D SPECIAL RELATIVITY

D.1 Lorentz-transforms

The relativity principle stipulates that the laws of Nature and the constants of Nature
should be the same in all frames, or in other words: There is no preferred frame in
which the laws of Nature should be formulated. Space, or spacetime is homogeneous
as there neither a particular location nor a particular instant in time for the formula-
tion of laws of Nature, and the transition between one coordinate choice and the next
one should be a linear, affine function: Any nonlinearity would single out a particular
location or instant, breaking homogeneity. In short, the transition between frames S
and S’, with their associated coordinates x* and x’",

S:x”:(xti) - S':x":(;,i) (D.252)

is necessarily an affine transformation.

There is a very good physical argument why this needs to be the case: Imagine
now that an observer with a clock moves through spacetime on a trajectory with
coordinates x"t as seen by S, and coordinates x’*(t) as seen by S/, where the parameter
T by which the trajectory is parameterised, is the proper time of the observer - the time
displayed on her or his wrist watch. For an inertial trajectory, where all accelerations
are zero, the velocity v = dx'/d7 is constant, as well as the size of the time intervals
dt/dt. In summary,

dxt d2xt
—— =const and

dt dr?

=0 (D.253)

But that statement needs to be true within the frame S’ just as well:

dx’* dzx’t
dLT = const and T:Z =0 (D.254)

Coordinate transforms can be written as an invertible, and differentiable functional
relationship between the coordinate sets, i.e. in the form x’(x). In this case, the velocity
in the new coordinate choice becomes

dx¥ ox'Mdx¥
dt = 9Jxv dt

(D.255)

with a Jacobian dx’!/dx" mediating the coordinate change. The acceleration though

acquires two terms, as both the Jacobian as well as the velocity could change with T,
albeit indirectly through the trajectory x¥():

d2x’t ox'td%xY N >t dx¥dxP

dv2  9x¥ di®  IxvdxP dt dt

NS

Ab

(D.256)
vp

Only if the term AMVp is equal to zero, one can conclude from d?x#/dt?> = 0 that
d2x’*/d? = 0. But then, the transformation between the two coordinate frames is
linear:
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PR Wt
_C _ - o AP i
Trvaxd - pre A"y - P =A M+ D (D.257)

with integration constants A", and b".

To be more specific one needs some empirical, physical input: Let’s assume that
the two frames S and S” move at a constant relative speed v. Without loss of generality,
the two frames should be oriented in the same direction and the relative displacement
should be along the x-axis of the coordinate frame, and the two frames should coincide
in their origins at t = t' = 0. Then, the origin of S has the coordinate x’ = —vt’ seen
from S’, whereas the origin of S’ is at x = +vt from the point of view of S.

Linearity of the transforms commands that x” = ax + bt with two constant coef-
ficients a and b, that can be functions of v. Because x = vt implies x’ = 0, one can
write: x’ = 0 = avt + bt = (av + b)t, from which follows that b = —av and therefore
x’ = a(x — vt). Reversing the roles of S and S’ then requires from x = ax’ + bt’ that
x’ = —vt if x = 0 should hold, implying x = 0 = —avx’ + bt’ = (—av + b)t’, and conse-
quently b = +av and x = a(x’ + vt’). The symmetry of the transform has effectively
reduced the number of free parameters from two to a single one.

At this point Nature can make a choice. Most straightforwardly, she might choose
the time to be universal, t = t/, and humans thought this was the case until 4 1905.
x” = a(x — vt) and x = a(x’ + vt) can only be compatible if a = 1, leading us straight to
the Galilei-transforms. Or, the speed of light could be the same in all frames, ¢ = ¢/,
with x = ctin S and x” = ct’ in §’, as the distance a light signal covers in the two
respective frames. Then,

ct’ =a(ct’ + vt’') = a(c + v)t (D.258)
ct’ =a(ct—vt) =a(c—v)t
Multiplying both equations leads to c2tt’ = a?(c + v)(c — v)tt’, such that
1 . v
a=y= 17—[52 with B = = (D.259)

The quantity y is known as the Lorentz-factor, and by convenience one works with a
dimensionless velocity p = v/c.

