C DYNAMICS OF THE ELECTROMAGNETIC FIELD

C.1 Potentials and wave equations

Working with static fields was a tremendous simplification of the Maxwell-equations
and yielded, at least under the assumption of Coulomb-gauge, Poisson-type relations
between the potentials @ and A; and the sources p and j/, with easily computable
fields E; and B'. In taking the detour over the potentials one enables the full toolkit
around Green-functions including the treatment of boundary conditions. But the
existence of potentials, clearly at this point unrelated to energies as in the electrostatic
case, follows from the homogeneous Maxwell-equations in a much more general
argument: The second Maxwell-equation @;B’ = 0 suggests that there is a vector
field A; with B = eifkajAk, as then 9;B = e"f"a,-ajAk = 0 is automatically fulfilled.
Consequently, the induction law eijkaj Ex+dB' = 0 becomes eiika]- Er+ QCteijkaj Ay =
eijkaj(Ek + d.1Ag) = 0, suggesting a potential ® with E; + d,,A; = —9;P (the minus-
sign is conventional).

Therefore, the homogeneous Maxwell-equations ensure the existence of potentials
in the general case, which again are only determined up to a gauge transform: As
before, we write A; — A; + d;x (which leaves B’ invariant) and investigate the
necessary changes to ®: The electric field E; is gauge-invariant only if

Ei = —aiCD - actA,» bd —81-(1) + actaix —8ct(A,» + 8,»)() = E,‘ (C137)
——
for consistency

i.e. if we include an additional term d;x, implying the transformation rule

O —> d-d,;x alongside A; > A;+9;x (C.138)

for consistency, keeping in mind that partial derivatives interchange, d.;d;x = 9;d¢; X-

While the homogeneous Maxwell-equations safeguard the existence of potentials,
the inhomogeneous Maxwell-equations couple the fields to the charges, be it static or
dynamic. But while the homogeneous Maxwell-equations make statements about the
observable fields E; and B’ and derive them from potentials ® and A;, the coupling to
sources is clarified by the inhomogeneous Maxwell-equations in terms of the auxiliary
fields D and H;. Hence, constitutive relations are needed.

In fact, the first Maxwell-equation makes a statement about the divergence of
D, which is given in terms of the potentials by E; = —9;® — d.,A;, followed by
D' =€ Ei = % E;, where we assume an isotropic medium. Consequently,

9;,D' = eyija,»Ej = —eyijaiz?]-CD - eyijQCtQiAj = 4mp (C.139)

where we recover the conventional Poisson-equation eAD = —eyijc?,-aj(l) = —4mp
in Coulomb-gauge, y/d;A; = 0. The fourth Maxwell-equation links the magnetic
field H; to ; and the time derivative of the electric fields d.;D’, implying with
B = eijkajAk and the constitutive relation H; = pt,-ij = ‘}/iij/}zl

y A 1 .. y A .
e”kz?ij = +d,D! +TT(]l - fe’/kank,e"""amAn = +8”ey”Ej+Tn]’. (C.140)
n
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c. DYNAMICS OF THE ELECTROMAGNETIC FIELD

The contracted Levi-Civita symbol can be expanded in terms of the Grassmann-
idenity,

1 ii 1 i i o
;’yklel]kelm”ajamAn _ a (Yzmy]n _ anyjm) ajamAn —
1 im in in|.jm
;(Y am [V] ajAn] - [Y] ajamAn]) (C.141)
where one recognises the Coulomb-gauge term in the first and the Laplace-operator

in the second square bracket. Substitution of the expression E; = —9;® — d.;A; on the
right side leads to

y 4t . . y 4t .
dceyE; + Tn]’ =0 ey ;P - eagty”A]- + Tn]l (C.142)

By assuming a different gauge condition, namely <4 Lorenz-gauge'

1 ..
Gact(D + ;Yual‘A]‘ =0 (C143)

the two field equations decouple into a perfectly symmetric shape. Starting with
eqn. (C.139), one obtains by substitution of the Lorenz-gauge condition

y 4
~Y/19;0,® + epd?,® = ?T(p, (C.144)

i.e. a perfectly viable wave equation for @, sourced by p/e. The same procedure
applied to eqns. (C.141) and (C.142) leads likewise to a wave equation,

~Y"9;0,y" Ay + epdZy A = 47nw" (C.145)

With the definition of the d’Alembert-operator
O=epd? - A (C.146)

as a generalisation to the Laplace-operator A for dynamic situations, the two equa-
tions can be written as

O = 4?“9 and OA; = 4—2‘”%].]!' (C.147)
and become two decoupled linear partial hyperbolic differential equations, providing

4 relations between 4 sources and 4 potentials, all decoupled by virtue of the Lorenz-
gauge condition.

IThe Lorenz-gauge is named after Ludvig @ Lorenz while the Lorentz-transformation was proposed by
Hendrik Antoon @ Lorentz, hence the different spelling.
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c.1. POTENTIALS AND WAVE EQUATIONS

Differential equations involving the d’Alembert-operator typically have wave-like
solutions, propagating at the velocity c, in this case modified to c¢/+/€ji, where one
recognises n = \/€p as the index of refraction:

2?2 ep 9?2 c \72 a2 92 c
82: _— | — 7:7232; h /:7
Wt = Ko en? T 2 ar (\/a) o2~ oo et N T
(C.148)

The gauge function x for achieving Lorenz-gauge can be computed by considering
the transformation of the expression ed ;@ + y'/d; A;/p = 0:

eactq) + é?ijaiAj - eact (® - actX) + %‘yijai (Aj + (9])() =

1 1
€l @ + ;y”&,-A]- —ed%x+ ;Ax =0 (C.149)

which is equivalent to

Ox = epd?x — Ax = epd® + Y1 9;A, (C.150)

This is a wave-equation for x, sourced by a possibly nonzero €d ;P + yijBiAj/}A. Asa
hyperbolic partial linear differential equation, it has again a unique solution for ¥,
such that Lorenz-gauge can be imposed. Determining x through Ay = '/ d;Aj/p for
Coulomb-gauge in the static case and Ox = epd ;D + yija,-A]- for Lorenz-gauge in the
dynamic case are completely analogous.

