
A maxwell-equations

A.1 Fields and test charges

Fields are a very novel concept in physics as there can be systems without direct
physical contact of their constituent parts which are nevertheless influenced at a
distance, as Newton formulated it. As we do not have any direct sensory perception
of fields, they are indirectly observed by the force they are capable of exerting on
charged k test particles. If a test charge q is exposed to the electric field Ei and the
magnetic field Bi it experiences a change ṗi in its momentum pi :

ṗi = q
(
Ei +

1
c
ϵijkυ

jBk
)
. (A.1)

This k Lorentz-force depends on the magnitude and direction of the velocity υi /c
in units of a velocity scale c. It is possible to measure all components of Ei and Bi

separately as one has the freedom of choosing the state of motion of the test charge.
Clearly, as the velocity υi depends on the choice of frame, the measurement of Ei and
Bi has to be frame-dependent as well. Therefore, with the concept of a test charge one
links the dynamical and kinematical properties of fields to the mechanics of the test
particles in a consistent way. Historically this was very important, as electrodynamics
showed that Galilean mechanics for the motion of test particles is inconsistent with
the fields, and needed to be replaced by Lorentzian, relativistic mechanics. It is
important to realise that the two fields measured by a test charge are a linear form Ei

for the electric component and a vector Bi for the magnetic component.

A.2 Physical properties of the electric charge

Electrodynamics is a k continuum theory: One can imagine the electric charge
density ρ to be a fluid so that arbitrarily small volumes contain arbitrarily small
amounts of k electric charge. There is no idea of charge carriers such as electrons or
protons, and no concept of a quantisation of charge into multiples of an k elementary
charge. Charge is conserved, meaning that the fluid can move and change the charge
density, but there is no spontaneous creation or annihilation of electric charge. This
statement is necessarily an empirical property of charge-carrying matter.

If the local charge density increases, it must be necessarily due to converging
current densities, as expressed in a k continuity equation:

∂tρ + ∂i ȷ
i = 0 (A.2)

implying that the charge q contained within a volume V only changes over time if
there are electric currents I transporting the charge through the surface ∂V:

d
dt

∫
V

dV ρ =
d
dt

q = −
∫
V

dV ∂i ȷ
i = −

∫
∂V

dSi ȷ
i = −I (A.3)

as a consequence of the k Gauß-theorem. The electric charge q appears as the volume
integral over the charge density ρ, in the same way as the electric current I is the
surface integral over the current density ȷi , projected along the surface normal dSi .
Specifically, if the currents ȷi point outwards and are parallel to the surface normals
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a. maxwell-equations

dSi of ∂V, the enclosed charge q will decrease, which provides a good motivation for
the minus-sign.

A.3 Maxwell-equations

The k Maxwell-equations are the axiomatic foundation of classical electrodynamics
and they define the relation between the distribution of electric charges and currents
on one side and the electric and magnetic fields on the other, as well as the dynam-
ical evolution of the fields themselves. They are a set of linear hyperbolic partial
differential equations, formulated in terms of first derivatives ∂i and ∂ct of the fields
with respect to the coordinates xi and time t. Temporal derivatives always appear
multiplied with a constant c, that will turn out to be the speed at which excitations in
the electromagnetic field propagate.

Maxwell’s equations involve the two physically measurable fields Ei and Bi as well
as two auxiliary fields Di and Hi . These auxiliary fields are sourced by the electric
charge density ρ and the electric current density ȷi , and can only be related to Ei

and Bi with an assumption on the physical properties of the medium in which the
charges reside. At the time, 4 Maxwell isolated his four equations from empirical
observation of magnetic and electric phenomena, but they are much more than that:
They open a path to a geometric description of Nature in terms of relativistic field
theories.

A.3.1 Gauß-law for electric fields

The electric field Di emanates from the electric charge density ρ, meaning that wher-
ever there are electric charges, they act as k sources of the electric field. The field
lines diverge from a positive charge and converge on a negative charge. Mathemati-
cally speaking, the divergence ∂iDi of the electric field is proportional to the charge
density ρ with the prefactor 4π in the k Gauß-system of units:

∂iD
i = 4πρ (A.4)

With the help of the Gauß-theorem the Maxwell-equation can be reformulated in
integral form, ∫

V

dV ∂iD
i =

∫
∂V

dSi Di = ψ = 4π
∫
V

dV ρ = 4πq (A.5)

implying that there is a flux ψ of electric field lines through the surface ∂V of any
volume V which contains a charge q.

