
B potential theory

B.1 Potential theory

Computing the field configuration Ei(r) for a given distribution of electric charges
ρ(r) in the case of electrostatics requires the solution of the Poisson-equation through
a convolution integral

∆Φ(r) = −4πρ(r) → Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

(B.65)

with subsequently determining the gradient Ei(r) = −∂iΦ(r). The reason for taking
the detour over the potential Φ is that Poisson-problems of the form

∆Φ(r) = −4πρ(r) (B.66)

are scalar and very well understood, with a plethora of solution methods. They map
a single scalar source ρ onto a scalar field Φ, and from this perspective it is clear that
the components of Ei = −∂iΦ can not be independent from each other, as they have to
have a vanishing rotation, ϵijk∂jEk = 0 in the static case. Please note that the inverse
operation, i.e. determining the charge density ρ at a given position from the potential
is straightforward: It suffices to compute the divergence of the gradient of the electric
potential, ∆Φ = ϵij∂i∂jΦ to obtain ρ up to a factor of −4π.

Essentially, one needs to worry about three issues: (i) the inversion of the differen-
tial operator ∆ for isolating Φ, which is achieved with the Green-function method,
(ii) dealing with a possibly complicated geometry of the charge distribution ρ, and
(iii) including boundary conditions typical for elliptical partial differential equations
such as the Poisson-equation. The second issue is less severe and almost automatically
taken care of if the first and third issue are solved: As the Poisson-equation is linear,
the potential of an entire charge distribution should result from the superposition of
the potentials generated by each infinitesimal element of charge.

B.2 Systematic construction of Green-functions

Formally, the solution to the Poisson-equation can be thought of as applying an
inverse operator ∆−1 for isolating Φ from the relation ∆Φ = −4πρ: The well-known
convolution integral

Φ =
∫
V

dV′
ρ(r′)
|r − r′ |

(B.67)

provides a solution to the Poisson-equation and therefore, consistency requires

Φ = ∆−1∆Φ = −4π∆−1ρ. (B.68)

In this sense, the convolution∫
V

dV′
1

|r − r′ |
. . . is an inverse operation to ∆ [. . .] , (B.69)
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b. potential theory

perfectly encapsulated in the relation

∆
1

|r − r′ |
= −4πδD(r − r′). (B.70)

In this context, the integration kernel 1/ |r − r′ | is called the Green-function of the dif-
ferential operator ∆ (in three dimensions), and corresponds to the potential of a unit
point charge. Although it is bad style (in my opinion), the notation ∆−1 can be used for
denoting the convolution eqn. (B.69), and one formally solves the Poisson-equation
by application of the ∆−1-operator, Φ = ∆−1∆Φ = −4π ∆−1ρ, through convolution.

Up to this point, the approach was very intuitive: The Gauß-law suggests that
the electrostatic field around a point charge should be ∝ 1/r2 and conservative, such
that a potential exists. The potential has to have a scaling ∝ 1/r for its gradient to
describe the electric field. But there should be a general way of constructing the
Green-function ∆−1 for any differential operator ∆. For that purpose, one introduces
the k Fourier-transform of the potential

Φ(k) =
∫
V

dV Φ(r) exp(−iki r
i) ↔ Φ(r) =

∫
V

d3k

(2π)3 Φ(k) exp(+iki r
i) (B.71)

as well as of the charge density

ρ(k) =
∫
V

dV ρ(r) exp(−iki r
i) ↔ ρ(r) =

∫
V

d3k

(2π)3 ρ(k) exp(+iki r
i) (B.72)

Then, the Poisson-equation becomes

∆Φ(r) = ∆

∫
V

d3k

(2π)3 Φ(k) exp(+iki r
i) =

∫
V

d3k

(2π)3 Φ(k)∆ exp(+iki r
i) =

∫
V

d3k

(2π)3 Φ(k)(−γabkakb) exp(+iki r
i) = −4π

∫
V

d3k

(2π)3 ρ(k) exp(+iki r
i) = −4πρ(r)

(B.73)

as ∆ = γab∂a∂b acts on the plane wave exp(+iki r i) twice and generates a pre-factor
−γabkakb = −k2, for an isotropic medium for simplicity. Comparing the two Fourier-
transforms suggests that