A 4 Taylor-expansion for small velocities p,
factor yields

[3| < 1, or |v| < c of the Lorentz-

dy d’y,  # p>
y:1+d—ﬁ|ﬁ:0ﬁ+d—ﬁ2|ﬁ:07+-~:1+7+-~- (D.260)

showing that the Lorentz-factor depends to lowest order quadratically on the velocity
before diverging as  approaches unity.

The definition of = v/c allows a more consistent notation for Lorentz transforms:
ct as a time coordinate is then measured in units of length, just as x, there is no
ambiguity as ¢ has by virtue of the relativity principle the same value in all frames.
The term vt in the Lorentz transform becomes pct, leading to

{ ct’ =y(ct+px) (D.261)
’ ,V .
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D.2. LORENTZ-INVARIANTS

T
— Lorentz factor v
— parabolic approximation

Lorentz factor v

. .
0.0 0.2 0.4 0.6 0.8 1.0
dimensionless velocity 3

Figure 9: Lorentz vy-factor as a function of dimensionless velocity B, and the parabolic
approximation for small p.

Alternatively, the transformation reads in matrix notation,

x’ By v J\ x
— —
x'# AVV xV

with a clearly common transformation of the ct and x coordinates, that are now
combined into a single vector x*, following the transformation law x* — x* = A¥ x".
For small velocities, y ~ 1 and one obtains

c”\ (1 B ct
[ )= ) o253

With either positive or negative off-diagonal elements it is clear that a coordinate
frame undergoes a shearing under Lorentz transforms, in contrast to antisymmetric
transformation matrices in the case of rotations. Quantitatively for small velocities
U < ¢ the relation reduces to t’ = t (neglecting px = vx/c for v < ¢) and x’ = vt + x in
recovery of the Galilei transform.

D.2 Lorentz-invariants

While the coordinates depend on a chosen frame and undergo a joint change under
Lorentz tranforms, one might wonder whether there are quantities that remain
constant and offer the possibility to say something true for a system that would not
depend on the choice of frame. Clearly, rotations leave the length of a vector, defined
as its norm r2 = 6,-]-xix7 unchanged, and in this vein one can construct the quantity

(ct')?=(x')? = y? ((ct)2 — 2ctPx + pPx% — x + 2ctpx — ﬁz(ct)z) =y*(1-p% ((ct)2 - x2)

B (D.264)

61



p. SPECIAL RELATIVITY

ct. ¢t ct,

Xy

\:

Figure 10: Spacetime diagrams under Lorentz transform for positive velocities (ct,, x, ) and
negative velocities (ct_, x_) relative to the frame (ct, x). Reproduction with kind permission
of I. Neutelings.

which remains in fact constant under Lorentz transforms. In order to write the
invariant quantity s> = (ct)? - d;jx'x!, extended to three spatial dimensions, one
introduces the Minkowski-metric,

+1
-1

s2 = NoX'x" with 1, = -

(D.265)
-1

which combines the Euclidean scalar product r? = yijxixj mediated by by the
Euclidean metric y;; to the new invariant s = 1uyxFx?, as soon as Lorentz boosts are
involved.

D.3 Rapidity

Rotations of the coordinate frame can be written in terms of a rotation matrix,
x’ cosa  sina x
= : (D.266)
Y —sina  cosa Y

which begs the question whether (i) a similar parameterisation of the group of
Lorentz transforms is possible, and if yes, (ii) which parameter {) would replace the
rotation angle a. A Lorentz-boost, written in matrix notation, would be

LTI e
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where a notable structural difference is of course the different sign in the lower
left corner. But clearly, we are not looking for a rotation, as the Lorentz invariant s>
differs from the invariant 72! The values of the entries of the matrix are 1 < y < +co as
well as —co < By < +0co, which an additional symmetry of y for positive and negative
velocities, and a sign change of fy. With a bit of intuition, one might be tempted to
use the hyperbolic functions to set y = cosh { and py = sinh { (compare Fig. 11) with
the so-called rapidity ¢,

Sinh\b_ﬁzﬁ — P =artanh p =

coshy ~ y

1, 1+p
tanh { = —In—-. D.268
anh P B ( )
where the inverse hyperbolic tangent has a surprising representation in terms of
elementary functions. More accurately, one might use the relation y*(1 + ) = 1 to

verify that
Y*(1 - p?) = y* — y?p% = cosh? P —sinh? P = 1 (D.269)

as the defining characteristic of the hyperbolic functions.

