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A maxwell-equations

A.1 Fields and test charges

Fields are a very novel concept in physics as there can be systems without direct
physical contact of their constituent parts which are nevertheless influenced at a
distance, as Newton formulated it. As we do not have any direct sensory perception
of fields, they are indirectly observed by the force they are capable of exerting on
charged k test particles. If a test charge q is exposed to the electric field Ei and the
magnetic field Bi it experiences a change ṗi in its momentum pi :

ṗi = q
(
Ei +

1
c
ϵijkυ

jBk
)
. (A.1)

This k Lorentz-force depends on the magnitude and direction of the velocity υi /c
in units of a velocity scale c. It is possible to measure all components of Ei and Bi

separately as one has the freedom of choosing the state of motion of the test charge.
Clearly, as the velocity υi depends on the choice of frame, the measurement of Ei and
Bi has to be frame-dependent as well. Therefore, with the concept of a test charge one
links the dynamical and kinematical properties of fields to the mechanics of the test
particles in a consistent way. Historically this was very important, as electrodynamics
showed that Galilean mechanics for the motion of test particles is inconsistent with
the fields, and needed to be replaced by Lorentzian, relativistic mechanics. It is
important to realise that the two fields measured by a test charge are a linear form Ei

for the electric component and a vector Bi for the magnetic component.

A.2 Physical properties of the electric charge

Electrodynamics is a k continuum theory: One can imagine the electric charge
density ρ to be a fluid so that arbitrarily small volumes contain arbitrarily small
amounts of k electric charge. There is no idea of charge carriers such as electrons or
protons, and no concept of a quantisation of charge into multiples of an k elementary
charge. Charge is conserved, meaning that the fluid can move and change the charge
density, but there is no spontaneous creation or annihilation of electric charge. This
statement is necessarily an empirical property of charge-carrying matter.

If the local charge density increases, it must be necessarily due to converging
current densities, as expressed in a k continuity equation:

∂tρ + ∂i ȷ
i = 0 (A.2)

implying that the charge q contained within a volume V only changes over time if
there are electric currents I transporting the charge through the surface ∂V:

d
dt

∫
V

dV ρ =
d
dt

q = −
∫
V

dV ∂i ȷ
i = −

∫
∂V

dSi ȷ
i = −I (A.3)

as a consequence of the k Gauß-theorem. The electric charge q appears as the volume
integral over the charge density ρ, in the same way as the electric current I is the
surface integral over the current density ȷi , projected along the surface normal dSi .
Specifically, if the currents ȷi point outwards and are parallel to the surface normals

1
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a. maxwell-equations

dSi of ∂V, the enclosed charge q will decrease, which provides a good motivation for
the minus-sign.

A.3 Maxwell-equations

The k Maxwell-equations are the axiomatic foundation of classical electrodynamics
and they define the relation between the distribution of electric charges and currents
on one side and the electric and magnetic fields on the other, as well as the dynam-
ical evolution of the fields themselves. They are a set of linear hyperbolic partial
differential equations, formulated in terms of first derivatives ∂i and ∂ct of the fields
with respect to the coordinates xi and time t. Temporal derivatives always appear
multiplied with a constant c, that will turn out to be the speed at which excitations in
the electromagnetic field propagate.

Maxwell’s equations involve the two physically measurable fields Ei and Bi as well
as two auxiliary fields Di and Hi . These auxiliary fields are sourced by the electric
charge density ρ and the electric current density ȷi , and can only be related to Ei

and Bi with an assumption on the physical properties of the medium in which the
charges reside. At the time, 4 Maxwell isolated his four equations from empirical
observation of magnetic and electric phenomena, but they are much more than that:
They open a path to a geometric description of Nature in terms of relativistic field
theories.

A.3.1 Gauß-law for electric fields

The electric field Di emanates from the electric charge density ρ, meaning that wher-
ever there are electric charges, they act as k sources of the electric field. The field
lines diverge from a positive charge and converge on a negative charge. Mathemati-
cally speaking, the divergence ∂iDi of the electric field is proportional to the charge
density ρ with the prefactor 4π in the k Gauß-system of units:

∂iD
i = 4πρ (A.4)

With the help of the Gauß-theorem the Maxwell-equation can be reformulated in
integral form, ∫

V

dV ∂iD
i =

∫
∂V

dSi Di = ψ = 4π
∫
V

dV ρ = 4πq (A.5)

implying that there is a flux ψ of electric field lines through the surface ∂V of any
volume V which contains a charge q.