It is important to realise that the gauge freedom only provides a mathematical
convenience for computing the potentials from the sources, and it can be used to
set terms in the potential equations to zero. Nowhere there is anything physical
happening: Purely by the act of imagining a new gauge condition the physically
observable fields can not change. In addition, it is just practicality that persuades us
to use Coulomb-gauge for the static case and Lorenz-gauge for the dynamical case,
and not a physical requirement. In fact, it is perfectly reasonable to use the Coulomb-
gauge yijaiA]- = 0 for the dynamical equations. Then, eqns. (C.139) and (C.141)
become

AD = —4?“9 and AA; - 9%A; = —471-(}4%']‘]]' +€0d;0,P (C.151)

and deserve some explanation: The Poisson-equation provides an instantaneously
changing ® at any distance from the dynamically changing source p, while there is
a wave-equation linking A; to y,-]-]i. But A; depends as well on 0;d.;® as a dynamic,
vectorial source, hence the two equations are not yet fully decoupled. Coulomb-gauge
might still be attractive though, because of the particularly easy expression for @!

The relationship between source, potential and fields are summarised for the case
of static fields in Coulomb-gauge and for the dynamical case in Lorenz-gauge, where
additional terms are indicated by dashed arrows:
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c. DYNAMICS OF THE ELECTROMAGNETIC FIELD
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The fields E; and B are obtained from the potentials ® and A; by differentiation,
and applying a second differentiation gives the sources p and ;'. The direct path from
the potentials to the sources is given by application of the A. The dynamic case is
slightly more complicated, as E; obtains a contribution —d.;A; and as eifka]- Hj not
only depends on j/, but also on d;D’. The gauge function x transforms only A; in the
static case, but both A; and @ in the dynamical case.

While we already know the Green-function inverting A from electrostatic and
magnetostatic potentials and have encountered a systematic way of its construction,
we now have to turn to O and find a suitable time-dependent Green-function: the
Liénard-Wiechert potentials.

C.2 Solving the wave equation for potentials

Intuitively it is clear that a changed charge distribution does not immediately affect
the fields at any distance, but that there needs to be some time passing until the
field configuration has adjusted itself to changes in the source distribution. For
this purpose, let’s assume Lorenz-gauge €d P + yijaiAj/yt = 0 such that the field
equations become

4 .
OO =4np and OA; = T“y,ﬂf (C.153)

These equations are decoupled hyperbolic partial differential equations, with the
charge density p and the current density ;' as sources. Clearly, in vacuum p and
vanish, such that one falls back onto two homogeneous PDEs

O0=0 aswellas 0A; =0 (C.154)

which can be solved with a plane wave ansatz

D, A; o< exp (i(wt - kir')). (C.155)
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c.3. WAVE EQUATION FOR FIELDS

Substitution yields for both @ and A; the result that

iw

Dexp (£i(wt - ker')) = [(i?)z — " (Fiky) (Fiky) | exp (#i(wt — k;r')) =

[— (%)2 + y”bkﬂkl,] exp (i(wt - kir')) =0 (C.156)

i.e. the plane wave is a valid solution as long as the dispersion relation

w? = AyPkoky = (ck)? - w=xck (C.157)

is fulfilled, which requires a strict proportionality between angular frequency w and
wave number k,, with the speed of light c as the constant of proportionality. With this
particular dispersion relation one can immediately show that the phase and group
velocities are identical and have the value of c:

w _do

Uph:?zc—ﬂ—vgr

(C.158)
which implies that wave packets in @ and A; propagate 44 dispersion-free, i.e.
without changing their shape. But perhaps more importantly, the wave equations
suggest that excitations of the fields travel at a finite speed c in the potentials ® and
A; (at least in Lorenz-gauge, the statement would not be true in Coulomb-gauge!).

C.3  Wave equation for fields

While propagation and the form of the propagation equations depends on the level
of the potentials A; and @ on the assumed gauge, the fields E; and B’ as physical
observables can never depend on a certain gauge and always exhibit propagation at
the speed of light c. In a vacuum situation with ' = 0 as well as p = 0 both fields are
divergence-free d;D' = 9;B' = 0 and the rotations are defined, up to a sign arising
from duality invariance, by

¢/%9,Ey = -94B' and €7%0;Hy = +9,D". (C.159)

Taking a further rotation of any of the two equations, using rot rot = Vdiv — A,
setting the divergence-term to zero and substituting the time derivative of the other
equation leads to

(9% - A)E; =0E; =0 and, in parallel, (2% —A)H; =0H; =0 (C.160)

i.e. perfectly symmetric wave equations for the electric and magnetic fields, with
excitations travelling at the speed of light c. The symmetry in the shape of the
equations is perhaps not too surprising, as one can always replace the fields in
a duality transform E; — H; and H; — -E; valid in vacuum. Solving the wave
equations with a plane wave ansatz o exp (ii(wt - kiri)) is perfectly general: Due to
the linearity of the PDEs, any field configuration can be written as a superposition of
plane waves that solve the wave equation.
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c. DYNAMICS OF THE ELECTROMAGNETIC FIELD

amplitude v(z,t)

z-coordinate

Figure 6: Harmonic wave as a function of x; the shading indicates evolution with time t.