The rapidity { diverges as p — 1 and keeps, due to the antisymmetry of the
hyperbolic sine, information about the direction of the boost velocity. With the
rapidity as a parameter, the Lorentz-boost can be written as a hyperbolic “rotation”,

ct’ \ _( coshyp sinh¢ \[ ct
( x’ )7( sinh{ cosh )( x ) (D.270)

Then, the invariant s? = (ct)? - x? is unchanged because cosh? i — sinh® ) = % —
B2y? = y*(1 - #?) = 1, just as the invariant r> = x? + y? is unchanged because of
cos” a +sin” & = 1. For a more geometric intuition, one can imagine that any point
(ct, x) follows a hyperbola, purely in the timelike region for a positive norm or in the
spacelike region of the spacetime diagram in the case of a negative norm. Along these
hyperbolae, the norm is strictly conserved. Taking things to extremes would be a
point with a lightlike norm s? = 0, which moves along the diagonals of the spacetime
diagram.

D.4 Spacetime symmetries

A notion of spacetime was established fusion of the spatial and temporal coordinates
into a coordinate tuple x* and the extension of the Euclidean scalar product x;y’ =
yijxiyf to the Minkowski scalar product x,y# = 1,,x#y". Lorentz-transforms and
rotations act on these coordinate tuples, x* — A" x®* and x* — R/ x%, respectively,
leaving the scalar products invariant, #,,x¥x" — rhWA”o‘A"ﬁx"‘xrS = no‘[g‘x“xf3 and
yi]-xixj - yi]-RiaR]bx“xb = Yapx°x?, expressed in coordinates s> = My xHx? = (ct)? -
x?—y?2-z%2and r? = y,'jx"xj =x2+p%+ 22

Clearly, the Lorentz-transforms as well as the rotations form groups: Successive
transforms can be summarised into a single transform, for each transform there is an
inverse (boosting with the negative velocity and rotating by a negative angle), and
the neutral element is part of each group (corresponding to a boost with velocity zero
or a rotation by an angle of zero). But there seems to be a peculiarity: The groups
contain uncountably many elements and are parameterised by a continuous, real
valued parameter (rapidity ¢ or rotation angle «). As such, they are examples of
Lie-groups.
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hyperbolic functions
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1
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hyperbolic cosine v = cosh(1)

2 — hyperbolic sine gy =sinh()
— growing exponential exp(t)/2
-3 - - decaying exponential exp(—)/2
decaying exponential —exp(—v)/2
4o 15 -0 -05 0o 05 o 5 2.0
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Figure 11: Hyperbolic functions y = cosh({) and py = sinh({) with exponentials as their
asymptotics, as a function of the rapidity .
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Figure 12: Rapidity { as a function of velocity p with the clear divergence as f — 1.
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p.4. SPACETIME SYMMETRIES

Because of the real-valued parameter, one can actually perform a differentiation of
the group element with respect to that parameter, consider an infinitesimal transform
and assemble all possible group elements from this infinitesimal transform as a
building block:

In the case of rotations in 2 dimensions by a small angle « one could expand the
rotation matrix R’,(a) into a Taylor-series,

i i d _; 1 [ 1 0 0 1 (0) (2)
1 — 1 1 —_ — —
Ra(oc)_Ra|0‘:0+—daRﬂ,|a:00¢_(_oc 1)_(0 1)+oc( 1 0)_0 + oo\

(D.271)
Such a construction with two of the Pauli-matrices
(0) _ +1 0 (2) _ 0 +1
o ( 0 41 and o© 1o (D.272)

for an infinitesimally small angle suggest that any finite rotation by an angle a should
be composable from # rotations by a/# in the limit n — oo:

. n
R' (o) = lim (0(0) + %0‘(2)) = exp (occr(z)) (D.273)

n—oo

where the matrix-valued exponential function is explained in terms of its series,

n 2n a2n+1

Ria = eXp(O(O'(Z)) = Z% (0'(2))” = 0'(0) Z((;T)'(_l)n + 0'(2) ZW(—l)n

n n

cosa sina

=0®cosa+ 0@ sina = .
—sina cosa

) (D.274)

which is the reason why 6(?) is referred to as the generator of all rotations, or equiva-
lently, as the basis of the rotations as a Lie-group.