An electric field Di should be spherically symmetric around a point charge of
magnitude q, certainly in the case of an isotropic medium. This means that the
electric field lines should be perpendicular to the surface ∂V of a sphere of volume V
containing the charge at the centre, and the electric field should be of equal strength
everywhere on the surface. Then,∫

∂V

dSi Di = 4π r2 D = 4πq → D =
q

r2 (A.6)

with the familiar expression for the Coulomb-field D ∝ 1/r2 of a point charge.
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a.3. maxwell-equations

In summary, electric field lines start necessarily on a positive charge and end at a
negative charge, unless they form a closed loop.

A.3.2 Non-existence of magnetic charges

The magnetic field Bi behaves differently: There are no corresponding k magnetic
charges from which the magnetic field lines would emanate, so the divergence of the
magnetic field is necessarily zero,

∂iB
i = 0. (A.7)

In integral form the relation would read∫
V

dV ∂iB
i =

∫
∂V

dSi Bi = φ = 0 (A.8)

showing clearly with the Gauß-theorem that the flux φ of magnetic field lines across
the surface ∂V of a volume V is zero, as it can not contain any magnetic charges.

A.3.3 Faraday-law and induction

Electric field lines can be closed loops, too, and this is necessarily related to time-
varying magnetic fields, as formulated by the k Faraday-law

ϵijk∂jEk = −∂ctB
i (A.9)

with the most famous minus sign of physics: the k Lenz-rule. It is a reflection of the
hyperbolicity of the Maxwell-equations and despite many claims otherwise, it has
little to do with energy conservation. Here, the speed of light c makes sure that the
derivative ∂i is dimensionally consistent to the derivative ∂ct , because

∂ct =
1
c
∂t (A.10)

has units of inverse length just as the spatial derivatives: Please keep in mind, that
in the Gauß-system of units, all fields Ei , Di , Hi and Bi have identical units. The
corresponding integral form of the Faraday-law is derived by application of the
Stokes-theorem,∫

S

dSi ϵ
ijk∂jEk = U =

∫
∂S

dr i Ei = − d
d(ct)

∫
S

dSi Bi = −
dφ

d(ct)
(A.11)

where one can identify the induced voltage U on the boundary ∂S of the surface S
as being proportional to the rate of change of the magnetic flux φ with respect to
ct. Integrating the rotation ϵijk∂jEk along an integration contour would yield the
displacement work necessary to move a charge along this contour, which, normalised
by the magnitude of the charge, is exactly the voltage.
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a. maxwell-equations

A.3.4 Ampère-law

Magnetic fields are surely divergence-free, but can they be loops? k Ampère’s law
answers this clearly in a positive way, as

ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi (A.12)

implying that the rotation ϵijk∂jHk is related to two phenomena: There can be a
non-vanishing electric current density ȷi with magnetic field lines looping around it,
or the electric field is time-varying. Again, the Stokes-theorem allows to reformulate
the Ampère-law in integral form,∫

S

dSi ϵ
ijk∂jHk =

∫
∂S

dr i Hi = +
d

d(ct)

∫
S

dSi Di +
4π
c

∫
S

dSi ȷ
i = +

dψ
d(ct)

+
4π
c

I (A.13)

such that magnetic field collected up on a closed loop ∂S becomes equal to the change
of the electric flux ψ through the surface S and to the electric current I through that
surface. In a static, cylindrically symmetric situation of a straight wire one would
evaluate the integral as

∫
dr iHi = 2πr H on a circle with radius r, such that the

magnetic field decreases H ∝ 1/r with increasing distance from the wire.

A.4 Linear media for electrodynamics

Maxwell’s equations allow to compute the electric and magnetic fields for a given
distribution of the charge density ρ and the current density ȷi , and to localise the
source distribution ρ and ȷi for a given field configuration. In the general case, these
relationships are defined for two auxiliary fields, an electric vector field Di and a
magnetic linear form Hi . These two excitations, Di and Hi , are related to the sources
ρ and ȷi in purely geometric relations. For converting them into the measurable fields
Ei and Bi , one needs to incorporate the properties of matter, in which the charges
and currents as sources of the electric and the magnetic field are embedded..

vector form
vacuum Bi Ei
medium Di Hi Restricting the discussion to linear media one assumes a proportionality

Di = ϵijEj ↔ Ei = ϵijD
j (A.14)

with a permissivity (or dielectric) tensor ϵij , and in analogy a likewise linear relation

Bi = µijHi ↔ Hi = µijB
j (A.15)

with a permeability tensor µij . These two relationships between the electric field pair
Ei and Di on one side and the magnetic field pair Bi and Hi on the other are referred
to as k constitutive relations. The permissivity tensor ϵij and the permeability tensor
µij are both symmetric, positive definite tensors. As such, they act as a metric with the
purpose of converting the vectors in linear forms and vice versa. This is made possible
by the fact that ϵij is inverse to ϵij , with ϵijϵjk = δik . Both tensors have a principal axis
frame in which one observes that the fields become elementwise proportional to each
other, scaled by the eigenvalues of ϵij or µij .