Substituting the plane wave-ansatz into the divergences shows that

Y7k;E;j=0 and y7kH;=0 (C.161)

implying that the fields are transverse, i.e. the amplitudes are perpendicular to the
direction of propagation, and substituting into the rotation equations suggests

eijkkjEk = —%Bi = —%yink as well as eijkijk = +%)Di = +%€yijE]- (C.162)

such that the amplitudes of the fields themselves are perpendicular to each other.

Please note that the statements of transversality and perpendicularity can not be
independent: Pictorially, there is simply no other direction in which k could point:
Multiplying the latter two equations with k; already implies that y/ kiH; = Yk =
0. It is quite instructive to multiply with the linear forms H; and E;, leading to

¢H KBy = —%)HiBi aswellas €/*E;kH, = +%E,’Di (C.163)

showing that the volume of the rectangular cuboid spanned by the linear forms E;,
H; and k; is proportional to the energy densities, which are equal for a plane wave.

While the amplitudes E; and H; are always perpendicular to the direction of
propagation, the analogous statement for vector potential A; is only true under
Coulomb-gauge, yifkiA]- = 0: This is the reason why sometimes one refers to this
gauge condition as transverse gauge. It is quite funny to go through all vector orienta-
tions for a duality transform. As plane electromagnetic waves are vacuum solutions,
this transform must yield a physically sensible field configuration: Even the fact that
ki, E; and H; from a right-handed system in the sense that eijkkiEij is positive is
conserved under duality transforms.

Fig. 6 shows how a wave of the type exp(+i(wt — k;r')) propagates: Not only is
it an oscillation in t at fixed r' and an oscilation in r at fixed ¢, but the two are
coupled: Defining the phase velocity vp, = w/k makes the argument assume the
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c.4. ELECTROMAGNETIC WAVES IN MATTER AND THE TELEGRAPH EQUATION

form vyt — r, and moving along with this velocity with the wave an observer would
always perceive the phase function ¢ = wt — k;r' to be constant. The phase function
¢ has an interesting geometric shape as k;r’ — wt = const corresponds to the %4
Hesse normal form of a plane, specifically in our case the plane of constant phase.
As time progresses, this plane of constant phase moves along its surface normal k;,
which allows the identification of the wave ”vector” k; (actually a linear form) as the
direction of propagation.

C.4 Electromagnetic waves in matter and the telegraph equation

Electromagnetic waves in matter experience two effects: Firstly, € and p can differ
from one, such that one has to work with D' = €/ E;and Bf =yl H; in a potentially
anisotropic way, and secondly, the electric field E; might be able to move the charge
carries in the medium, giving rise to a current density j/, where the two are related
by A Ohm'’s law. It reads in its differential formulation

J = o'E; (C.164)

with the conductivity tensor ¢’/. As in the case of the dielectric constant ¢ and
the permeability p, the conductivity o is scalar only in the case of isotropic media
(perhaps one can imagine a somehow layered material as a counter example, in which
the charges are movable at different rates in the different directions), and a linear
relationship is essentially a first order approximation.

Faraday’s induction law in an isotropic medium assumes the form

¢7%9, By = ~94B' = -y 9 H; (C.165)
and Ampére’s law takes on the shape

y 4 y AT
€59 Hy = 404D + i = +ey9E; + —— I (C.166)
c C

so that taking the time derivative of the first equation, and the rotation of the second
equation, again by using the Grassmann-relation leads to a wave equation with a
damping term, the so-called 44 telegraph equation

41op
c

(epd? - A)H; = OH; = - d.+H; (C.167)

The effective speed of propagation ¢’ is given by

=" C.168
ol (C.168)
as effectively all known transparent media have permeabilities close to one. The
latter relation suggests that the #4 refractive index # is given by +/¢, relating electrical
to optical properties of a medium. The damping is determined by the conductivity
o: Non-conductive media do not show any attenuation of incident electromagnetic
waves, but if the conductivity is nonzero, the motion of the charges in the medium
dissipate the energy of the electromagnetic waves.
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c. DYNAMICS OF THE ELECTROMAGNETIC FIELD

Dimensional analysis shows that the term

4miop

= Loy (C.169)

must have units of a length scale L,;; on which the amplitude of the wave decreases
by a factor exp(-1).

C.5 Energy transport and the Poynting vector

We have already seen that the electric and magnetic fields are real in the sense that
they accelerate test charges and contain energy at the densities

E;D d anal | H;B
nd an , = —
pyo and analogously, wmag -

wey = (C.170)

The corresponding energies, obtained by integration over space, would from a
combined energy conservation law together with the mechanical energies. As the
fields can dynamically evolve, the questions how energy is conserved by a dynamically
evolving field configuration and how it is transported through space arises naturally.

A good starting point are the two inhomogeneous Maxwell-equations that contain
time derivatives:

e']kajEk =—-0d,B" aswellas e‘]kBij =+d,D'+ —n]'. (C.171)
c

Multiplying the first equation with H; and the second equation with E; in the sense
of a scalar product and subsequent subtraction yields

E;e*0;Hy - H;e'*0,By = —E;) + E;9,D' + H;0.B' (C.172)
c NN —_
=39(E;D¥) =39 (H;B')

where the reshaping in the last two terms with the constitutive relation suggests
substitution of the energy densities:

1 | - -
410w = 59c,(EiD') = 5 (0uE; - D' + E;9e, DY) =

5 (9ctE; - Ej + E;0B;) = E;0c€E; = B9, D', (C.173)

relying on the symmetry of the dielectric tensor €'/, and likewise

1 1 ; ;
59c(HiB') = = (9o H; - B' + H;dB) =

A0 4 Wiag = 5

ij iy .
”7 (9cH; - H; + H;dH)) = Hide ' H; = Hid B, (C.174)
for the magnetic fields with a symmetric permeability u'/. The left hand side of the
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c.5. ENERGY TRANSPORT AND THE POYNTING VECTOR

equation can be written as

EjGijka]‘Hk _ H,'GijkajEk - E,-eiijij _ Hkajia]‘Ei =
€ijk(Ei(9ij + HkajEi) = 8]'€ijkEin = —aieijkEij (C'175)
with renaming the indices i < k in the second term, before reordering kit = ki =