The same line of reasoning applies to Lorentz-transforms: They form likewise a
Lie-group, parameterised by the rapidity ¢,

n " on 2n+1
A = exp(po™) = ) L (o) = o) Fa oy B

n n n
_ (0 (3) o _ cosh{ sinh¢
¢/ cosh P + 0"’ sinh ¢ ( sinhd cosh ¥ (D.275)
where the Pauli-matrix o3,
(3) _ 0 +1
o ( a0 (D.276)

can now be identified as the generator of the Lorentz-transforms. Comparing to the
rotations one notices that the powers of 6(3) do not show changes in sign, but alternate
between ¢(® for odd and ¢(”) for even powers of 7.
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ct

N

7 AN

Figure 13: The rapidity \ corresponds to the arc length that is covered by the end point of a
vector with unit Minkowski norm s? = (ct)2 — x2 = +1 under Lorentz transforms, in the
same way as the rotation angle o is the arc length (or radian) covered by a point with unit
Euclidean norm r? = x* + y? = 1 under a rotation. Reproduction with kind permission of
I. Neutelings.

D.5 Lorentz-group as a Lie-group

It is intuitively clear that rotations form a group as subsequent rotations can be
combined into a single rotations, and likewise, combinations of Lorentz transforms
are Lorentz transforms again, Mathematically speaking, this is expressed by the group
structure that is defined by the axioms: closedness, the existence of a unit element,
the existence of an inverse element and lastly associativity.

For the closedness of a group one needs to show that the combination of group
elements is again a group element. In a Lie-group, where the elements are generated
by means of an exponential, one gets for instance for rotations

R(a)R(B) = exp (ao' ) exp (pa'? ) = [Z ‘z‘—: (6(2))i] [Z d (0(2))j]. (D.277)

il
i j I

Multiplying the two exponential series can be achieved by application of the Cauchy-
product

- Z JZ?'] (iﬁr;‘)! (o) ()7 =) % [Z(;)o&ﬁ”] (c?)  (D.278)

1

]

by using the definition of the binomial coefficient

(l) = 17', (D279)
jl =)
which leads to ; .
_ ZM (6®) =R(a+p) (D.280)
1!
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by virtue of the generalised 44 binomial formula,

(a+p) = Z(;)ajﬁi’j, (D.281)
]

which confirms the intuitive expectation that combining two rotations leads to a
rotation again. In complete analogy one can show that A(P)A(¢p) = A(P + @) for
Lorentz transforms, with the rapidity as an additive parameter.

The unit element, which leaves a vector unchanged, is the quite obviously obtained
for a rotation by the angle zero or a boost by zero rapidity:

R(a = 0) = exp(0 x ?) = exp(c!?)? = id (D.282)

Alternatively, one might argue that

R = 0) = 69 cos(0) + 6 sin(0) = 6 = id (D.283)

and likewise obtain the unit matrix.
Associativity is very obvious for Lie-groups as their additive parameters naturally
obey associativity:
R(a+(p+7y)=R((a+p)+7v) (D.284)

which implies

Ria+(p+7) = RWR(B+7y) = R(«) [RB)R(y)] =
[R(WRB)IR(Y) = R(a + PR(y) = R((a+p) +y) (D.285)

Conservation of the norm of vectors under transformations, or equivalently, the
orthogonality of the transform is realised in the following way, keeping in mind that

(6!t = —6(2),
Rf(a)R(a) = exp (occr(z))t exp (ao(z)) =exp (a(a(z))t)exp ((w(z)) =
exp (—occ(z))exp (acm) =exp ((—oc + oc)c(z)) =id (D.286)

which differs slightly in the case of Lorentz-transforms, as they are orthogonal with
respect to the the Minkowski-metric 1 = o1 instead of the Euclidean metric ¢(® = id,