∆Φ(r) = −4πρ(r) → k2Φ(k) = 4πρ(k), solved by Φ(k) =
4π
k2 ρ(k) (B.74)

Most interestingly, the (partial) differential equation has become a straightforward
algebraic equation, which is readily solvable. Clearly, one can isolate Φ through
division by −k2 in Fourier-space, as illustrated by the diagram:
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b.2. systematic construction of green-functions
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Figure 2: Green-functions G(r) of the Laplace-operator ∆ in different dimensions n.
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(B.75)

which suggests that Φ = F −1
(
4π/k2 F (ρ)

)
, as the complication of solving the Poisson-

equation is replaced by finding the Fourier-transform and its inverse. There are even
performance advantages of taking the detour through Fourier-space, as there are very
powerful and efficient k Fourier-transform algorithms.

In fact, multiplications in Fourier-space are convolutions in real space, which
implies for our case that the product between the Fourier-transformed Green-function
4π/k2 and the Fourier-transformed charge distribution ρ(k) = F (ρ) yields the Fourier-
transformed potential Φ(k) in this detour. At the same time, the Fourier-transform of
4π/k2 must be equal to 1/r, which we already know to be the Green-function for ∆ in
3 dimensions.

Let’s repeat this construction for the Laplace-operator and derive an expression
for the Green-function which is generalisable beyond n = 3 dimensions: In general,
the Green-function G(r− r′) is defined as the potential for a unit point charge element,
represented by a Dirac-δD, so the Poisson-equation needs to be fulfilled:

∆G(r − r′) = −4πδD(r − r′) (B.76)

Both the Green-function as well as the Dirac-δD have a Fourier representation:

G(r− r′) =
∫

d3k

(2π)3 G(k) exp(iki(r− r′)i) and δD(r− r′) =
∫

d3k

(2π)3 exp(iki(r− r′)i),

(B.77)
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b. potential theory

where δD has a constant amplitude in Fourier-space. Substituting into the Poisson-
equation yields

∆G(r− r′) = ∆

∫
d3k

(2π)3 G(k) exp(iki(r− r′)i) =
∫

d3k

(2π)3 (−k2)G(k) exp(iki(r− r′)i) =

− 4π
∫

d3k

(2π)3 exp(iki(r − r′)i) = −4πδD(r − r′) (B.78)

such that
G(k) =

4π
k2 (B.79)

because each differentiation ∂i generates a prefactor of iki . While the proportionality
∝ 1/k2 is valid in any number of dimensions, transforming back according to

G(r − r′) =
∫

dnk
(2π)n

G(k) exp(iki(r − r′)i) (B.80)

leads to different results due to volume element dnk ∝ kn−1dk depending on dimen-
sionality. In addition, 4π is just the full k solid angle in three dimensions, and would
need to be changed if the dimensionality is different.

B.3 Green-theorems

For showing the uniqueness of solutions to potential problems and for incorporating
boundary conditions one needs the two Green-theorems, which are readily derived
as particular cases of the Gauß-theorem. Defining

Ai(r
′) = φ(r′)∂′iψ(r′) with two scalar fields φ, ψ (B.81)

that all depend on the primed coordinate for convenience in the derivations later on,
gives

γij∂′iAj = γij∂′i
(
φ∂′jψ

)
= γij∂′iφ∂′jψ + φ∆′ψ (B.82)

due to the Leibnitz-rule, and by writing γij∂′i∂
′
j = ∆′ . Applying the Gauss-theorem

yields the first Green-theorem

∫
V

dV′ γij∂′iAj =
∫
V

dV′ γij∂′i
(
φ∂′jψ

)
=

∫
V

dV′
(
γij∂′iφ∂′jψ + φ∆′ψ

)
=

∫
∂V

dS′i γ
ijAj =

∫
∂V

dS′i γ
ij
(
φ∂′jψ

)
(B.83)

The right side of the first Green-theorem,∫
V

dV′ γij∂′i
(
φ∂′jψ

)
=

∫
∂V

dS′i γ
ij
(
φ∂′jψ

)
, (B.84)
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b.3. green-theorems

can be interpreted as the scalar product of φ∂′jψ with the surface normal dS′i of the
area element.