—€'k, with a cycling permutation in the first and an interchange in the second step.
Defining the 44 Poynting-vector P

pi = ﬁeijkEij (C.176)

one arrives at the final result

9;P' = -E;j' -0, (Wel + wmag) (C.177)

The Gauf3-theorem allows to recast this differential conservation law into integral
form,

Jdv 9;P! = st,-P" = —Jdv E;j - %Jdv (Wel + Winag) (C.178)
\% ’A% v \'%

such that the change in energy content of the inside the volume V is given by two

terms. The first term describes the energy flux integrated over the surface JV: If the
Poynting-vector P has a nonzero divergence and points outwards, the energy content
will decrease. The second term is attributed to the dissipation inside the volume:
Introducing Ohm’s law in differential form,

J = o'E; (C.179)

with the conductivity tensor o'/, the integral over the volume V = A¢

. . - A U?
dVE;) = [ dVoE;E; =0 | dVy/E;E; ~ B>V = 92 (Bl = — (C.180)
¢ R
v v v — _y
=1/R

This is exactly the energy per time interval which is dissipated into heat inside the
volume V. Alternatively, one could have replaced E; instead of j*, leading to

i ij_1 i IV _ ¢ 2 _pp2
dVE;j' = | dVojj'f = 5 AV = == As ( JA )*=RI* (C.181)
v v v —_

=R =1

Only if the conductivity o vanishes, or the resistance R is infinite, the terms is inactive
and the ideal energy conservation law is given by

. . d
0iP' = =0, (el + Winag) — fdsi = j dV (wel + Wmag)  (C.182)
av A%
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c. DYNAMICS OF THE ELECTROMAGNETIC FIELD

C.6 Momentum transport and the Poynting linear form

Similarly to the Poynting-law for energy conservation of the electromagnetic field
there is an associated momentum conservation law: Starting at the Lorentz-equation
for a volume element that contains a charge density p and a current density ;' allows
to express the rate of change of the volume’s momentum

dp; 1 ik
8 :jdV (pEi+E€j]vk]/B ) (C.183)
\'

which would fall back onto eqn. (A.1) by setting dg = pdV, q = qu = JdV 0
As in the calculation for the energy density of the electromagnetic fields we can
replace the charge density p and the current density j' by using the two inhomoge-
neous Maxwell-equations d; D’ = 41p and €/""9,,H, = d;D/ + 41/c ji leading to the
change of the momentum associated with the fields themselves
dp;

1 . . .
4 = 4—njdv (Ei 9D + €;jxe/™"9,,H,, - B* - 9, DI - BY) (C.184)
\'

Aiming at making the expression more symmetric, it is clearly possible to add the
term H;0; B/ as 9;B’ = 0, and replacing the last term d.,D/ - B¥ using the Leibnitz-rule
according to

det (D/B*) = 94D - B* + DIg, BX. (C.185)

Then, the penultimate term requires the time-derivative of the magnetic field, which
suggests to substitute the induction equation d,,B* = —""9, E,:

€ijxdD/ - BF =9, (eijijBk) —€;xD/9B* = 9, (GijijBk) + €D/ e 9,0, E,,
(C.186)

The formula suggests a Poynting linear form Y;

C .
Yi = HeijkD]Bk (C187)

analogous to the vector P! = ¢/(4m) eijkE]- Hj, but composed of the two vectorial fields
D' and B'. The missing ¢ suggests that it has units of a momentum density, and hence
it describes the 4 momentum content associated with the fields inside volume.

The expression for the momentum change presents itself in a wonderfully sym-
metric form

d

E Pi+jdVYi =
L
4m

A%
jdv (Ei9;D/ + H;0;B - €jx"™"9,,E, - DI + €™ 9, H, - BY) (C.188)
\'

If the right side of this equation could be written as a divergence, one would
recover the archetypical form of a continuity equation, this time for the momentum
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c.6. MOMENTUM TRANSPORT AND THE POYNTING LINEAR FORM

of the field configuration inside the volume V. As the left side of the equation is
vectorial and because taking a divergence reduces the rank of a tensor by one, we
are looking for a tensor of rank two on the right side. Treating the electric fields first,
shows that

E;0;D/ - €;j """ 9,,E, - DI = E;9; D — (85} - 6}”6?) OnE, Dl =
E;0;D/ - 0,E;- D/ + 9;E; - D/ = E;0;,D) + 9;E; - D/ - 9;E;-D/ , (C.189)
N N

=d;j(E; D) =50, (E(D¥)/2

after a reordering of terms. While the first combination is just an application of the
Leibnitz-rule, the rewriting of the last term deserves a more thorough argument:

. . ¥ 1
9;E; - D/ = 8/0;E - D* = 8ley,,d;E - By = Eéfek"'a]- (ExE,,) =

%6{3,» ("' ExEy) = %6{aj(Eka). (C.190)

The terms involving magnetic fields are treated in complete analogy up to a difference
in sign, caused by the different contraction. This is quickly remedied by interchanging
the indices efk = —¢ki:

H;0;B/ + €;jxe/""9,,H, - B* = H;0;B/ - €;;¢/""9,,H,, - BF (C.191)
The subsequent steps are identical:

H;0;B/ - e/, H,, - BY = H;0,B) — ("5} - &}'5!") 9, H,, - B =
H;0;B/ - 9;H - B + 9, H; - B* = H;0;B/ + o H; - B - 9;H,-B* . (C.192)
—_——— ——

=9;(H;Bf) :é}aj(HkBk)m

where an identical argument applies to the last term:

. . . 1
aiHj -B/ = 65‘9ij : Bk = 6;}’lkmaij . Hm = Ebgukmaj (Hka) =

Loy (,km L k
5919; (W HH,,) = 5919; (FBY). (C.193)
Collecting all terms finally gives the sought-after divergence

d . .
T pi+jdVYi :fdvajTl.]:jdsj T, (C.194)
\' \% A%

where the GauB8-theorem was applied in the last step, yielding a surface integral over
the 44 Maxwell stress tensor Tl.]