+10)

AW)A(P) = with 11:0(1):( 0 _1 (D.287)

Invariants of the transform such as determinants are realised in a funky way in
Lie-groups: As an auxiliary result, we need that for any transform A with eigenvalues
Ais

Indet(A) = In ]_[ A= Zln A; = trln(A) (D.288)
i i

where the matrix-valued logarithm In(A) is naturally defined in terms of its series.
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Because the logarithm can not be expanded at zero, where it is undefined, one uses
this neat trick,

In(A) = In(id + (A —id)) = Z%(A—id)n. (D.289)

n

Then,
explndet(A) = det(A) = exp trIn(A), (D.290)

and with the substitution B = In(A) one arrives at

detexp(B) = exp tr(B), (D.291)

which is particular suitable for our purpose, as the determinant of a Lie-generated
group element is related to the trace of its generator. Applied to the rotations this
implies

det(R) = detexp (occ(z)) = exp tr(aa(z)) = exp (cxtr (5(2)) =exp(0) =1 (D.292)

because the Pauli-matrix o(? is traceless. The same result for the Lorentz-transforms
A()) follows in complete analogy,

det(A) = detexp (11)0(3)) =exp tr(¢0(3)) = exp (q)tr 0(3)) =exp(0)=1. (D.293)

Essentially, the determinant of the Lie-group is fixed to unity by the tracelessness of
the generator.

Up to this point, we have been dealing with a single generator, but in 3+1 dimen-
sions there might be cases where one combines rotations about different axes, boosts
in different directions or even considers combinations between boosts and rotations!
In these cases commutativity plays an important role, as it provides a correction factor
to the rule exp(A) exp(B) = exp(A + B) known as the 44 Baker-Hausdorff-Campbell
formula:

exp(A)exp(B) = exp(A + B)exp (—% [A, B]), (D.294)
with the commutator [A, B] = AB — BA.

D.6 Adding velocities

Subsequent Lorentz-transforms can be combined into a single transformation, and
we already know that the Lorentz-transforms form a Lie-group with the rapidity {
as an additive parameter instead of the velocity p = tanh . Luckily, there is a handy
addition theorem for the 44 hyperbolic tangent function:

tanh ¢ + tanh ¢

tanh( + @) = 1+ tanh - tanh ¢

(D.295)
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p.7. RELATIVISTIC EFFECTS
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Figure 14: Relativistic addition theorem for velocities, with the particular case of By, = B,
along the diagonal. B, remains strictly below unity, excluding superluminal velocities.
Clearly the relation needs to be linear if one of the velocities is zero, as seen at the edges.

Therefore, one obtains for the velocities

By + Bo

By = T+ hy b <1 (D.296)

leading to a combined velocity strictly smaller than the speed of light. Linearising
the relationship shows a straightforward addition of velocities,

By = By + By (D.297)

as one would expect from Galilean physics. A proof that the added velocities are
strictly smaller than ¢ might be done along these lines: Writing fy, = 1 - x and
By = 1 —y with positive x and y lead to

(I-x)+(1-y) = 2-x-y

Pore = T I m(1oy)  2-x-p+xp

<1 (D.298)

because the product xy is larger than zero.

D.7 Relativistic effects

There are quite a number of relativistic effects, and they all hinge on the fact that
spatial and temporal coordinates change jointly under Lorentz transforms, while
only invariants constructed from them are truly fixed. If one chooses to ignore that
the coordinates transform jointly and only looks at a single coordinate, surprising
things will happen. Invariants will have identical values in all frames and take into
account all coordinates. As such, they are the means for making statements that do
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ct
timelike vector
2
s2>0
tardyonic spacelike vector
separation s2<0
As® >0
\ tachyonic ¥

separation
As? <0

Figure 15: Classification of distances as spacelike As? < 0, timelike As® > 0 and lightlike
As? = 0. Reproduction with kind permission of I. Neutelings.

not depend on a particular coordinate choice and hence transcend frames. Personally,
I like skewed spacetime diagrams where the rapidities are chosen to be +1)/2 because
then the relative lengths in both frames are equal, and one can compare distances
directly.