An electric field Di should be spherically symmetric around a point charge of
magnitude q, certainly in the case of an isotropic medium. This means that the
electric field lines should be perpendicular to the surface ∂V of a sphere of volume V
containing the charge at the centre, and the electric field should be of equal strength
everywhere on the surface. Then,∫

∂V

dSi Di = 4π r2 D = 4πq → D =
q

r2 (A.6)

with the familiar expression for the Coulomb-field D ∝ 1/r2 of a point charge.

2
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a.3. maxwell-equations

In summary, electric field lines start necessarily on a positive charge and end at a
negative charge, unless they form a closed loop.

A.3.2 Non-existence of magnetic charges

The magnetic field Bi behaves differently: There are no corresponding k magnetic
charges from which the magnetic field lines would emanate, so the divergence of the
magnetic field is necessarily zero,

∂iB
i = 0. (A.7)

In integral form the relation would read∫
V

dV ∂iB
i =

∫
∂V

dSi Bi = φ = 0 (A.8)

showing clearly with the Gauß-theorem that the flux φ of magnetic field lines across
the surface ∂V of a volume V is zero, as it can not contain any magnetic charges.

A.3.3 Faraday-law and induction

Electric field lines can be closed loops, too, and this is necessarily related to time-
varying magnetic fields, as formulated by the k Faraday-law

ϵijk∂jEk = −∂ctB
i (A.9)

with the most famous minus sign of physics: the k Lenz-rule. It is a reflection of the
hyperbolicity of the Maxwell-equations and despite many claims otherwise, it has
little to do with energy conservation. Here, the speed of light c makes sure that the
derivative ∂i is dimensionally consistent to the derivative ∂ct , because

∂ct =
1
c
∂t (A.10)

has units of inverse length just as the spatial derivatives: Please keep in mind, that
in the Gauß-system of units, all fields Ei , Di , Hi and Bi have identical units. The
corresponding integral form of the Faraday-law is derived by application of the
Stokes-theorem,∫

S

dSi ϵ
ijk∂jEk = U =

∫
∂S

dr i Ei = − d
d(ct)

∫
S

dSi Bi = −
dφ

d(ct)
(A.11)

where one can identify the induced voltage U on the boundary ∂S of the surface S
as being proportional to the rate of change of the magnetic flux φ with respect to
ct. Integrating the rotation ϵijk∂jEk along an integration contour would yield the
displacement work necessary to move a charge along this contour, which, normalised
by the magnitude of the charge, is exactly the voltage.

3
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a. maxwell-equations

A.3.4 Ampère-law

Magnetic fields are surely divergence-free, but can they be loops? k Ampère’s law
answers this clearly in a positive way, as

ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi (A.12)

implying that the rotation ϵijk∂jHk is related to two phenomena: There can be a
non-vanishing electric current density ȷi with magnetic field lines looping around it,
or the electric field is time-varying. Again, the Stokes-theorem allows to reformulate
the Ampère-law in integral form,∫

S

dSi ϵ
ijk∂jHk =

∫
∂S

dr i Hi = +
d

d(ct)

∫
S

dSi Di +
4π
c

∫
S

dSi ȷ
i = +

dψ
d(ct)

+
4π
c

I (A.13)

such that magnetic field collected up on a closed loop ∂S becomes equal to the change
of the electric flux ψ through the surface S and to the electric current I through that
surface. In a static, cylindrically symmetric situation of a straight wire one would
evaluate the integral as

∫
dr iHi = 2πr H on a circle with radius r, such that the

magnetic field decreases H ∝ 1/r with increasing distance from the wire.