. 1 . . 1.
T/ = L (B0i e 1B - Lol (5D + ) (C.195)
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c. DYNAMICS OF THE ELECTROMAGNETIC FIELD

The Maxwell-tensor is symmetric, TiJ = Tji in the case of isotropic media, but in

general not: Examining EiDj , for instance, shows with the substitution

E,D' = ¢/E;E; = ¢;D'D (C.196)

that it can only be symmetric if €'/ and E;E j, despite being both symmetric on their
own, have coinciding eigensystems. This would be the case for isotropic media, as
¥ and E;E; are simultaneously diagonalisable. A straightforwardly mathematical

condition would be a vanishing commutator [eif, EiEj] =0.
It is striking that in an anisotropic medium the direction of energy transport and
momentum transport are not collinear, as

Y, = —— e D/BF _4ie, & ME,, ik (C.197)
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Forming the scalar product between the Poynting vector P/ and its associated linear
form Y; gives

2 2

k€™ DIB'E, H, = T 5 (878} — o8 ) DIB*E,, H, =

(4n) > (D"E,,B"H, - D/H;BE;) = W(ei"’EiE,,le"HjH,l—ei"’EiHmyj”HjEn),

(C.198)

with the squared norms of the two fields in the first and the scalar products in the
second term: This suggests that the scalar product Y;P is positive definite, as a result
of the 44 Cauchy-Schwarz inequality. After rewriting the expression in terms of the
two constitutive tensors instead of the fields one arrives at

2 2
7¢"w" (EHEnH, — EHEH,) = oo (e

1m}4]n inl’ljm)EiHjEmHn
(C.199)

For a plane wave with perpendicular electric and magnetic fields one would obtain,
under the assumption of an isotropic medium, a vanishing second term, yielding the
largest possible result for Y;P?, which indicates a parallel momentum and energy
transport.

The trace tr(T) = 6’ T, J =T’ " computes to the negative energy density of the fields,
as

j

1 ) LY
T, = —|ED +H;B - 2] (ExD* + HB) | =

1 . .
i 410 Py (EiD1 + HiB’) = _(wel + wmag)

8

(C.200)
as 65 o = 6:: = 3. To be honest, this result can only be understood later, when we
derive the Maxwell-tensor for electrodynamics as a relativistic field theory.

Looking at the mechanical aspect of the continuity equation for the momentum
density as the change of momentum needs to be equal to the force acting on the
volume element, and because dp; is given as
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dpi = T/ds; — Tﬂ:%, (C.201)
Sj

one would associate Tl-] with a force per unit area: Those elements are referred to as
stresses, of which the isotropic component is called 44 radiation pressure. Depending
on the field configuration, the stresses into different coordinate directions do not
need to be equal. Commonly, one would expect radiation pressure to be exerted in
the direction of propagation of an electromagnetic wave, but not perpendicularly to
it. On the other hand, an isotropic superposition of plane electromagnetic waves, as
for instance in a blackbody, can be assigned a radiation pressure. The combined term
on the left side of the equation is the mechanical momentum p; of the matter inside
the volume V and the volume-integrated Poynting linear form Y; as the momentum
content of the electromagnetic field.

We will see that the four entities energy density w = we] + Wmag, Poynting vector pi
or energy flux density, Poynting linear form Y; or momentum density and the Maxwell
stress tensor Tl-] can be assembled into a larger object, the 44 energy momentum-
tensor T, ":

T v (2] C.202
v =i [ ) (C.202)

which will, when a combined derivative d,, = (d, d;) is applied to it, yield energy
conservation in the first column, and the three components of momentum conser-
vation in the second, third and fourth columns. All conservation laws would then
follow jointly from the divergence BVTP" = 0, for media of zero conductivity, and the

entire tensor is traceless, BETHV = TMM =0=w+ 6§Ti] =w+T; i

In summary, there is a clear notion of energy and momentum conservation in the
electromagnetic field. One can associate energy and momentum densities to any field
configuration, and as the configuration evolves dynamically, energy and momentum
is transported through space in a way that is described by continuity equations.
Possible dissipation can be described by Ohm’s law, and would convert field energy
into heat. The Poynting-vector plays the role as energy flux and is constructed from
the linear forms E; and H;, while the transport of momentum density is encapsulated
in the related linear form Y;, which depends on the two vectors D' and B'. It is
straightforward to see and not unexpected that for a plane electromagnetic wave
the energy transport proceed along the wave vector, as P’ is collinear with k;, which
in turn is poynting (pardon me!) into the direction eijkE]- Hy. In metric spaces or
spacetimes it is always possible to write the Maxwell stress-tensor and the energy-
momentum tensor with one type of index, covariant for instance,

Ty =y T,* and Ty = haT,% (C.203)

such that the traces read yijTij and 1Ty, and the divergences y“iBaTij = 0and
19 Ty = 0.