D.7.1 Constancy of the speed of light

In every frame, the speed of light comes out as constant, to the same numerical
value, as illustrated by Fig. 16. This is no surprise, was it was the defining choice that
differentiated Lorentz- from Galilei-transforms. In the diagram one immediately sees
that a point on the diagonal, which corresponds to the light cone, acquires x- and
ct-coordinates that change in proportionality to each other, indicating that their ratio
is constant — the speed of light.

D.7.2 Relativity of simultaneity

Events at nonzero spatial separation, which take place at the same time (but at
different positions), i.e. simultaneously on one frame, take place at different times in
another frame, as shown in Fig. 17.

D.7.3 Time dilation

A time interval ct’ taken at constant spatial coordinate x” gets mapped onto a time
interval ct with differing spatial coordinates. The ratio between the two time intervals
is proportional to the Lorentz-factor y > 1. Fig. 18 shows how the time interval
appears longer in projection.
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|

Figure 16: Constancy of the speed of light: The ratio of the two coordinates of a light-like
event is always constant.

/ X

Figure 17: Relativity of simultaneity: Events that take place at the same time ct’ in one
system (blue), take place at different times in another system (green).
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ct ct

Figure 18: A duration ct’ of a process in one system (blue), seems to take more time when
viewed from another system (green)

D.7.4 Length contraction

An object with a given length on one frame will appear to have a shorter length
as viewed from another frame. This is ultimately traced back to the relativity of
simultaneity: The length of an object is defined as the distance between its ends at the
same time, but in a different frame, one effectively combines coordinates at different
times, as demonstrated in Fig. 19. The contraction effect is proportional to the inverse
Lorentz-factor 1/y < 1.

D.7.5 Causal ordering inside the light cone

The temporal order of time-like events is conserved under Lorentz-transforms,
lightlike-events take place simultaneously, while the order of space-like separated
events depends on the frame. To formulate this in a more extreme way, there is causal
ordering only inside the light cone, and no causal ordering outside the light cone, as
shown in Fig. 20.

D.8 Proper time

If a particle moves through spacetime along a trajectory x*(t) in the sense that it
passes by the coordinates x! as its proper time T evolves, one can define the 4-velocity
ut of the particle as a tangent to the trajectory

_ dxt

I3 -
ur =
d(

(D.299)

which is consistent with the definition of infinitesimal arc length ds along the
trajectory, as
ds? = Hdxtdx = r]wu"u"drz = c?d7? (D.300)

i.e. if the 4-velocity is defined with proper time t as an affine parameter, it is
normalised to 1, utu" = ¢?, and the arc length is measurable by means of a clock.

72



p.8. PROPER TIME

|

Figure 19: A yardstick at rest in the primed system (blue) seems to be contracted as viewed
from another system (green).

|

Figure 20: Spacelike separated events do not have an absolute causal ordering. The event
seems to have a positive time coordinate ct (blue) and takes place after the event at the

origin, but a negative coordinate ct’ (green) in the other frame and precedes the event at
the origin.
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ct, xM(rt)= J'dr uh

=
V)

ngent utt
spacelike spacelike
region region

Figure 21: Spacetime diagram with spacelike (both left and right) and timelike (both past
and future) regions, along with the worldline x*(t) of a massive particle, with 4-velocity
ut = dxt/dv As nyutu” = % > 0, the massive particle necessarily moves inside the light
cone. Reproduction with kind permission of I. Neutelings.

Proper time is the time elapsing on a clock that is carried along with the particle:
The infinitesimal arc length can be expressed in terms of the coordinate differentials

ds? = Hndxtdx = c2de? - y,»]»dxidxj = c?d? (D.301)

as the change of spatial coordinates dx' is zero for the comoving clock. This implies
three things: Proper time measures the arc length of the trajectory of a particle

through spacetime,
B B B
s= st = ch’c = j uydxtdxy (D.302)
A A A

and is, as a Lorentz scalar, invariant under Lorentz transforms. And in addition, the
normalisation of the 4-velocity is ¢? if Tis used as the affine parameter for x*().