A.4 Linear media for electrodynamics

Maxwell’s equations allow to compute the electric and magnetic fields for a given
distribution of the charge density ρ and the current density ȷi , and to localise the
source distribution ρ and ȷi for a given field configuration. In the general case, these
relationships are defined for two auxiliary fields, an electric vector field Di and a
magnetic linear form Hi . These two excitations, Di and Hi , are related to the sources
ρ and ȷi in purely geometric relations. For converting them into the measurable fields
Ei and Bi , one needs to incorporate the properties of matter, in which the charges
and currents as sources of the electric and the magnetic field are embedded..

vector form
vacuum Bi Ei
medium Di Hi Restricting the discussion to linear media one assumes a proportionality

Di = ϵijEj ↔ Ei = ϵijD
j (A.14)

with a permissivity (or dielectric) tensor ϵij , and in analogy a likewise linear relation

Bi = µijHi ↔ Hi = µijB
j (A.15)

with a permeability tensor µij . These two relationships between the electric field pair
Ei and Di on one side and the magnetic field pair Bi and Hi on the other are referred
to as k constitutive relations. The permissivity tensor ϵij and the permeability tensor
µij are both symmetric, positive definite tensors. As such, they act as a metric with the
purpose of converting the vectors in linear forms and vice versa. This is made possible
by the fact that ϵij is inverse to ϵij , with ϵijϵjk = δik . Both tensors have a principal axis
frame in which one observes that the fields become elementwise proportional to each
other, scaled by the eigenvalues of ϵij or µij .

If all eigenvalues are equal, the medium is isotropic and the tensors become
proportional to the k Euclidean metric γij , with an admittedly weird convention

4
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a.5. conservation of electric charge

ϵij =
1
ϵ
γij and µij =

1
µ
γij , (A.16)

with the dielectric constant ϵ and the isotropic permeability µ. Vacuum is effectively
described to be a medium with ϵ = 1 = µ. Because the Euclidean metric γij mediates
between the pairs Ei , Di and Hi , Bi , their distinctiveness is lost in a vacuum situation
without a medium. Positive definiteness makes sure that the observable electric and
magnetic fields Bi and Ei are pointing in the same direction as the excitations Hi and
Di : The fields are attenuated in a medium but never reversed.

There are even k bianisotropic media where dielectric effects are caused by
magnetic fields and effects of permeability by electric fields:

Di = ϵijEj + ξijHj as well as Bi = µijHj + ζijEj , (A.17)

with two additional tensors ξij and ζij in the constitutive relations. The connection
between fields and the microscopic structure of matter can be extremely complicated,
and only in simplified cases one will have a linear, instantaneous and isotropic
response of the fields to the presence of matter. It is quite apparent that there is a
time scale involved in the reaction of the fields Ei and Bi to the excitations Hi and Di .
Water, for instance, has a very high dielectric constant ϵ ≃ 80 for static electric fields
as a consequence of the polarity of the water molecules, but the dielectric constant
for the rapidly changing electric field in visible light has decreased to a value of about
ϵ ≃ 1.5.

In contrast to the inhomogeneous equations that get modified in the presence of
matter, the homogeneous relations ∂iBi = 0 and ϵijk∂jEk = −∂ctBi are unchanged
in matter. One can almost feel why this should be the case: The inhomogeneous
equations predict, due to their shape, strong fields close to the sources, i.e. D ∝ 1/r2

and H ∝ 1/r which are diverging in the limit r → 0 and which should evoke a
strong response from the medium altering the fields. While this argument sounds
very convincing, it neglects the fact that most materials follow linear relationships
between the fields and the excitations, or equivalently, have constant dielectric and
permeability tensors, and effectively do not distinguish between weak and strong
fields: In fact, the situation is very puzzling to interpret as there are linear responses
evoked by arbitrarily weak fields around sources, but not for induced fields!

For the purpose of this script we will always assume homogeneous media, such
that the material properties do not change as a function of position and all derivatives
∂kϵ

ij and ∂kµ
ij are zero. But this is a choice of convenience, as the Maxwell-equations

would be prepared to deal with inhomogeneous media, at the expense of notational
clarity: The Gauß-law ∂iDi = 4πρ, for instance, becomes ∂i(ϵijEj ) = ∂iϵ

ij · Ej +
ϵij∂iEj = 4πρ, with a new term ∂iϵ

ij reflecting the change of the dielectric tensor
with coordinate.