C.7 Time-dependent Green-functions and retardation

Clearly, the propagation speed of excitations in the electromagnetic field is finite, so
any change in the source configuration is not perceived instantaneously at any point
at nonzero distance: In fact, the changed field configuration only arrives after a time
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cAt = Ar at distance Ar, which is referred to as retardation. The same is true for the
potentials ® and A; if one assumes Lorenz-gauge €d, @ +y'/d;A;/p = 0, because then
the wave equations for the potentials

4 .
O =4rp and OA; = TT(]/,-]- J (C.204)
are identical to those of the fields E; and B'. This particular form of an inhomoge-
neous wave equation, where we always verified that the homogeneous differential
equation is solved by a plane wave, is referred to as the Helmholtz differential equa-

tion
O, t) = (92 — A) ¥(r, 1) = dmq(r, 1) (C.205)

where 1 could be either of the potentials ® and A;, and g the corresponding source,
ie. por yij]j. The Helmholtz differential equation is a hyperbolic linear partial
differential equation of second order with an inhomogeneity. As a linear differential
equation, a suitable solution strategy would be a Green-function, that depends both
on space and time coordinates:

OG(r—r',t —t') = 4wdp(r — r)op(t — t') (C.206)

As before, the Green-function is the formal solution for the potential at r and t to a
point-like source existing at +’ and t’, such that

Ouv(r, t) = 4nq(r,t) —  P(r,t) = jdV’ J-dt’ G(r—7,t,—t')q(r',t') (C.207)
in a convolution relation, which is consistent because of
OY(r, t) = J- dv’ j dt'OG(r -7/, t,—t')gq(r', ') =

4TcJ av’ Jdt’éD(r - 1)op(t —t)q(r',t') = 4mq(r,t) (C.208)

as a consequence of the shifting relation of the dp-function.

In Fourier-space, the Green-function is given by
G(w, k) = J‘dV Jdt G(r—1',t — t')exp(—iw(t — t')) exp(—ik;(r — ')))  (C.209)

with the inversion

1
(2m)*

Glr-r,t—t)= de Jd3k G(w, k) explin(t — 1)) exp(ik;(r — #')') (C.210)
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so that the application of the d’Alembert-operator gives
1 )
OG(r-r,t-t') = DW j dw dek G(w, k) exp(iw(t — t')) exp(iki(r — ')") =

_ ﬁ J- dw J-d3k [%2 - kz} G(w, k) exp(io(t — ') exp(ik;(r — ¥))), (C.211)

as d¢ acts on exp(iw(t — '), and @, on exp(ik;(r — r')’), yielding iw/c and ik, each
twice; and we abbreviate k? = y*'k,k;:

—1
W(r, 1) —F——— (k@)
O W/ —yiikik; (C.212)

qrt) —— 5 q(k, w)

On the other hand, this expression needs to be equal, according to eqn. (C.206), to
the Fourier-representation of the dp-distributions,

dp(t —t)op(r—1') = ﬁ j dw jd3k explio(t — t')) exp(ik;(r — ')')  (C.213)

with all frequencies appearing at equal amplitude. By comparing the latter two
expressions, one can extract the Fourier-transformed Green-function G(w, k) to be

c?

G((,O, k) = 47'((")2_7(61()2

(C.214)

But transforming back to configuration space reveals a problem: Formally, one writes
down

Glr—r,t—t)= 4%3 J dw J-d3k u)z—Ci?ck)z explio(t — t')) exp(iki(r — ')') (C.215)

where one encounters two singularities of the integrand at w = +ck when performing
the dw-integration, for every value of k, as indicated by Fig. 7. This issue is most
elegantly solved by the methods of complex integration.

For carrying out the dw-integration one can extend the function to complex
arguments and close the integration path along the real axis by a loop: In this way,
one deals with a closed loop integral over a holomorphic function, where the two
poles can be shifted inside the integration contour by adding +ie to them, which does
not change the final result. Then, the value of the integral is entirely fixed by the
values of the two residuals associated with the two poles:

2 . 4
de (Ck)fi_wz explie(t = ') — —c2 gﬁdw e"f}ffiw, (C.216)
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Figure 7: Function 1/(w?* — (ck)?) over the complex plane w = Re(w) + i Im(w), for ck = 1,
with color indicating phase and hue indicating the absolute value. The two singularities at
w = *ck are clearly visible.

where the denominator factorises (w? — (ck)?) = (w + ck)(w — ck), by virtue of the
binomial formula.

Let’s investigate the residues at the two poles at w, = w + ck and w_w — ck
separately: Computing the residues requires the limits

= 1i _ expuwlt = 1)) I(lw(tt/)) -_° i —t
Res, thk(w ck)( H@=ch) . exp(+ick(t —t')) (C.217)
and
Res_ = lim (w+ k)—e plalt =) _ = (~ick(t—t")) (C.218)
es_= lim (w+c ( R@—ck) ~ "% exp(-ic .

Cauchy’s 44 residue theorem now states that the value of the loop integral is equal to
the sum of the residues, up to a factor of 21,

9de EXZ?T—((Z;);’)) = 2mi(Res, + Res_) =

ZT“ (2—Ck exp(+ick(t — ') - 2—Ck exp(—ick(f - t’))) - % sin(ck(t— ') (C.219)

The remaining d°k-integration reads:

Glr—t,t—t)= 2Ln2 J d3k w explik;(r — 7')") (C.220)

and can be most sensibly carried out in spherical coordinates: d*k = k2dkdpd¢, with
azimuthal symmetry and p being the cosine of the angle between k and r —r’.
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Then,
+1
kdk sin(ck(t - t')) j dp exp(ipk |-r - 7')) (C.221)

-1

Glr-r,t-t)=

Ao
°—3

The dp-integral has an elementary solution in term of the sine, so we arrive at

_r/

Glr—t,t—t) = %J dk sin(ck(t — ') sin(k |r — #'|) (C.222)
0

The integral can be carried out by rewriting both sines as differences of complex
exponentials, multiplying out the expression and integrate. For convenience, we
abbreviate At =t — " and Ar = |r—1’|:

(o) +00
ZIdk sin(ckAt) sin(kAr) = Jdk sin(ckAr) sin(kAr) =
0 —00

22 j dk (exp (+ickAt) — exp (—ickAt)) x (exp (+ikAr) — exp (-ikAr)). (C.223)

Rearranging the terms leads to

+00
.= (21.)2 J dk exp(+ik[cAt + Ar]) + exp(—ik[cAt + Ar])—
i

exp(+ik[cAt — Ar]) — exp(—ik[cAt — Ar]), (C.224)

where one recognises the sum and difference of the two frequencies cAt and Ar. The
integrals are effectively the Fourier-representation of the dp-function,

+0o0

jdk exp(ikx) = 2mdp(x) (C.225)
so that one arrives at
4Tt _ .
.= wbD(CAt + Ar) — 41dp(cAt — Ar) (C.226)

as each term appears twice. By applying the scaling property of Dirac’s dp-function

Sp(ak) = ééD(k) (C.227)

one arrives at
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dm -rl\, 4, -r
..:——“bp(t—t’+u)+—nbn(t—t’—u) (C.228)
c Cc c c

where the factors ¢ and 7 cancel with the corresponding factors in eqn. (C.222).
Putting everything together yields as a final result for the Green-function

Ir—r'|

’ ’ 1 ’ ’ T—T/
Gi(r—r,t—t):m[élj(t—t— )—6D(t—t+|7c|)] (C.229)

retarded advanced

with the conventional Green-function of A as a prefactor, modified by dp-functions.
They take care of the fact that changes in the fields propagate at finite speed, such
that the source configuration at distance |r — #’| contributes to the potential at most at
a time |r — r’| /c later than t’, which necessitates that one of the terms is discarded as
being acausal: It would have the effect, that a source configuration at a time difference
|r — ¢’| /c in the future contributes to the fields. Finally, one arrives at the expression
for the retarded Green-function G_(r — 1/, t — t’),

1 ) _ /
G,(r—r’,t—t’):WbD(t—t'—lr C”), (C.230)

which serves for determining the potential {(r, t) from the source g(/, '),

q)(r,t):jdv’fdt’ ! 6D(t—t'—|r_cr/|)q(r',t’):

lr—7|
’ 1 ’ |1’—1”|
JdV |r—r’|q(r't . ) (C.231)

C.8 Liénard-Wiechert potentials

With the Green-functions for the d’Alembert-operator [J,

1 B — ’
Gi(rfr',tft'):mb]g(tft'i Ir C") (C.232)

it is possible to solve the wave equation

Oy(r, t) = 4mg(r, t) (C.233)

in a convolution relation,

Pyu(r, 1) = Jdt' JdV' Gu(r—7/,t=t)q(r,t") (C.234)

where changes to the source configuration g(r’, t’) (to be interpreted as the charge
distribution p(r, t) or the current density yij]i(r, t)) can only influence the fields
(or potentials @(r, t) and A;(r, t), even though this statement depends on the gauge
choice) after a time |r — 7’| /c has elapsed, and not instantaneously, due to the finite
propagation speed ¢ of excitations in the electromagnetic field.
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Substituting the A retarded Green-function G_ into the convolution relation for
the potentials for obtaining them from the source distribution one arrives at

P(r, t) = JdV' J-dt' G.(r—7,t-t)q(r, V)=

’ 1 S ’ |T—T,| VN ’ 1 ’ |1’—1',|
JdV |r—r’|jdt bD(t—t —f)q(r,t)_J‘dV |r_r,|q(r,t— .

(C.235)

because the Dirac-dp fixes ¢’ to the value t — |r — #’| /c. This expression applied to the
potentials

D(r, 1) = jdv' lr_lr,lp(r’,t— "‘C' ') (C.236)

and

1 ; [r—7|
A; = i [t - .
i(r, 1) J‘dV = r’ly”] (r Lt C ) (C.237)

is referred to as the 44 Liénard-Wiechert potentials, which provide a solution in the
case a time-varying source distribution, taking retardation, i.e. the finite speed of
propagation of the fields (or potentials in Lorenz gauge) into account. Clearly, in the
limit ¢ — oo the fields and potentials would change instantaneously. Already now
a causal structure becomes apparent, with a finite propagation speed at which the
fields react to changes in the source. Taking the derivatives B! = ei/kajAk and E; =
—9;®—d,,A; then leads to #4 Jefimenko’s equations, if one interchanges differentiation
d; and d,; with the dV’-integration for an expression for the fields for the case of time
varying sources.

C.9 Anatomy of partial differential equations

Differential equations are the natural language in which laws of Nature are formu-
lated: They set the rates of change of quantities into relation and depend crucially
on initial and boundary conditions. Many different categories are relevant in the
classification of differential equations:

* ordinary vs. partial:

In ordinary differential equations, only derivatives with respect to a single
variable or coordinate appear, whereas partial differential equations consist of
derivatives with respect to two or more variables.

* homogeneous vs. inhomogeneous:

If all terms depend on the field and its derivatives, the differential equation is
homogeneous, but if a term appears that does not depend on the field or its
derivatives, the equation is inhomogeneous.

¢ linear vs. nonlinear:

If all terms in a differential equation are proportional to the field or its deriva-
tives, the equation is linear, but if there are higher-order powers or nonlinear
functions of the field, then the differential equation is nonlinear.
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¢ derivative order:

The highest derivative that appears in the differential equation sets the deriva-
tive order.