The second Green-theorem is obtained by interchanging the fields φ↔ ψ in the
first Green-theorem and by subtracting both expressions:∫

V

dV′
(
φγij∂′i∂

′
jψ − ψγ

ij∂′i∂
′
jφ

)
=

∫
∂V

dS′i γ
ij
(
φ∂′jψ − ψ∂

′
jφ

)
(B.85)

as the symmetric mixed term γij∂′iψ ∂′jφ = γij∂′iφ∂′jψ cancels.

The potential of an electrostatic problem is unique: For a given ρ there can be only
a single potential Φ, defined up to an at most additive constant, which can be proved
by contradiction. If there were two solutions

∆Φ1 = −4πρ as well as ∆Φ2 = −4πρ → ∆ (Φ1 − Φ2) = ∆δ = 0 (B.86)

their difference δ = Φ1 − Φ2 would fulfil the Laplace-equation ∆δ = 0, as shown by
subtraction. Substituting δ into the first Green-theorem gives∫

V

dV′
[
δγij∂′i∂

′
jδ − γ

ij∂′iδ∂
′
jδ

]
=

∫
∂V

dS′i γ
ijδ∂′jδ = 0 (B.87)

The surface-integral vanishes if proper boundary conditions are chosen on ∂V:
Either, if Φ1 = Φ2 or δ = 0 on ∂V is set (Dirichlet) or if ∂′jΦ1 = ∂′jΦ2 or ∂′jδ = 0 on ∂V
(Neumann). With ∆′δ = 0 being zero because both Φ1 and Φ2 are solutions for the
same source one arrives at ∫

V

dV′ γijδ∂′jδ = 0 (B.88)

which implies that ∂ij∂′iδ∂
′
jδ = 0, as the integrand is positive definite and must

vanish over any specified volume. As a consequence, Φ2 = Φ1 + const at most, and
the constant must vanish for Dirichlet-conditions because of δ = 0 on ∂V.

The solution to the Poisson-equation did not yet incorporate boundary conditions
like specified values on surfaces or specified gradients. Setting

ψ(r′) ≡ 1
|r − r′ |

→ ∆′ψ(r′) = −4πδD(r − r′) (B.89)

as well as
φ(r′) ≡ Φ(r′) → ∆′φ(r′) = −4πρ(r′) (B.90)
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b. potential theory

suggests for the volume integrals

∫
V

dV′
(
φγij∂′i∂

′
jψ − ψγ

ij∂′i∂
′
jφ

)
=

∫
V

dV′
(
Φ(r′)(−4πδD(r − r′)) +

1
|r − r′ |

4πρ(r′)
)

=

− 4πΦ(r) + 4π
∫
V

dV′
ρ(r′)
|r − r′ |

(B.91)

and for the surface integrals∫
∂V

dS′iγ
ij
(
φ∂′iψ − ψ∂

′
jφ

)
=

∫
∂V

dS′iγ
ij

(
Φ(r′)∂′j

1
|r − r′ |

− 1
|r − r′ |

∂′jΦ(r′)
)

(B.92)

Assembling the entire expression gives the relation

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

+
1

4π

∫
∂V

dS′i γ
ij

(
1

|r − r′ |
∂′jΦ(r′) − Φ(r′)∂′j

1
|r − r′ |

)
(B.93)

with the volume integral reiterating the conventional way of computing Φ from ρ,
augmented by two additional contributions, one representing k Neumann-boundary
conditions with ∇Φ on ∂V and the second representing k Dirichlet-boundary condi-
tions with Φ on ∂V. If the boundary is at infinity, both 1/r ∇Φ and Φ∇1/r tend to zero
as 1/r3, so the first term is the only one to survive. Interestingly, the formula suggests
that there can be a nontrivial potential Φ even though ρ might be zero: Then, the
potential is determined by Φ and ∇Φ on the boundary. It might be a surprisingly sen-
sible question, if one can construct a charge distribution that replaces the boundary
conditions in an otherwise unconstrained potential problem, and the question can be
positively answered: Any potential Φ is linked to a distribution of sources ρ through
the Poisson-equation ∆Φ = −4πρ, so setting ρ = −∆Φ/(4π) would be consistent with a
potential fulfilling the boundary conditions, which is exactly the method of k mirror
charges.