A.5 Conservation of electric charge

With the link between the fields and the distribution of charges (and currents) es-
tablished by the Maxwell-equations it should be clear that the fields are not free
and that they should reflect any dynamical laws to which the charges are subjected,
for instance charge conservation: It will never be the case that the electrical field
lines suddenly converge onto a single point in space and form a non-vanishing di-
vergence, without there being an actual charge. Therefore, it should be possible to

5
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a. maxwell-equations

derive a charge conservation law from the field configuration! In fact, computing the
divergence of the rotation ϵijk∂jHk as defined by the Ampère-law,

ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi → ∂iϵ

ijk∂jHk = ϵijk∂i∂jHk = ∂i∂ctD
i +

4π
c
∂i ȷ

i = 0

(A.18)

which is always zero: The contraction of ϵijk which is antisymmetric in the index
pair (ij) with the double derivative ∂i∂j , which is symmetric in the index pair is
necessarily zero. The exchangibility of the partial derivatives ∂i∂j = ∂j∂i and hence
the symmetry of the expression ∂i∂j is made sure by k Schwarz’s theorem.

This consideration leads to

∂ct∂iD
i +

4π
c
∂i ȷ

i = 0, (A.19)

and by substituting the Gauß-law ∂iDi = 4πρ to

4π∂ctρ +
4π
c
∂i ȷ

i = 0, (A.20)

where ∂ct interchanges with the divergence, as both are partial derivatives. In the
last relation one recovers the conservation law in the shape of a continuity equation

∂tρ + ∂i ȷ
i = 0 (A.21)

In a very real sense, electrodynamics is the theory of electric and magnetic fields for
conserved charges; if, by any mechanism, there would be spontaneous creation or
decay of charges, or even k teleportation of charges, the Maxwell-equations would
need to be amended.

A.6 Electromagnetic duality

In vacuum, where the charge density ρ and the current density ȷi are zero, the
Maxwell-equations assume a very symmetric shape as all equations are purely homo-
geneous. The divergences read

∂iD
i = ϵij∂iEj = ϵγij∂iEj = 0 as well as ∂iB

i = µij∂iHj = µγij∂iHj = 0, (A.22)

and the rotations become:

ϵijk∂jEk = −∂ctB
i = −µij∂ctHj = −1

µ
γij∂ctHj (A.23)

and
ϵijk∂jHk = +∂ctD

i = +ϵij∂ctEj = ϵγij∂ctEj , (A.24)

where we introduced the permissivity and permeability tensors to map all fields
to the two linear forms Ei and Hi . In isotropic media, Maxwell’s equation exhibit
invariance under the k duality transform

Ei → +Hi and µHi → −ϵEi . (A.25)
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a.7. maxwell-equations under discrete symmetries

Clearly, there is no influence of the duality transform on the divergences, while the
two equations involving rotations just interchange their roles. Duality is broken by
the presence of ρ and ȷi . Without a medium, i.e for the case ϵ = 1 = µ, the duality
transform takes on an even simpler form, Ei → γijBj and Bi → −γijEj , and relates
the vacuum fields directly to each other.

Maxwell’s equations would straightforwardly be able to accommodate k magnetic
charges if they are in fact conserved, as can be seen from this argument. Purely driven
by analogy and intuition, one can amend Maxwell’s equations as

∂iD
i = 4πρ and ∂iB

i = 4πτ (A.26)

as well as

ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi and ϵijk∂jEk = −∂ctB

i − 4π
c
ıi (A.27)

by introducing a magnetic charge density τ and a magnetic current density ıi , making
all Maxwell-equations inhomogeneous PDEs. Clearly, with vanishing τ and ıi one
would recover the true Maxwell-equations, one pair being homogeneous and the other
pair being inhomogeneous. From ϵijk∂i∂jEk = 0 one recovers a continuity equation
of the magnetic charge

∂tτ + ∂i ı
i = 0 (A.28)

in complete analogy to the case for electric charges. This realisation is quite sensible:
There are 2 scalar and 2 vectorial equations for 3 components for Ei and 3 components
for Bi . They have to be determined by ρ as a scalar source and by ȷi as a vectorial
source, which might look odd, as there are more field components than source
components (6 > 4), and again more equations than field components (8 > 6)! But
the conservation of the source needs to be respected by the fields as well, reducing
the effective number of equations by two: there is a conservation law for ρ and one
for τ, which Nature has incidentally chosen to be zero (She has good reasons for
doing so!), reducing the effective number of equations from 8 to 6. How exactly the 4
components of the source determine 6 components of the fields (clearly, they can’t all
be independent, otherwise the problem would be underdetermined) will be the topic
of Sect. B on potential theory.