If all eigenvalues are equal, the medium is isotropic and the tensors become
proportional to the k Euclidean metric γij , with an admittedly weird convention
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a.5. conservation of electric charge

ϵij =
1
ϵ
γij and µij =

1
µ
γij , (A.16)

with the dielectric constant ϵ and the isotropic permeability µ. Vacuum is effectively
described to be a medium with ϵ = 1 = µ. Because the Euclidean metric γij mediates
between the pairs Ei , Di and Hi , Bi , their distinctiveness is lost in a vacuum situation
without a medium. Positive definiteness makes sure that the observable electric and
magnetic fields Bi and Ei are pointing in the same direction as the excitations Hi and
Di : The fields are attenuated in a medium but never reversed.

There are even k bianisotropic media where dielectric effects are caused by
magnetic fields and effects of permeability by electric fields:

Di = ϵijEj + ξijHj as well as Bi = µijHj + ζijEj , (A.17)

with two additional tensors ξij and ζij in the constitutive relations. The connection
between fields and the microscopic structure of matter can be extremely complicated,
and only in simplified cases one will have a linear, instantaneous and isotropic
response of the fields to the presence of matter. It is quite apparent that there is a
time scale involved in the reaction of the fields Ei and Bi to the excitations Hi and Di .
Water, for instance, has a very high dielectric constant ϵ ≃ 80 for static electric fields
as a consequence of the polarity of the water molecules, but the dielectric constant
for the rapidly changing electric field in visible light has decreased to a value of about
ϵ ≃ 1.5.

In contrast to the inhomogeneous equations that get modified in the presence of
matter, the homogeneous relations ∂iBi = 0 and ϵijk∂jEk = −∂ctBi are unchanged
in matter. One can almost feel why this should be the case: The inhomogeneous
equations predict, due to their shape, strong fields close to the sources, i.e. D ∝ 1/r2

and H ∝ 1/r which are diverging in the limit r → 0 and which should evoke a
strong response from the medium altering the fields. While this argument sounds
very convincing, it neglects the fact that most materials follow linear relationships
between the fields and the excitations, or equivalently, have constant dielectric and
permeability tensors, and effectively do not distinguish between weak and strong
fields: In fact, the situation is very puzzling to interpret as there are linear responses
evoked by arbitrarily weak fields around sources, but not for induced fields!

For the purpose of this script we will always assume homogeneous media, such
that the material properties do not change as a function of position and all derivatives
∂kϵ

ij and ∂kµ
ij are zero. But this is a choice of convenience, as the Maxwell-equations

would be prepared to deal with inhomogeneous media, at the expense of notational
clarity: The Gauß-law ∂iDi = 4πρ, for instance, becomes ∂i(ϵijEj ) = ∂iϵ

ij · Ej +
ϵij∂iEj = 4πρ, with a new term ∂iϵ

ij reflecting the change of the dielectric tensor
with coordinate.

A.5 Conservation of electric charge

With the link between the fields and the distribution of charges (and currents) es-
tablished by the Maxwell-equations it should be clear that the fields are not free
and that they should reflect any dynamical laws to which the charges are subjected,
for instance charge conservation: It will never be the case that the electrical field
lines suddenly converge onto a single point in space and form a non-vanishing di-
vergence, without there being an actual charge. Therefore, it should be possible to
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a. maxwell-equations

derive a charge conservation law from the field configuration! In fact, computing the
divergence of the rotation ϵijk∂jHk as defined by the Ampère-law,

ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi → ∂iϵ

ijk∂jHk = ϵijk∂i∂jHk = ∂i∂ctD
i +

4π
c
∂i ȷ

i = 0

(A.18)

which is always zero: The contraction of ϵijk which is antisymmetric in the index
pair (ij) with the double derivative ∂i∂j , which is symmetric in the index pair is
necessarily zero. The exchangibility of the partial derivatives ∂i∂j = ∂j∂i and hence
the symmetry of the expression ∂i∂j is made sure by k Schwarz’s theorem.