Returning to the expression of s in terms of the infinitesimal coordinate changes
leads to

B B - B B B
_ _ Yijdx' dx/ [ ia 1
S—de—CJdt 1_67235_6 dt 1—']/”61[3]—C dt;—c dt £
A A A A A
(D.303)

which can be used to compute arc lengths through spacetime.
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Trajectories that have extremal values for s would result from a variational princi-
ple applied to £ = 1/y. Hamilton’s principle 8S = 0 implies

B B
6Jdt L(x',v') = J-dt 9L sxi+ 25 50| = 0 (D.304)
dx! vt
A A
with the typical replacement
coodxt d
i_ _ P osa
ov _6dt = dtéx (D.305)

which enables integration by parts, yielding the Euler-Lagrange equation

B
6S:jdt(aﬁ—ia—£):0 o 4oL _of (D.306)
A

oxi  dt vl dtdvi  oxi

The identical calculation can be done if the velocities are 4-velocities, expressed
in terms of proper time t

B B
aL oL
Boyh) = —— oxt 4+ ——dut| =
éfdtﬁ(x,u )_de(axl‘éx +8uP‘6u =0 (D.307)
A A
with the typical replacement
dxt d
syt = 5 = Lg,n
oul = o s = ox (D.308)

which enables integration by parts, yielding the Euler-Lagrange equation

B
L d IL d o 9L
65—Jd’[ (ﬁ_aw)—o - am—w (D.309)
A

for motion through 4-dimensional spacetime.

D.9 Relativistic motion

It would be a good idea to see if relativistic motion with the correct transformation
property of all quantities involved would result naturally from a variational principle:
This will be the case, and sometimes it appears to me that variational principles,
always presented as the pinnacle of classical physics, are in fact relativistic: In some
sense they are a piece of mathematics that has been discovered a few hundred years
too early to appreciate them properly. They incorporate the idea that an invariant
(under coordinate transforms) Lagrange-function gives rise to a covariant equation of
motion. To see how this works, let’s start at a classical Lagrange-function L(x, v

L(x',v') = ?vivj — d(x') (D.310)
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where both terms are invariant under e.g. rotations, @ is scalar anyways and vy;; viv/
as the norm of the vector x. Hamilton’s principle S = 0 with the action

tf
S:jdtﬁ(xi,vi) (D.311)

ti

yields the Newtonian equation of motion

i =y (D.312)

which sets the vector ¥ in relation with the gradient d®, which is likewise a vector.

While this is perfectly nice, there are some points of criticism for the variational
principle that one can not answer from a classical point of view: There is no obvious
interpretation of £ or S, they are not measurable in a direct way and they behave
funnily under Galilei transforms:

x' — x' +u’t and consequently v — v’ +u’ for a constant relative velocity u’
(D.313)

This implies for the Lagrange function

L(x', V) —> %vlv]+yijv’u] +%u’u7 = %v’v1+ (yi]-x’u] + %ulu]t) (D.314)

dt

In fact, the Lagrange function is not invariant under Galilei-transforms, but the
additional term appearing is a total time derivative and does therefore not play a
role in the variational principle. It might strike you as odd (and rightfully so), that
rotations and Galilei-transforms are treated so differently.

Thinking about a relativistic Lagrange-function that should be intuitive, measur-
able and invariant leads to proper time

B B
cr:cjdr:jdsz
A A

It is the time that is displayed as elapsed on a clock that is moving along with the
particle and is, geometrically, the arc length of the trajectory through spacetime,
measured with the Minkowski-metric 1,,. As this metric defines an invariant, the
arc-length ct = s will be identical in any Lorentz frame, and it will be a convex
functional in the velocity v = ¢f, making sure that the variational principle finds a
uniquely defined minimum and enabling Legendre-transforms to find the associated
energy. As affine transformations £ — a£ + b of the Lagrange-function or the action
do not have any influence on the Euler-Lagrange-equation, we can include a prefactor
—mc to yield

B B B
S:fmCZJ_defchds:fch‘
A A

A

ydxtdxY (D.315)

P

~|&
s
o

> [=-— (D.316)
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Figure 22: Relativistic Lagrange function L(B) = £+/1 — p? in comparison to its classical
limits L(B) = +1 F p?/2.

where the difference between the arc length s and the action S has vanished, or in
other words: We’ve found a geometric interpretation of the action.