A summary of all quantities appearing in the Maxwell-equations is given in this
diagram Fig. 1, for the general, hypothetical case of both magnetic and electric charges.
For the actual Maxwell-theory with only electric charges, τ = 0 = ıi .

A.7 Maxwell-equations under discrete symmetries

The Maxwell-equations show a curious and interesting behaviour under the three
discrete symmetries: (i) k charge conjugation C, which replaces every positive charge
+q by a negative one −q, and vice versa, (ii) k parity inversion P , which mirrors
the spatial coordinates +xi to −xi , and (iii) k time reversal T , which replaces +t
by −t. Particularly relevant will be the classification of vectors (and linear forms)
as being polar, PDi = −Di or axial, PBi = +Bi . Under the assumptions of a linear
medium, the two pairs of fields will always be proportional to each other, Ei = ϵijDj

and Hi = µijBj and must have pairwise identical behaviour under C, P and T .
Starting from the realisation that the position xi behaves like a polar vector

because its sign change under P leads to the implication that the differentiation ∂i
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a. maxwell-equations

0

ρ ȷj

Dj Hl

EiDi HiBi

Ek Bi

ıi τ

0

∂t ∂j

ϵkj

−∂ct∂j

ϵjkl∂k

µil

−ϵijk∂j

ϵjk µli

∂ct −∂i

∂i ∂t

Figure 1: All quantities and their relationships within the Maxwell-equations.
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a.8. electrostatic potential

behaves as P∂i = −∂i . An identical argument applies to time reversal, leading to
T ∂ct = −∂ct for the time derivatives. The volume needed for computing the densities
ρ and τ enters in an unoriented way, so it is unaffected by P . The densities do change
sign under C, though. The currents ȷi and ıi change sign under C and reverse their
direction of flow under both P and T .

A good starting point are the third and fourth Maxwell-equations,

ϵijk∂jEk = −∂ctB
i − 4π

c
ıi , and ϵijk∂jHk = +∂ctD

i +
4π
c
ȷi (A.29)

with the (possible) extension to include a (conserved) magnetic charge density τ
and its associated magnetic current density ıi . They suggest that Di and ȷi on one
side and Bi and ıi on the other must have identical properties under the discrete
symmetry transformations C, P and T . But at the same time it is clear that there is
a fundamental difference in the behaviour of the electric and magnetic fields with
respect to P , as the right hand sides acquire additional minus signs because of the
derivative ∂i : Parity transforms affect electric and magnetic fields in opposite ways.
Because the electric fields result from the gradient of a potential, Ei = −∂iΦ, they
must be behave as polar vectors, PDi = −Di , and the magnetic fields as axial vectors,
PBi = +Bi .

The two divergences

∂iD
i = 4πρ as well as ∂iB

i = 4πτ (A.30)

make sure that the fields change sign under C along with the changes of the charges
ρ and τ under C. Far more interesting is P : Because ∂iDi is parity-even, ρ must be
scalar, P ρ = ρ, but conversely, P∂iBi = −∂iBi implies a pseudoscalar magnetic charge
P τ = −τ. This translates to a more subtle difference in the transformation property of
the currents ȷi and ıi : The latter needs to be parity positive, P ıi = +ıi and therefore
axial, while P ȷi = −ȷi , with a polar electric current density, effectively ensuring the
consistency of the two rotational Maxwell-equations.

The two conservation equations ∂tτ + ∂i ı
i = 0 and ∂tρ + ∂i ȷ

i = 0 are likewise
consistent because T changes both the time-derivatives as well as the direction of the
currents, and parity inversion P changes τ because of its pseudoscalar property, but
only the sign of ∂i as P ıi is invariant: The change in sign of the pseudoscalar charge
is cancelled by the inverted direction of flow of the magnetic current. In summary, it
became clear that the Maxwell-equations show a transformation behaviour under C,
P and T .