This consideration leads to

∂ct∂iD
i +

4π
c
∂i ȷ

i = 0, (A.19)

and by substituting the Gauß-law ∂iDi = 4πρ to

4π∂ctρ +
4π
c
∂i ȷ

i = 0, (A.20)

where ∂ct interchanges with the divergence, as both are partial derivatives. In the
last relation one recovers the conservation law in the shape of a continuity equation

∂tρ + ∂i ȷ
i = 0 (A.21)

In a very real sense, electrodynamics is the theory of electric and magnetic fields for
conserved charges; if, by any mechanism, there would be spontaneous creation or
decay of charges, or even k teleportation of charges, the Maxwell-equations would
need to be amended.

A.6 Electromagnetic duality

In vacuum, where the charge density ρ and the current density ȷi are zero, the
Maxwell-equations assume a very symmetric shape as all equations are purely homo-
geneous. The divergences read

∂iD
i = ϵij∂iEj = ϵγij∂iEj = 0 as well as ∂iB

i = µij∂iHj = µγij∂iHj = 0, (A.22)

and the rotations become:

ϵijk∂jEk = −∂ctB
i = −µij∂ctHj = −1

µ
γij∂ctHj (A.23)

and
ϵijk∂jHk = +∂ctD

i = +ϵij∂ctEj = ϵγij∂ctEj , (A.24)

where we introduced the permissivity and permeability tensors to map all fields
to the two linear forms Ei and Hi . In isotropic media, Maxwell’s equation exhibit
invariance under the k duality transform

Ei → +Hi and µHi → −ϵEi . (A.25)
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a.7. maxwell-equations under discrete symmetries

Clearly, there is no influence of the duality transform on the divergences, while the
two equations involving rotations just interchange their roles. Duality is broken by
the presence of ρ and ȷi . Without a medium, i.e for the case ϵ = 1 = µ, the duality
transform takes on an even simpler form, Ei → γijBj and Bi → −γijEj , and relates
the vacuum fields directly to each other.

Maxwell’s equations would straightforwardly be able to accommodate k magnetic
charges if they are in fact conserved, as can be seen from this argument. Purely driven
by analogy and intuition, one can amend Maxwell’s equations as

∂iD
i = 4πρ and ∂iB

i = 4πτ (A.26)

as well as

ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi and ϵijk∂jEk = −∂ctB

i − 4π
c
ıi (A.27)

by introducing a magnetic charge density τ and a magnetic current density ıi , making
all Maxwell-equations inhomogeneous PDEs. Clearly, with vanishing τ and ıi one
would recover the true Maxwell-equations, one pair being homogeneous and the other
pair being inhomogeneous. From ϵijk∂i∂jEk = 0 one recovers a continuity equation
of the magnetic charge

∂tτ + ∂i ı
i = 0 (A.28)

in complete analogy to the case for electric charges. This realisation is quite sensible:
There are 2 scalar and 2 vectorial equations for 3 components for Ei and 3 components
for Bi . They have to be determined by ρ as a scalar source and by ȷi as a vectorial
source, which might look odd, as there are more field components than source
components (6 > 4), and again more equations than field components (8 > 6)! But
the conservation of the source needs to be respected by the fields as well, reducing
the effective number of equations by two: there is a conservation law for ρ and one
for τ, which Nature has incidentally chosen to be zero (She has good reasons for
doing so!), reducing the effective number of equations from 8 to 6. How exactly the 4
components of the source determine 6 components of the fields (clearly, they can’t all
be independent, otherwise the problem would be underdetermined) will be the topic
of Sect. B on potential theory.

A summary of all quantities appearing in the Maxwell-equations is given in this
diagram Fig. 1, for the general, hypothetical case of both magnetic and electric charges.
For the actual Maxwell-theory with only electric charges, τ = 0 = ıi .