It is very instructive to reformulate time proper time integral in terms of the
4-velocity ut,

uuideidtﬂ: ( c

== -3 . ) for XM:( ;f ) (D.317)

with the definition of the conventional velocity as v = dx’/dt. Then,

dxt dx” ;

d? = 2 (2 —viv' ) de? = 2 v2(1 — B2 d2 = 2d?

I ac9" y(c v,v)T c“y (1 -p7)dt” =c“dt
=1

ds? = Hndxtdx? = ny,

(D.318)
and the normalisation of the 4-velocity is timelike, 1, u"u" = % > 0, as the particle

moves necessarily inside the light cone.

D.10 Relativistic dispersion relations

With the relativistic Lagrange function £ being equal to the inverse Lorentz-factor,

L= % N (D.319)

one can derive the canonical momentum p
oL
= v such that v= —F _ (D.320)

P=9v " 2 _ 12 1+ p2
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Figure 23: Relativistic dispersion relation H = +/p? + m? for m = 1, in comparison to the

massless dispersion relation H = p, the classical dispersion relation H = p?/2 + 1 and a
tachyonic dispersion relation H = +/p? — 1, which is only defined for p > 1.

Carrying out the Legendre-transform for obtaining H from £

H = v(p)p ~ L(v(p)) (D.321)
then implies
v v 1 p  1+p?
H=v——+Vc2-1v?=v +f:v( +7)267 =41 +p?
c2—v? P p P p J1+p2 P P
(D.322)

and if one would include mc as a prefactor,

H = /(cp)? + (mc?)? (D.323)

which is exactly the relativistic dispersion relation. Surprisingly, the energy H is not
zero even for p = 0, which is why we associate this energy mc? to the rest mass of a
particle. With this dispersion relation it is straightforward to compute the group and
phase velocities of a wave packet associated with a relativistic particle,

2P

_an_ d _H D.324
Vgy dp c and  vpp » ( )
such that their geometric average is exactly c*:

Ugr X Uppy = c? (D.325)

Because for any momentum H > cp, it is the case that vy, < ¢ while v > c. It
is reassuring to see that the group velocity, associated with the motion of massive
particles, is always subluminal.
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The Euler-Lagrange equation for minimising the arc-length s = jds reads

d o _ oL
Teopc = gpa for L= \[nutue (D.326)

where the right side is automatically zero in this case, because £ does not depend on
x®. Evaluating the left side gives:

d (1 dut | ou” d /1 ; )
T N 3 a F— 1= —(— v nsv]) =
dr(zcn”"[auau +u au“]) dr(2cn'”[6"u +u ba])

1d 1du

oz (e + ) = == =0 (D.327)

implying that in the absence of forces, the particle moves through spacetime at a
constant 4-velocity, or equivalently, that a straight line corresponds to motion free
of acceleration: This is exactly the relativistic version of Newton’s law of inertia.
And it remains true, even in Minkowski-space, that inertial motion along a straight
line minimises the arc length: The straightest trajectory is the shortest. It is quite
astonishing to see the geometric picture behind Newton’s axioms that is somewhat
hidden in classical mechanics.
Expanding the arc length s in terms of a Taylor-expansion for small velocities

B

B B B
®dxVv 2
s:fds:cjdt dxt dx :cht\/cz—UZZJdt (1—%) (D.328)
A A A A

LTI

recovering the square of the velocity familiar from classical mechanics, in the ap-
proximation /1 — 2 =~ 1 — p%/2 for p < 1. Weirdly enough, we see that it doesn’t
have anything to do with kinetic energies, it is just the lowest-order Taylor-expansion
of the relativistic arc length and is a purely geometrical object. With the suggestive
identification of the arc length as the action and the line element or proper time
interval as the Lagrange function, one really falls back onto the kinetic energy as the
Lagrange function of classical mechanics, because it is only ever defined up to an
affine transform, negating the influence of the additive 1, and allowing to multiply
the line element with the negative mass.
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