A.8 Electrostatic potential

Maxwell’s equations clarify the relation between the field configuration and the distri-
bution of the charges as sources of the fields. As such, they enable us to compute the
field configuration from the source; in the easiest case this would be an electrostatic
field around an electric point charge q. Using the Gauß-law in integral form∫

V

dV ∂iD
i =

∫
V

dV ϵij∂iEj =
∫
∂V

dSi ϵ
ijEj = 4πϵr2E = 4π

∫
V

dV ρ = 4πq (A.31)
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a. maxwell-equations

C P T CP CT PT CPT
spatial derivative ∂i + − + − + − −
time derivative ∂ct + + − + − − −
electric charge density ρ − + + − − + −
electric current density ȷi − − − + + + −
magnetic charge density τ − − + + − − +
magnetic current density ıi − + − − + − +
dielectric displacement Di − − + + − − +
electric field Ei − − + + − − +
magnetic induction Hi − + − − + − +
magnetic field Bi − + − − + − +

Table 1: Summary of the behaviour of all fields and sources in extended electrodynamics
with electric and magnetic sources.

imposing spherical symmetry and working with an isotropic medium with dielectric
constant ϵ (which implies ϵij = ϵγij ) leads to a radial field

E =
q

ϵ r2 (A.32)

Clearly, the 1/r2-behaviour is a consequence of the growth of the surface area of
spheres with increasing radius r, because the electric flux φ through every spherical
shell is conserved. Positioning the charge q1 at the position r1 and observing the field
E at the position r would yield

Ei(r) =
q1

|r − r1|2
γij

(r − r1)j

|r − r1|
= q1 γij

(r − r1)j

|r − r1|3
(A.33)

where r − r1/ |r − r1| is a unit vector pointing from the charge q1 to the observation
point, converted with γij into unit linear form. For a test charge, positive by conven-
tion, this would then yield a repulsive force for positive q1 and an attractive force for
negative q1. The electric field of a collection of N charges qn, n = 1 . . . N follows by
superposition, as the Maxwell-equations are linear:

Ei(r) =
N∑
n=1

qn γij
(r − rn)j

|r − rn|3
(A.34)

Transitioning to the continuum limit and replacing the discrete charges qn at po-
sitions rn with a continuous charge density ρ(r) requires to replace summations by
volume integrals

q =
N∑
n=1

qn =
∫
V

dV′ ρ(r′) (A.35)

such that the total charge q in the system is respected. Similar relations should hold
for any weighted integral and weighted sum, such that

10



a.8. electrostatic potential

Ei(r) =
N∑
n=1

qn γij
(r − rn)j

|r − rn|3
=

∫
V

dV′ ρ(r′) γij
(r − r′)j

|r − r′ |3
(A.36)

i.e. the electric field results by convolution of the charge density ρ with a vectorial
integration kernel. An explicit calculation shows that

−∂i
1

|r − r′ |
= γij

(r − r′)j

|r − r′ |3
= +∂′i

1
|r − r′ |

, (A.37)

with ∂i acting on r and ∂′i acting on r′ . Then,

Ei(r) =
∫
V

dV′ ρ(r′) γij
(r − r′)j

|r − r′ |3
= −

∫
V

dV′ ρ(r′)∂i
1

|r − r′ |
=

− ∂i

∫
V

dV′
ρ(r′)
|r − r′ |

= −∂iΦ(r) (A.38)

with the k electrostatic potential Φ,

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

(A.39)

which is clearly given as the superposition of the Coulomb-potentials of each element
of the charge distribution ρ. Mathematically, this relation would be interpreted as a
k convolution of the distribution of sources ρ(r) with a kernel 1/r, which is in this
context called the k Green-function.

Here, the electric field Ei is a gradient field, Ei = −∂iΦ, such that

ϵijk∂jEk = −ϵijk∂j∂kΦ = 0 (A.40)

consistent with the induction law ϵijk∂jEk = −∂ctBi = 0 which yields a vanishing
result in the static case. The gradient field Ei is rotationless because the contraction
of the antisymmetric ϵijk with the symmetric ∂j∂k is necessarily zero.