A.7 Maxwell-equations under discrete symmetries

The Maxwell-equations show a curious and interesting behaviour under the three
discrete symmetries: (i) k charge conjugation C, which replaces every positive charge
+q by a negative one −q, and vice versa, (ii) k parity inversion P , which mirrors
the spatial coordinates +xi to −xi , and (iii) k time reversal T , which replaces +t
by −t. Particularly relevant will be the classification of vectors (and linear forms)
as being polar, PDi = −Di or axial, PBi = +Bi . Under the assumptions of a linear
medium, the two pairs of fields will always be proportional to each other, Ei = ϵijDj

and Hi = µijBj and must have pairwise identical behaviour under C, P and T .
Starting from the realisation that the position xi behaves like a polar vector

because its sign change under P leads to the implication that the differentiation ∂i
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a. maxwell-equations

0

ρ ȷj

Dj Hl

EiDi HiBi

Ek Bi

ıi τ

0

∂t ∂j

ϵkj

−∂ct∂j

ϵjkl∂k

µil

−ϵijk∂j

ϵjk µli

∂ct −∂i

∂i ∂t

Figure 1: All quantities and their relationships within the Maxwell-equations.
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a.8. electrostatic potential

behaves as P∂i = −∂i . An identical argument applies to time reversal, leading to
T ∂ct = −∂ct for the time derivatives. The volume needed for computing the densities
ρ and τ enters in an unoriented way, so it is unaffected by P . The densities do change
sign under C, though. The currents ȷi and ıi change sign under C and reverse their
direction of flow under both P and T .

A good starting point are the third and fourth Maxwell-equations,

ϵijk∂jEk = −∂ctB
i − 4π

c
ıi , and ϵijk∂jHk = +∂ctD

i +
4π
c
ȷi (A.29)

with the (possible) extension to include a (conserved) magnetic charge density τ
and its associated magnetic current density ıi . They suggest that Di and ȷi on one
side and Bi and ıi on the other must have identical properties under the discrete
symmetry transformations C, P and T . But at the same time it is clear that there is
a fundamental difference in the behaviour of the electric and magnetic fields with
respect to P , as the right hand sides acquire additional minus signs because of the
derivative ∂i : Parity transforms affect electric and magnetic fields in opposite ways.
Because the electric fields result from the gradient of a potential, Ei = −∂iΦ, they
must be behave as polar vectors, PDi = −Di , and the magnetic fields as axial vectors,
PBi = +Bi .

The two divergences

∂iD
i = 4πρ as well as ∂iB

i = 4πτ (A.30)

make sure that the fields change sign under C along with the changes of the charges
ρ and τ under C. Far more interesting is P : Because ∂iDi is parity-even, ρ must be
scalar, P ρ = ρ, but conversely, P∂iBi = −∂iBi implies a pseudoscalar magnetic charge
P τ = −τ. This translates to a more subtle difference in the transformation property of
the currents ȷi and ıi : The latter needs to be parity positive, P ıi = +ıi and therefore
axial, while P ȷi = −ȷi , with a polar electric current density, effectively ensuring the
consistency of the two rotational Maxwell-equations.

The two conservation equations ∂tτ + ∂i ı
i = 0 and ∂tρ + ∂i ȷ

i = 0 are likewise
consistent because T changes both the time-derivatives as well as the direction of the
currents, and parity inversion P changes τ because of its pseudoscalar property, but
only the sign of ∂i as P ıi is invariant: The change in sign of the pseudoscalar charge
is cancelled by the inverted direction of flow of the magnetic current. In summary, it
became clear that the Maxwell-equations show a transformation behaviour under C,
P and T .

A.8 Electrostatic potential

Maxwell’s equations clarify the relation between the field configuration and the distri-
bution of the charges as sources of the fields. As such, they enable us to compute the
field configuration from the source; in the easiest case this would be an electrostatic
field around an electric point charge q. Using the Gauß-law in integral form∫

V

dV ∂iD
i =

∫
V

dV ϵij∂iEj =
∫
∂V

dSi ϵ
ijEj = 4πϵr2E = 4π

∫
V

dV ρ = 4πq (A.31)
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a. maxwell-equations

C P T CP CT PT CPT
spatial derivative ∂i + − + − + − −
time derivative ∂ct + + − + − − −
electric charge density ρ − + + − − + −
electric current density ȷi − − − + + + −
magnetic charge density τ − − + + − − +
magnetic current density ıi − + − − + − +
dielectric displacement Di − − + + − − +
electric field Ei − − + + − − +
magnetic induction Hi − + − − + − +
magnetic field Bi − + − − + − +

Table 1: Summary of the behaviour of all fields and sources in extended electrodynamics
with electric and magnetic sources.

imposing spherical symmetry and working with an isotropic medium with dielectric
constant ϵ (which implies ϵij = ϵγij ) leads to a radial field

E =
q

ϵ r2 (A.32)

Clearly, the 1/r2-behaviour is a consequence of the growth of the surface area of
spheres with increasing radius r, because the electric flux φ through every spherical
shell is conserved. Positioning the charge q1 at the position r1 and observing the field
E at the position r would yield