B.4 Spherical multipole expansion

The Green-function 1/ |r − r′ | is the correct convolution kernel for computing the
potential Φ for any charge distribution ρ in fulfilment of the Poisson-equation
∆Φ = −4πρ. But there might be cases where an approximate computation of Φ
is sufficient, in particular because intuitively, any localised charge distribution should
generate a Coulomb-like spherically symmetric 1/r-potential at large distances, with
deviations only appearing at smaller distances: This is shown in Fig. 3, where one of
isopotential surfaces is given for a uniformly charged cube. With increasing distance
(and correspondingly, lower values for Φ), the surfaces become more and more spher-
ical, as expected from the Coulomb-potential of a point charge. The effect is more
pronounced in Fig. 4, where the isocontours of the potential of a charge distribution
with four equal charges in the corners of a tetrahedron is shown.
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b.4. spherical multipole expansion

In fact, expanding the Green-function leads to

1
|r − r′ |

=
1√

r2 − 2rr ′µ + r ′2
=

1
r

1√
1 − 2 r ′

r µ + r ′2

r2

(B.94)

where µ = cos θ is the cosine of the angle between r and r′ . If one assumes now that
the observation point r is far away from the charge distribution (and r′ points by
definition of the convolution relation to every charge element), then r ≫ r ′ and the
root can be expanded:

1
|r − r′ |

=
1
r

∞∑
ℓ=0

(
r ′

r

)ℓ
Pℓ(µ) (B.95)

where Pℓ(µ) are the Legendre-polynomials. They follow explicitly from the relation

1√
1 − 2µx + x2

=
∞∑
ℓ=0

Pℓ(µ)xℓ (B.96)

by ℓ-fold differentiation with respect to x = r ′/r ≪ 1 and successive setting of x = 0.
Explicitly, this would result in P0(µ) = 1, P1(µ) = µ and P2(µ) = (3µ2 − 1)/2.

Now, one can bridge between the Legendre-polynomals Pℓ(cos γ) and the spherical
harmonics Yℓm(θ,ϕ) with the addition theorem

Pℓ(cos γ) =
4π

2ℓ + 1

+ℓ∑
m=−ℓ

Yℓm(θ,ϕ)Y∗ℓm(θ′ ,ϕ′) (B.97)

with γ being the angle between (θ,ϕ) and (θ′ ,ϕ′). These spherical harmonics are
waves on the surface of the sphere

∆Yℓm(θ,ϕ) = −ℓ(ℓ+1)Yℓm(θ,ϕ), analogous to ∆ exp(±iki r
i) = −γabkakb exp(±iki r

i)
(B.98)

so that ℓ plays the role of a wave number, and its inverse reflects the wave length (in
radians) of the waves. The spherical harmonics (for details, see Sect. X.6) constitute
therefore a harmonic system and are naturally related to Fourier-transforms, and
generalise the idea of harmonic analysis to functions defined on the surface of a
sphere.

Replacing the Legendre-polynomials by spherical harmonics leads to

1
|r − r′ |

=
∞∑
ℓ=0

+ℓ∑
m=−ℓ

4π
2ℓ + 1

r ′ℓ

rℓ+1
Yℓm(θ,ϕ)Y∗ℓm(θ′ ,ϕ′) (B.99)

which can be substituted into the expression of the potential

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

=
∞∑
ℓ=0

+ℓ∑
m=−ℓ

4π
2ℓ + 1

1
rℓ+1

Yℓm(θ,ϕ) ×
∫
V

dV′ ρ(r′)r ′ℓY∗ℓm(θ′ ,ϕ′).

(B.100)
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b. potential theory

Figure 3: Isopotential surfaces of the potential sourced by eight equal charges, situated at
the corners of a cube, at decreasing distance
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b.4. spherical multipole expansion

Figure 4: Isopotential surfaces of the potential sourced by four equal charges, situated at
the corners of an tetrahedron, at decreasing distance
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b. potential theory

This formula is remarkable because it separates properties of the charge distribution
from the field that it would generate: Sorting the variables into primed and unprimed
leads to the definition of multipole moments qℓm

qℓm =
∫
V

dV′ ρ(r′)r ′ℓY∗ℓm(θ′ ,ϕ′). (B.101)

The multipole moments are a complete characterisation of the charge distribution
and contain information about the magnitude of the charge, the spatial size, the shape,
asphericity and orientation. Each of the multipoles is an independent contribution to
the potential Φ, whose influence decreases as 1/rℓ+1