There is a clear interpretation of the electrostatic potential as the energy needed
to displace a test charge in the electric field

W = −q
B∫

A

dr i Ei = q

B∫
A

dr i ∂iΦ = q

B∫
A

dΦ = q (Φ(rB) − Φ(rA)) (A.41)

as the field is conservative. The integrand dr i∂iΦ = dΦ should be interpreted as
the gradient ∂iΦ projected onto dr i . Combining the relation Ei = −∂iΦ between the
electric field and the potential with the Gauß-law ∂iDi = ϵij∂iEj = 4πρ yields the
Poisson-equation

∂iD
i = −ϵij∂i∂jΦ = −∆Φ = 4πρ → ∆Φ = −4πρ (A.42)
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a. maxwell-equations

introducing the k Laplace-operator, which assumes the general form ∆ = ϵij∂i∂j ,
falls back on ∆ = ϵγij∂i∂j in an isotropic medium and ultimately on ∆ = γij∂i∂j in
vacuum.

It might be a fun thought to use the positive definiteness of the metric ϵij to
carry out a k Cholesky-decomposition to ϵij = e i

m γmne
j

n such that the Laplace-
operator becomes ∆ = ϵij∂i∂j = e i

m γmne
j

n ∂i∂j = γmn e i
m ∂ie

j
n ∂j . Then, a coordinate

transform with xi → emix
i leads to ∂i → e i

m ∂i , such that in the new coordinates the
Laplace operator takes on the Euclidean form, γmn∂m∂n = ∆. In essence, the effect of
an anisotropic medium can be absorbed by a (linear) change in coordinates. In the
particular case of an isotropic medium, this amounts to a mere rescaling or to the
usage of a different unit of length or charge, as the two are degenerate in Coulomb’s
law: The situation of an electric field of a charge inside a medium can be mapped
onto a different charge in vacuum

A bit more surprising might be the realisation that the k equipotential surfaces of
the electric field around a point charge in an anisotropic medium would be ellipsoids,
but in the change of coordinate suggested by the Cholesky-decomposition of ϵij

would become perfect spheres!. The Cholesky-decomposition,
valid for any symmetric, posi-
tive definite matrix, is given by

eimγ
mne

j
n for the inverse permis-

sivity ϵij , and by e m
i γmne

n
j for

the permissivity ϵij

The Laplace-operator in the Poisson-equation can be used to localise charges:
Evaluating −∂iΦ at any position it determines the electric field Ei , whose divergence
ϵij∂iEj = ∂iDi must, therefore, reflect the amount of charge 4πρ at that point, in
accordance with the Gauß-law. This operation is rather straightforward in the discrete
case of point charges:

Φ(r) =
n∑
i=1

qi
|r − ri |

→ ∆Φ =
n∑
i=1

qi∆
1

|r − ri |
∝ −4πqi if r = ri (A.43)

and ∆Φ = 0 at any other position r , ri . A direct calculation shows that this is in
fact the case: Assuming spherical coordinates and positioning the charge at the origin
implies indeed

∆Φ = ∆
1
r

=
1
r
∂2
r

(
r

1
r

)
= 0 (A.44)

for r , 0, but the expression can not be directly evaluated at the origin, as 1/r
diverges. Instead, one can resort to averaging ∆Φ over a small but finite integration
volume V containing the charge and applying the Gauß-theorem:

1
V

∫
V

dV ∆Φ =
1
V

∫
V

dV ϵij∂i∂jΦ =
1
V

∫
∂V

dSi ϵ
ij∂jΦ︸ ︷︷ ︸

=Di∝1/r2

= − 1
V

∫
∂V

r2dΩ︸︷︷︸
=dS

1
r2 = −4π

V
,

(A.45)

rewriting ∆ as ϵij∂i∂j , making use of spherical symmetry and using ∇(1/r) =
∂r (1/r) = −1/r2. This implies that the Laplace-operator ∆ applied to 1/r yields either
zero (if there is no charge at the location at which ∆Φ is evaluated) or diverges (in
the limit of V→ 0 if one has caught the charge in the integration volume). These two
results can be summarised using k Dirac’s δD-function