Ei(r) =
q1

|r − r1|2
γij

(r − r1)j

|r − r1|
= q1 γij

(r − r1)j

|r − r1|3
(A.33)

where r − r1/ |r − r1| is a unit vector pointing from the charge q1 to the observation
point, converted with γij into unit linear form. For a test charge, positive by conven-
tion, this would then yield a repulsive force for positive q1 and an attractive force for
negative q1. The electric field of a collection of N charges qn, n = 1 . . . N follows by
superposition, as the Maxwell-equations are linear:

Ei(r) =
N∑
n=1

qn γij
(r − rn)j

|r − rn|3
(A.34)

Transitioning to the continuum limit and replacing the discrete charges qn at po-
sitions rn with a continuous charge density ρ(r) requires to replace summations by
volume integrals

q =
N∑
n=1

qn =
∫
V

dV′ ρ(r′) (A.35)

such that the total charge q in the system is respected. Similar relations should hold
for any weighted integral and weighted sum, such that
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a.8. electrostatic potential

Ei(r) =
N∑
n=1

qn γij
(r − rn)j

|r − rn|3
=

∫
V

dV′ ρ(r′) γij
(r − r′)j

|r − r′ |3
(A.36)

i.e. the electric field results by convolution of the charge density ρ with a vectorial
integration kernel. An explicit calculation shows that

−∂i
1

|r − r′ |
= γij

(r − r′)j

|r − r′ |3
= +∂′i

1
|r − r′ |

, (A.37)

with ∂i acting on r and ∂′i acting on r′ . Then,

Ei(r) =
∫
V

dV′ ρ(r′) γij
(r − r′)j

|r − r′ |3
= −

∫
V

dV′ ρ(r′)∂i
1

|r − r′ |
=

− ∂i

∫
V

dV′
ρ(r′)
|r − r′ |

= −∂iΦ(r) (A.38)

with the k electrostatic potential Φ,

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

(A.39)

which is clearly given as the superposition of the Coulomb-potentials of each element
of the charge distribution ρ. Mathematically, this relation would be interpreted as a
k convolution of the distribution of sources ρ(r) with a kernel 1/r, which is in this
context called the k Green-function.

Here, the electric field Ei is a gradient field, Ei = −∂iΦ, such that

ϵijk∂jEk = −ϵijk∂j∂kΦ = 0 (A.40)

consistent with the induction law ϵijk∂jEk = −∂ctBi = 0 which yields a vanishing
result in the static case. The gradient field Ei is rotationless because the contraction
of the antisymmetric ϵijk with the symmetric ∂j∂k is necessarily zero.

There is a clear interpretation of the electrostatic potential as the energy needed
to displace a test charge in the electric field

W = −q
B∫

A

dr i Ei = q

B∫
A

dr i ∂iΦ = q

B∫
A

dΦ = q (Φ(rB) − Φ(rA)) (A.41)

as the field is conservative. The integrand dr i∂iΦ = dΦ should be interpreted as
the gradient ∂iΦ projected onto dr i . Combining the relation Ei = −∂iΦ between the
electric field and the potential with the Gauß-law ∂iDi = ϵij∂iEj = 4πρ yields the
Poisson-equation

∂iD
i = −ϵij∂i∂jΦ = −∆Φ = 4πρ → ∆Φ = −4πρ (A.42)
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a. maxwell-equations

introducing the k Laplace-operator, which assumes the general form ∆ = ϵij∂i∂j ,
falls back on ∆ = ϵγij∂i∂j in an isotropic medium and ultimately on ∆ = γij∂i∂j in
vacuum.

It might be a fun thought to use the positive definiteness of the metric ϵij to
carry out a k Cholesky-decomposition to ϵij = e i

m γmne
j

n such that the Laplace-
operator becomes ∆ = ϵij∂i∂j = e i

m γmne
j

n ∂i∂j = γmn e i
m ∂ie

j
n ∂j . Then, a coordinate

transform with xi → emix
i leads to ∂i → e i

m ∂i , such that in the new coordinates the
Laplace operator takes on the Euclidean form, γmn∂m∂n = ∆. In essence, the effect of
an anisotropic medium can be absorbed by a (linear) change in coordinates. In the
particular case of an isotropic medium, this amounts to a mere rescaling or to the
usage of a different unit of length or charge, as the two are degenerate in Coulomb’s
law: The situation of an electric field of a charge inside a medium can be mapped
onto a different charge in vacuum