Φ(r) =
∞∑
ℓ=0

+ℓ∑
m=−ℓ

4π
2ℓ + 1

1
rℓ+1

Yℓm(θ,ϕ)qℓm, (B.102)

which is amazingly practical, as higher-order multipoles generate contributions to
Φ which decay faster and faster with increasing distance. At large distances, only
the lowest order multipole can contribute, and it is sensible to expect that this
contribution should be a spherically symmetric potential determined by the total
charge. In fact, there is only m = 0 permissible for ℓ = 0, so that there is a single
coefficient q00,

q00 =
∫
V

dV′ r ′0︸︷︷︸
=1

ρ(r′) Y∗00(θ′ ,ϕ′)︸      ︷︷      ︸
= 1√

4π

=
q
√

4π
(B.103)

Therefore, the monopole q00 is the total charge of the system q, up to a factor of
1/
√

4π. At large distances, this term would dominate the multipole expansion and
generate a 1/r-like contribution to the potential Φ, in agreement with intuition that
the potential, viewed from a large distance of a somehow localised charge distribution,
should have this form.

The dipole ℓ = 1 allows the three choices m = −1, 0,+1, therefore, there are three
dipole moments

q1m =
∫
V

dV′ r ′ρ(r′)Y∗1m(θ′ ,ϕ′) (B.104)

whose fundamental functional form is that of ”charge × distance”, and carrying the
sequence further one defines 5 quadrupole moments q2m for m = −2ℓ,−ℓ, 0,+ℓ,+2ℓ

q2m =
∫
V

dV′ r ′2ρ(r′)Y∗2m(θ′ ,ϕ′) (B.105)

with a fundamental scaling ”charge × area”, and it is obvious how this would gen-
eralise to higher order multipoles such as octupoles and hexadecupoles. The idea is
always that the charge distribution is split up into coefficients qℓm that by construc-
tion look for smaller and smaller structures and that are sensitive to the spatial extent
(through the weighting with r ′ℓ) of the charge distribution, and to its asphericity and
orientation (through projection onto the spherical harmonics Yℓm(θ′ ,ϕ′)).
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b.5. cartesian multipole expansion

Formally, one needs the full set of multipole moments for writing down the
multipole expansion, but there is a hermiticity constraint just as in the case of the
Fourier-components of negative frequency for a real-valued function. Fundamentally,
one has

Y∗ℓm(θ,ϕ) = (−1)mYℓ,−m(θ,ϕ) (B.106)

which maps onto the relation

q∗ℓm =
∫
V

dV′ r ′ℓρ(r′)Yℓm(θ′ ,ϕ′) = (−1)m
∫
V

dV′ r ′ℓρ(r′)Y∗ℓ,−m(θ′ ,ϕ′) = (−1)mqℓ,−m

(B.107)

so that there are not 2ℓ + 1 but rather only ℓ + 1 independent multipole coefficients
for a real-valued charge distribution. With this realisation it is clear that the charged
cube in Fig. 3 can only exhibit a monopole and an octupole at lowest order. While the
monopole gives rise to a straightforward spherically symmetric Coulomb-potential,
the octupole contribution falls of very quickly ∝ 1/r4, so that it only matters very
close to the surface of the cube, and renders the isopotential surface non-spherical.

B.5 Cartesian multipole expansion

There is an alternative approach to multipole expansions in terms of Cartesian
coordinates, where the Green-function of a charge distribution localised around
the origin of the coordinate system is Taylor-expanded at r′ = 0 with respect to the
variable r′ , while r is kept fixed:

G(r, r′) ≃ G
∣∣∣∣∣
r′=0

+ ∂′iG
∣∣∣∣∣
r′=0

(x′)i +
1
2!
∂′i∂

′
jG

∣∣∣∣∣
r′=0

(x′)i(x′)j + · · · (B.108)

The necessary derivatives of G(r, r′) at r′ = 0 are easily computed to be

G
∣∣∣∣∣
r′=0

=
1
r
, ∂′iG

∣∣∣∣∣
r′=0

=
γiax

a

r3 , and ∂′i∂
′
jG

∣∣∣∣∣
r′=0

=
3γiaxaγjbxb − r2γij

r5 (B.109)

using the explicit form of the Green-function in Cartesian coordinates

G(r, r′) =
[
γab(r − r′)a(r − r′)b

]−1/2
. (B.110)

