– belonging to the magnitude of a
4-vector – to a very different con-
cept, the time component of a 4-
vector. Second, it makes increase
of energy of an object with velocity
or momentum appear to be con-
nected with some change in inter-
nal structure of the object. In real-
ity, the increase of energy with ve-
locity originates not in the object
but in the geometric properties of
spacetime itself.”, E. F. Taylor and
J. A. Wheeler, Spacetime Physics

relative to the coordinate time t by the Lorentz-factor γ. A faster-moving system
reacts to an accelerating force as if it had more inertia and therefore a higher mass,
but it is really the conversion between proper time and coordinate time that brings in
the Lorentz-factor, and one does not need to invoke a new relativistic effect on mass,
and surely the number of atoms inside an object would be unchanged under Lorentz
transforms!

E.14.3 Tachyons and tardyons

k Tachyons are hypothetical, superluminally moving particles with 4-velocities
uµ outside the light cone, ηµνuµuν = −c2 < 0. On the other side, k tardyons are
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Figure 30: Curves of constant Minkowski-norm ηµνx
µxν = ±1, or equivalently, curves

traced out by the endpoint of a timelike and spacelike unit vector under Lorentz-transforms.

conventional, massive particles with subluminal velocities inside the light cone,
ηµνu

µuν = +c2 > 0. Naturally, these norms are conserved under Lorentz-transforms,
as illustrated by Fig. 30, where the hyperbolic curves traced out by the unit vectors
along the x- and ct-axes never leave their associated timelike or spacelike quadrants.
For a timelike vector this would be,(

ct
x

)
=

(
coshψ sinhψ
sinhψ coshψ

) (
1
0

)
=

(
coshψ
sinhψ

)
(E.487)

and for a spacelike vector correspondingly,(
ct
x

)
=

(
coshψ sinhψ
sinhψ coshψ

) (
0
1

)
=

(
sinhψ
coshψ

)
. (E.488)

For a particle moving on a spacelike trajectory one would write down a line
element

c2dτ2 = ηµνdx
µdxν = c2dt2 − γijdxidxj =

(
c2 − γijυiυj

)
dt2 (E.489)

with υi = dxi /dt. Negative norms would then imply that γijυiυj > c2, and hence that
the magnitude of υ exceeds c. The velocity uµ for such a particle would necessarily
have the same negative norm, as one writes uµ = dxµ/dτ, and because c2dτ2 =
ηµνu

µuνdτ2 has to have the same overall sign.

The relativistic dispersion relation H2 = (cp)2 + (mc2)2 suggests the definition of
a relativistic 4-momentum pµ (as a linear form), whose norm is positive for tardyonic
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and negative for tachyonic particles, according to the location of the corresponding
velocities in the respective quadrants in a spacetime diagram,

pµ =
(
H, cpi

)
with ηµνpµpν = H2−c2γijpipj = H2−(cp)2 = ±(mc2)2, (E.490)

resulting in a funny shape of the dispersion relation,

H(p) =
√

(cp)2 ± (mc2)2, (E.491)

for the negative sign: This is in fact consistent with their superluminality, as p2 is
bounded from below by (mc)2: Tachyons need to be faster than the speed of light, and
if they brake down to approach the speed of light from above, they can only reach
mc. In a weird sense, this is analogous to the non-vanishing energy associated with
the rest mass for normal, tardyonic particles: While for them the energy is nonzero
even for vanishing momenta, tachyons have a minimal momentum even at zero
energies. To some degree of overinterpretation, tachyons have a minimal momentum
mc whereas the tardyons have a minimal energy mc2. Reexpressing the tachyonic
dispersion relation in terms of wave number and angular frequency would be

ω = ±c
√
k2 −m2 (E.492)

Group and phase velocities for tachyons come out as

υgr =
dω
dk

=
ck

√
k2 −m2

> c and υph =
ω

k
=

c
√
k2 −m2

k
< c, (E.493)

exactly inverted compared to massive particles: The group velocity, associated with
particle propagation, is always superluminal because

√
k2 −m2 < k, and the phase

velocity subluminal. Their geometric average, though, comes out as

υgr × υph = c2. (E.494)

Of course one should keep in mind that outside the light cone there is no causal
ordering due to the relativity of simultaneity, so it would be problematic to have
tachyons influence the causal world inside the light cone. To conclude, there is no
place for tachyons in a Galilean world: In the formal limit of c→∞, the future light
cone opens up: The timelike region increases while the spacelike region decreases,
until all of spacetime reaches an absolute causal ordering according to the universal,
Galilean time. And of course, every velocity is subluminal as c→∞.
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