A bit more surprising might be the realisation that the k equipotential surfaces of
the electric field around a point charge in an anisotropic medium would be ellipsoids,
but in the change of coordinate suggested by the Cholesky-decomposition of ϵij

would become perfect spheres!. The Cholesky-decomposition,
valid for any symmetric, posi-
tive definite matrix, is given by

eimγ
mne

j
n for the inverse permis-

sivity ϵij , and by e m
i γmne

n
j for

the permissivity ϵij

The Laplace-operator in the Poisson-equation can be used to localise charges:
Evaluating −∂iΦ at any position it determines the electric field Ei , whose divergence
ϵij∂iEj = ∂iDi must, therefore, reflect the amount of charge 4πρ at that point, in
accordance with the Gauß-law. This operation is rather straightforward in the discrete
case of point charges:

Φ(r) =
n∑
i=1

qi
|r − ri |

→ ∆Φ =
n∑
i=1

qi∆
1

|r − ri |
∝ −4πqi if r = ri (A.43)

and ∆Φ = 0 at any other position r , ri . A direct calculation shows that this is in
fact the case: Assuming spherical coordinates and positioning the charge at the origin
implies indeed

∆Φ = ∆
1
r

=
1
r
∂2
r

(
r

1
r

)
= 0 (A.44)

for r , 0, but the expression can not be directly evaluated at the origin, as 1/r
diverges. Instead, one can resort to averaging ∆Φ over a small but finite integration
volume V containing the charge and applying the Gauß-theorem:

1
V

∫
V

dV ∆Φ =
1
V

∫
V

dV ϵij∂i∂jΦ =
1
V

∫
∂V

dSi ϵ
ij∂jΦ︸ ︷︷ ︸

=Di∝1/r2

= − 1
V

∫
∂V

r2dΩ︸︷︷︸
=dS

1
r2 = −4π

V
,

(A.45)

rewriting ∆ as ϵij∂i∂j , making use of spherical symmetry and using ∇(1/r) =
∂r (1/r) = −1/r2. This implies that the Laplace-operator ∆ applied to 1/r yields either
zero (if there is no charge at the location at which ∆Φ is evaluated) or diverges (in
the limit of V→ 0 if one has caught the charge in the integration volume). These two
results can be summarised using k Dirac’s δD-function

∆
1

|r − r′ |
= −4πδD(r − r′). (A.46)
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a.8. electrostatic potential

But electrodynamics is a continuum theory, and the computation has to work out
for a charge density ρ as well: Integrating ρ over a volume V has to be the total charge
q contained within that volume, such that the definitions

ρ(r) = qδD(r − r′) →
∫
V

dV ρ(r) = q

∫
V

dV δD(r − r′) = q (A.47)

become consistent due to the normalisation of the δD-function. Then,

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

(A.48)

is the solution for the potential, as it solves the Poisson-equation

∆Φ(r) =
∫
V

dV′ ρ(r′)∆
1

|r − r′ |
=

∫
V

dV′ ρ(r′)(−4π)δD(r − r′) = −4πρ(r) (A.49)

because of the shifting property of the δD-function∫
dV′ ρ(r′)δD(r − r′) = ρ(r) (A.50)

A collection of discrete point charges can be written as a charge density

ρ(r) =
n∑
i=1

qiδD(r − ri) (A.51)

as a generalisation of equation (A.47), because

∆Φ(r) =
n∑
i=1

qi∆
1

|r − ri |
=

n∑
i=1

qi(−4π)δD(r − ri) = −4πρ(r) (A.52)

making the concept of discrete point charges and a continuous charge distribution
compatible. Unitwise, the δD-function is an inverse volume, because it is normalised
to unity,

∫
dV δD(r) = 1, such that qiδD(r − ri) becomes the charge density ρ(r).

Clearly, both Φ and Ei = −∂iΦ can exist at points where ρ vanishes, but at these
positions, the divergence ϵij∂iEj and consequently ∆Φ are necessarily zero. From this
point of view one could argue that the tensor ∂i∂jΦ would naturally decompose into
a traceless part and a trace,

∂i∂jΦ =
(
∂i∂jΦ −

γij

3
∆Φ

)
+
γij

3
∆Φ (A.53)

where the trace ∆Φ reflects the contribution to the field generated by the charge
density at the same point where ∆Φ is evaluated, whereas the traceless part is the
contribution to the electrical field sourced elsewhere. The relationships between
source ρ, potential Φ and the fields Ei and Di is summarised concisely in this diagram:
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a. maxwell-equations

Φ

Ei Dj

ρ

−∂i

∆

ϵji

ϵij

∂j

∫
dV′ 1
|r−r′ | ...