Here, we abbreviate r2 = γijx
ixj as the Euclidean norm of r. Then, the potential Φ is

given at r ≫ r ′ as

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

≃
∫
V

dV′ρ(r′)

1
r

+
γiax

a(x′)i

r3 +
3γiaxaγjbxb − r2γij

r5 (x′)i(x′)j + · · ·


(B.111)

27



b. potential theory

Applying the integration to each term in the series while interchanging summation
and integration gives

Φ(r) ≃ 1
r

∫
V

dV′ ρ(r′) +
xa

r3

∫
V

dV′ ρ(r′)γia(x′)i+

1
2!

3γiaxaγjbxb − r2γij

r5

∫
V

dV′ ρ(r′)(x′)i(x′)j (B.112)

where we can identify the Cartesian multipole moments: The total charge q in the
first term, the dipole moment qa in the second term, and the quadrupole moment in
the last term. They contribute to the potential Φ with increasing powers of 1/r, so
that their influence at large distance decreases with multipole order.

There might be an aesthetic issue, as 3γaixaγbjxb − r2γij is not mirrored in the
primed coordinate in the quadrupole term, likewise one might be irritated why there
seem to be six Cartesian multipole moments (There are 6 independent choices for i
and j in the tensor (x′)i(x′)j ) but only five in spherical coordinates (The index m can
assume the 5 different values −2, −1, 0, 1 and 2 for ℓ = 2). In order to remedy this
issue, one adds a zero in the expression for the quadrupole moment

3γaixaγjbxb − r2γij

r5

∫
V

dV′
(
ρ(r′) (x′)i(x′)j −r ′2

γij

3
+

becomes zero︷ ︸︸ ︷
r ′2
γij

3︸                    ︷︷                    ︸
=0

)
(B.113)

The last term in particular can be simplified, as in its contraction with the prefactor
one can write:

3γaixaγjbxb − r2γij

r5

∫
V

dV′ ρ(r′)r ′2
γij

3
= 0 (B.114)

because of γaiγbjγijxaxb = γabx
axb = r2 and because γijγij = δii = 3. Therefore, only

the combination of the first two terms remain, explicitly

3γaixaγbjxb − r2γij

r5

∫
V

dV′ ρ(r′)
(
3(x′)i(x′)j − r ′2γij

)
=

3xaxb − r2γab

r5

∫
V

dV′ ρ(r′)
(
3γai(x

′)aγbj (x
′)b − r ′2γab

)
(B.115)

establishing an identical structure in the quadrupole term. Summarising all terms
then yields the final result for the potential

Φ(r) =
q

r
+ qi

xi

r3 + qij
3xixj − r2γij

r5 (B.116)

with the monopole that shows the expected 1/r-behaviour, followed by the dipole
term with a fundamental scaling ∝ 1/r2 and an angular cosine-like behaviour en-
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b.5. cartesian multipole expansion
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Figure 5: Potential Φ of the tetrahedron as a function of distance r, in the representation
Φ × r1+ℓ, therefore, a flat section indicates a scaling Φ ∝ 1/r1+ℓ.

capsulated in the scalar product qixi . The quadrupolar term decreases ∝ 1/r3 with
distance. The moments read

q =
∫
V

dV′ ρ(r′), qi =
∫
V

dV′ ρ(r′) γai(x
′)a, (B.117)

and

qij =
∫
V

dV′ ρ(r′)
(
γai(x

′)aγbj (x
′)b − r ′2

3
γij

)
(B.118)

The typical scaling of the potential Φ proportional to 1/r for the monopole, 1/r2

for the dipole and 1/r3 for the quadrupole is illustrated in Fig. 5 for the example
of the tetrahedron. Any flat section of Φ × r1+ℓ as a function of r indicates exactly
the behaviour Φ ∝ 1/r1+ℓ. If there are four positive charges in the corners of the
tetrahedron, one sees a dominating Coulomb-potential at large distances, while at
shorter distances there is a dipole and a quadrupole contribution. If there are two
positive and two negative charges, however, the total charge is zero and there can not
be a Coulomb-type contribution to the potential: In fact there is no section with a flat
Φ × r as a function of r in this case. There is, however, a dominating dipole potential
for large radii, and a quadrupolar contribution at small distances.