Given these definitions, the damped harmonic oscillator equation for the amplitude
x(t) with external driving a(t)

%+ % + wix(t) = a(t) (C.238)

is an ordinary, inhomogeneous, linear differential equation of second order. The 4
Schrodinger equation

0, = —%AQ) + D(r) (C.239)

on the other hand is a partial, homogeneous and linear differential equation, but its
derivative order is likewise two.

C.9.1 Hyperbolic, parabolic and elliptical differential equations

We have already encountered two partial differential equations of second order, the
Laplace-equation N
AD = y”a,-ajq) =0 (C240)

as the field equation of electrostatics, and the wave equation

0P = 19,0, ® = (97, — A) P =0 (C.241)

of electrodynamics, here obtained in Lorenz-gauge. It suffices to consider the case of
homogeneous partial differential equations because any inhomogeneity +4mp could
be dealt with the Green-formalism. Comparing O® = 0 as a wave equation with
AD = 0 as a static field equation shows that the signs of the derivative operators
(+,— — —) and (+, +, +) matter a lot, as one obtains oscillatory solutions for the wave
equation, and (decreasing, at least in 3 dimensions or more) power-law solutions for
the Poisson-equation. Please note that the choice of gauge does not have any influence
at all on the derivative order (it is a statement involving only the first derivatives of
the fields), but that it can change the character between hyperbolical and elliptical.

The classification of differential equations borrows many ideas from curves, here
in particular from the theory of 44 conic sections. A quadratic form of two coordinates
x and y would be given by

' b/2
( ;( ) ( bjz c )( ; )= ax® + bxy + cy® = const. (C.242)
N
=D

Depending on the structure of eigenvalues, which decide on the sign of the deter-
minant of the (discriminant) matrix D, the quadratic form describes very different
curves: If b = 0 (for simplicity) and @ = ¢ = 1 > 0 one obtains x? + y? = const, which
can be rewritten in a parametric form by setting x = cos @ and y = sin ¢ such that
the quadratic form describes a circle as a consequence of cos? @ +sin? @ = 1, and in
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the peculiar case of a # c an ellipse. If 2 = 1 and ¢ = -1, the quadratic form becomes
x% — y% = const, i.e a hyperbola with the hyperbolic functions as parametric forms,
using cosh? ¢ — sinh? | = 1. More generally, the picture arises that det D > 0 for the
elliptical conic section and conversely, det D < 0 for the hyperbolic conic section.

Applying this idea to the classification of partial differential equations, we start
with a homogeneous second-order PDE for the field ¢ in two coordinates in full
generality,

9? 9? 9?
(% y) = 7 b(xy) + b(xry)mdxx,y) +c(x, V)a—yz¢(x,y) = A%, 9)0(x,9) (C.243)

and assemble the matrix D

{ almy) by
P={ 1oy cxy) (C-244)

The determinant of D then establishes, whether the PDE is elliptical, detD > 0,
parabolic, det D = 0 or hyperbolic, det D < 0. A visual impression is provided by
Fig. 8 which shows these curves, actually conic sections, for various choices of the
parameters.

Sticking to 2 dimensions, a PDE like the Poisson-equation

02 02
A= 5500 3) + 55w y) =0 (C.245)

would be elliptical, as the determinant of D would come out positive: 2 = ¢ = 1 and
b = 0: 4 elliptical differential equations have only unique solutions after boundary
conditions are specified. They can be of the Dirichlet-type, the Neumann-type or be
of mixed type. Please note that vacuum boundary conditions, where the fields and
their derivatives approach zero at infinity, are perfectly admissible. Typical solutions
are decreasing (for Poisson-like problems, at least in 3 dimensions or higher) with
increasing coordinates and parity invariant, as (x,y) — (—x,-v) does not change
anything.
On the other hand, a wave-equation exhibits a sign change,
2

Od(t, x) = e

(92
(1, x) - ﬁ(b(t, x)=0 (C.246)

witha =1, ¢ = -1 and b = 0 in these coordinates and would be “4 hyperbolic as
det D < 0. In this case, it is enough to specify initial conditions and the PDE evolves
them in a well-defined and unique way into the future. Specification of boundary
conditions as in the case of elliptical PDEs is unnecessary, and in contrast to elliptical
PDEs, hyperbolic PDEs show typically wavelike-solutions.

There is clearly the notion of a light-cone due to retardation, which persists even
when a change of coordinates is carried out: Switching to <4 light-cone coordinates
dy =9 + dy and 9, = di; — J, brings the wave equation into the form

0?

O¢(u,v) = m({)(u,v) =0 (C.247)
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this time with a = ¢ = 0 and b = 1, but the determinant det D < 0 nonetheless. It
is actually the case that the metric structure of spacetime, which we focus on in the
next chapter, with the Minkowski-metric is uniquely suited for hyperbolic PDEs: It is
even the fact. The Lorentzian spacetime is the only metric spacetime with naturally
hyperbolic evolution!

C.9.2 Wave-equation and its reductions

Central to electrodynamic theory was the wave-equation
Od(r, t) = 4nq(r,t) with O=1"d,0,=0%-A and A=y70;0; (C.248)
as a linear, inhomogeneous, hyperbolical, partial differential equation of derivative

order two. Separating out oscillations in time with an ansatz ¢ o« exp(+iwt) leads to
the 4 Helmholtz-equation

AP+ k2 = —4mq(r, t) (C.249)

with k = w/c. Under the stronger assumption of a static solution, where neither ¢
nor g depended on t, one arrives at the Poisson-equation,

Ad = —4nq(r) (C.250)

further reducing to the Laplace-equation

Ap=0 (C.251)

for the vacuum case with vanishing sources. In all cases is the incorporation of an
inhomogeneity g(r, t) straightforwardly possible by means of the Green-formalism.
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Figure 8: Conic sections: circles (det(D) = 1), ellipses (det D > 0) and hyperbole(det(D) <
0), from top to bottom.