(A.54)

A.9 Potential energy of a static charge distribution

The potential Φ is in the electrostatic case related to the k energy needed to displace
a charge in the electric field. If one assembles a charge distribution, one would need
to invest energy for doing so, as all charges would need to be moved from infinity
(where the potential vanishes) to their dedicated positions. Let’s do this step by step:
The first charge q1 is located at r1 and generates a potential Φ1 at position r

Φ1(r) =
q1

|r − r1|
(A.55)

Then, moving q2 from infinity to r2 in the electric field that is already generated by
q1 requires the energy W2 = q2Φ1(r2), and continuing with a third charge q3 to be
taken from infinity to r3 requires W3 = q3 (Φ1(r3) + Φ2(r3)), which generalises to

Wn = qn

n−1∑
m=1

Φm(rn) (A.56)

Adding up the amounts of work Wn needed for assembling the charge distribution
suggests for the total energy W

Wel =
N∑
n=1

Wn =
N∑
n=1

qn

n−1∑
m=1

Φm(rn) =
N∑
n=1

qn

n−1∑
m=1

qm
|rn − rm|

=
1
2

N∑
n=1

N∑
m=1

qmqn
|rn − rm|

(A.57)
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a.10. boundary conditions for fields on surfaces

with a correction factor 1/2 due to the double counting, where we implicitly avoid
the case n = m. In the continuum limit the relation becomes

Wel =
1
2

∫
V

dV
∫
V

dV′
ρ(r)ρ(r′)
|r − r′ |

=
1
2

∫
V

dV ρ(r)Φ(r) = − 1
8π

∫
V

dV Φ(r)∆Φ(r) (A.58)

inserting the definition of the potential in the first and the Poisson equation in the
second step, replacing ρ by ∆Φ. By making use of the Leibnitz-rule one can rewrite

Φ∆Φ = Φϵij∂i∂jΦ = ϵij∂i(Φ∂jΦ) − ϵij∂iΦ · ∂jΦ (A.59)

and arrive at the reformulation by virtue of the Gauß-theorem,

Wel = − 1
8π

∫
V

dV ϵij∂i(Φ∂jΦ) +
1

8π

∫
V

dV ϵij∂iΦ · ∂jΦ =

− 1
8π

∫
∂V

dSi ϵ
ij (Φ∂jΦ) +

1
8π

∫
V

dV ϵij∂iΦ · ∂jΦ =
1

8π

∫
V

dV ϵijEiEj (A.60)

where the first term typically vanishes faster than the surface area ∂V increases, as
Φ ∝ 1/r and ∂Φ ∝ 1/r2 at large distances from the charge distribution, dominating
over the increase of ∂V ∝ r2. This result implies that the electric field can be assigned
an energy density

wel =
ϵijEiEj

8π
=

EiDi

8π
=
ϵijDiDj

8π
with Wel =

∫
V

dV wel, (A.61)

where the dielectric tensor now acts as a metric for computing the energy density
from the fields, making it invariant under transformations. Positive definiteness of ϵij
(and consequently, of ϵij ) ensures that the energy density for electric fields comes out
as positive. The energy density associated with magnetic fields is given in complete
analogy by

wmag =
µijHiHj

8π
=

HiBi

8π
=
µijBiBj

8π
with Wmag =

∫
V

dV wmag. (A.62)

A.10 Boundary conditions for fields on surfaces

Maxwell’s equations allow a direct statement about the behaviour of the electric fields
at boundaries in the static case: If a surface carries a charge surface density σ, an
application of the Gauß-theorem to a small volume V situated on the surface yields∫
V

dV∂iD
i =

∫
∂V

dSi Di = 4π
∫
∂V

dSσ = 4πσ∆S = ∆S(D⊥2 −D⊥1 ) → D⊥2 = D⊥1 +4πσ

(A.63)

if the height of the integration volume is neglected; effectively one deals with a very
flat box. Similarly, because ϵijk∂jEk = −ϵijk∂j∂kΦ = 0 for electrostatic fields,
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a. maxwell-equations

∫
S

dSi ϵ
ijk∂jEk =

∫
∂S

dr i Ei = ∆r (E∥2 − E∥1) = 0 → E∥2 = E∥1 (A.64)

as an application of the Stokes-theorem to a small and flat area S perpendicular
to the surface. The constitutive relations Di = ϵijEj and its inverse then allow the
computation of E⊥ and D∥.
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