And additionally, this new definition of the quadrupole moment is traceless,

qii = γijqij =
∫
V

dV′ ρ(r)
(
3γai(x

′)aγjb(x′)b − r ′2γij
)
γij = 0 (B.119)

such that the Cartesian quadrupole moment qij , as a symmetric, traceless tensor in 3
dimensions has 5 instead of 6 degrees of freedom, commensurate with qℓm for ℓ = 2
in spherical coordinates.
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b. potential theory

B.6 Potential energy of a charge distribution in a potential

The same result, perhaps with a bit more physical insight, can be reached by consid-
ering the interaction between a charge distribution ρ and an external field Φ. The
associated energy W is given by

Wel =
1
2

∫
V

dV ρ(r)Φ(r) (B.120)

where ρ acts now as a test charge distribution situated at r = 0 in a potential Φ that
gets Taylor-expanded around r = 0:

Φ(r) = Φ(r)
∣∣∣∣∣
r=0

+ ∂iΦ

∣∣∣∣∣
r=0

xi +
1
2!
∂i∂jΦ

∣∣∣∣∣
r=0

xixj (B.121)

But for keeping the distinction between test charge and external potential we need
to make sure that Φ is not actually sourced by ρ itself: The Poisson-equation would
stipulate that

∆Φ = −4πρ (B.122)

and because the Laplace-operator acting on Φ is identical to the trace of the tensor of
second derivatives of Φ, γij∂i∂jΦ = ∆Φ, it should not be contained in W. Therefore,
one defines a traceless tensor

∂i∂jΦ → ∂i∂jΦ −
∆Φ

3
γij (B.123)

by subtracting out the trace ∆Φ, such that the potential becomes

Φ(r) = Φ(r)
∣∣∣∣∣
r=0

+ ∂iΦ

∣∣∣∣∣
r=0

xi +
1
6
∂i∂jΦ

∣∣∣∣∣
r=0

(
3xixj − r2γij

)
. (B.124)

Inclusion of the r2γij-term does not make any difference, because

xixj
(
∂i∂jΦ −

∆Φ

3
γij

)
= xixj∂i∂jΦ −

∆Φ

3
γijx

ixj︸  ︷︷  ︸
=r2

= xixj∂i∂jΦ as ∆Φ = 0.

(B.125)

The definitions of total charge q, dipole moment qi and quadrupole moment qij are
then identical to those discussed before, and the final expression of the interaction
energy would be

Wel =
1
2

∫
V

dV ρ(r)Φ(r) ≃ 1
2
qΦ(r) +

1
2
qi∂iΦ +

1
12

qij∂i∂jΦ (B.126)

with the interpretation that the interaction energy of nth order multipoles of the
charge distribution is sensitive to the nth derivatives of Φ, and that they depend on
the magnitude and relative orientation of the eigensystems of the tensors. This point
of view is genuinely new, because the energy W can be changed by reorienting the
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b.7. magnetic vector potential and gauging

charge distribution, in addition to displacing it. Additionally, the nth derivatives of
the potential become measurable through their interaction energy with a multipole
of order n, separate by order.

B.7 Magnetic vector potential and gauging

Magnetostatic problems, i.e. the computation of the magnetic fields for a given current
density ȷi with no contribution from time-varying electric fields require the solution
of the fourth Maxwell-equation

ϵijk∂kHk =
4π
c
ȷi , (B.127)

where this solution needs to fulfill the second Maxwell-equation ∂iBi = 0 as a
constraint. This constraint would be automatically fulfilled if Bi is derived from a
magnetic potential Ai according to Bi = ϵijk∂jAk , because ∂iBi = ϵijk∂i∂jAk = 0,
again through contraction of an antisymmetric with a symmetric object. Introducing
the constitutive relation Hi = µijBj brings the fourth Maxwell-equation into the form

ϵijk∂jHk = µklϵ
ijk∂jB

l = µklϵ
ijkϵlmn∂j∂mAn (B.128)

which, for isotropic media with µkl = γkl /µ leads to the Grassmann-relation . In an anisotropic medium, the
Grassmann-algebra would read
µkl ϵ

ijkϵlmn = µimµjn − µinµjm
=

1
µ

(
γimγjn − γinγjm

)
∂j∂mAn =

1
µ

(
γim∂m(γjn∂jAn) − γin(γjm∂j∂mAn)

)
. (B.129)

There exists the possibility to set the divergence γjn∂jAn = 0, called the Coulomb-
gauge, showing that in fact a Poisson-type equation relates Ai and ȷi : . The Coulomb-gauge in a

medium would be µjn∂jAn = 0...

∆Ai = −
4πµ
c
γij ȷ

j , (B.130)

after multiplication of the equation with the inverse metric. Perhaps this is the right . ...and the field equation ∆Ai =
−4πµij ȷj /c with ∆ = µij∂i∂jmoment to emphasise that the ”vector” potential Ai is in fact a linear form, and

that the metric γij is needed to convert the vector ȷi to a linear form, to make the
Poisson-equation notationally consistent.

To illustrate the power of a gauge-assumption one could write eqn. (B.129) in
matrix-vector notation, for the case of an isotropic medium and brushing slightly
over the differences between vectors and linear forms, by using Ai = γijAj as a vector,

∆ 0 0
0 ∆ 0
0 0 ∆

 ·


Ax

Ay

Az

 −

∂x∂x ∂x∂y ∂x∂z

∂y∂x ∂y∂y ∂y∂z

∂z∂x ∂z∂y ∂z∂z

 ·


Ax

Ay

Az

 = −
4πµ
c


ȷx
ȷy
ȷz

 . (B.131)

While the first term, where Ai gets multiplied with a diagonal matrix that contains
the Laplace-operator ∆, defines a one-to-one mapping of each component of Ai to
its corresponding source ȷi , the association is broken by the second term, which
is non-diagonal and supplies all kinds of mixed derivatives. But the assumption
Coulomb-gauge makes these contributions vanish.

The assumption of Coulomb-gauge γjn∂jAn = 0 provides an astounding sim-
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b. potential theory

plifaction, as each entry of Ai is sourced from each corresponding entry of ȷi in
three independent Poisson-equations. Without Coulomb-gauge, the term ∂i(γjn∂jAn)
would, as the gradient in the i-direction of the divergence of A, couple all three
equations. The interplay between the magnetic potential Ai (in Coulomb-gauge), the
magnetic fields Hi , Bi and the source ȷi is summarised by this diagram,

An

Bl Hk

ȷi

ϵlmn∂m

∆γin

µkl

µlk

ϵijk∂j

∫
dV′ 1
|r−r′ | γni ...

(B.132)

The physically measurable magnetic field Bi does not change under k gauge
transforms

Ai → Ai + ∂iχ (B.133)

because

Bi = ϵijk∂jAk → ϵijk∂j (Ak + ∂kχ) = ϵijk∂jAk + ϵijk∂j∂kχ︸     ︷︷     ︸
=0

= Bi (B.134)

using that the gradient of a scalar field is always curl-free, ϵijk∂j∂k vanishes as a
contraction between an antisymmetric and symmetric tensor. This implies that the
potential is only determined up to the gradient ∂iχ of a scalar field χ (the gauge field).
A particularly constructed field ∂iχ can always be added onto Ai for computational
convenience, without ever changing the actually measurable field Bi . This conve-
nience might be the assumption of a k gauge condition, for instance γij∂iAj = 0
(called Coulomb-gauge), which is necessary to have Poisson-type potential problems
in magnetostatics.

32

https://en.wikipedia.org/wiki/Gauge_theory
https://en.wikipedia.org/wiki/Gauge_theory
https://en.wikipedia.org/wiki/Gauge_fixing#Coulomb_gauge


b.7. magnetic vector potential and gauging

The Coulomb-gauge condition transforms as

γij∂iAj = 0→ γij∂i(Aj + ∂jχ) = γij∂iAj + γij∂i∂j︸  ︷︷  ︸
=∆

χ = 0. (B.135)

If the vector potential Ai should be free of any divergence, one can construct χ as a
solution to the Poisson-type equation

∆χ = −γij∂iAj , (B.136)

effectively sourcing the gauge function χwith the yet nonzero divergence of the vector
potential. It has, due to the Green-theorems, always a unique solution. Applying the
gauge-transformation with this gauge field χ effectively cleans up the vector potential
and makes it perfectly divergence-free. We can always assume that this has already
been taken care of, just by writing γij∂iAj = 0.
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