∆
1

|r − r′ |
= −4πδD(r − r′). (A.46)
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a.8. electrostatic potential

But electrodynamics is a continuum theory, and the computation has to work out
for a charge density ρ as well: Integrating ρ over a volume V has to be the total charge
q contained within that volume, such that the definitions

ρ(r) = qδD(r − r′) →
∫
V

dV ρ(r) = q

∫
V

dV δD(r − r′) = q (A.47)

become consistent due to the normalisation of the δD-function. Then,

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

(A.48)

is the solution for the potential, as it solves the Poisson-equation

∆Φ(r) =
∫
V

dV′ ρ(r′)∆
1

|r − r′ |
=

∫
V

dV′ ρ(r′)(−4π)δD(r − r′) = −4πρ(r) (A.49)

because of the shifting property of the δD-function∫
dV′ ρ(r′)δD(r − r′) = ρ(r) (A.50)

A collection of discrete point charges can be written as a charge density

ρ(r) =
n∑
i=1

qiδD(r − ri) (A.51)

as a generalisation of equation (A.47), because

∆Φ(r) =
n∑
i=1

qi∆
1

|r − ri |
=

n∑
i=1

qi(−4π)δD(r − ri) = −4πρ(r) (A.52)

making the concept of discrete point charges and a continuous charge distribution
compatible. Unitwise, the δD-function is an inverse volume, because it is normalised
to unity,

∫
dV δD(r) = 1, such that qiδD(r − ri) becomes the charge density ρ(r).

Clearly, both Φ and Ei = −∂iΦ can exist at points where ρ vanishes, but at these
positions, the divergence ϵij∂iEj and consequently ∆Φ are necessarily zero. From this
point of view one could argue that the tensor ∂i∂jΦ would naturally decompose into
a traceless part and a trace,

∂i∂jΦ =
(
∂i∂jΦ −

γij

3
∆Φ

)
+
γij

3
∆Φ (A.53)

where the trace ∆Φ reflects the contribution to the field generated by the charge
density at the same point where ∆Φ is evaluated, whereas the traceless part is the
contribution to the electrical field sourced elsewhere. The relationships between
source ρ, potential Φ and the fields Ei and Di is summarised concisely in this diagram:
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a. maxwell-equations

Φ

Ei Dj

ρ

−∂i

∆

ϵji

ϵij

∂j

∫
dV′ 1
|r−r′ | ...

(A.54)

A.9 Potential energy of a static charge distribution

The potential Φ is in the electrostatic case related to the k energy needed to displace
a charge in the electric field. If one assembles a charge distribution, one would need
to invest energy for doing so, as all charges would need to be moved from infinity
(where the potential vanishes) to their dedicated positions. Let’s do this step by step:
The first charge q1 is located at r1 and generates a potential Φ1 at position r

Φ1(r) =
q1

|r − r1|
(A.55)

Then, moving q2 from infinity to r2 in the electric field that is already generated by
q1 requires the energy W2 = q2Φ1(r2), and continuing with a third charge q3 to be
taken from infinity to r3 requires W3 = q3 (Φ1(r3) + Φ2(r3)), which generalises to

Wn = qn

n−1∑
m=1

Φm(rn) (A.56)

Adding up the amounts of work Wn needed for assembling the charge distribution
suggests for the total energy W

Wel =
N∑
n=1

Wn =
N∑
n=1

qn

n−1∑
m=1

Φm(rn) =
N∑
n=1

qn

n−1∑
m=1

qm
|rn − rm|

=
1
2

N∑
n=1

N∑
m=1

qmqn
|rn − rm|

(A.57)
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a.10. boundary conditions for fields on surfaces

with a correction factor 1/2 due to the double counting, where we implicitly avoid
the case n = m. In the continuum limit the relation becomes

Wel =
1
2

∫
V

dV
∫
V

dV′
ρ(r)ρ(r′)
|r − r′ |

=
1
2

∫
V

dV ρ(r)Φ(r) = − 1
8π

∫
V

dV Φ(r)∆Φ(r) (A.58)

inserting the definition of the potential in the first and the Poisson equation in the
second step, replacing ρ by ∆Φ. By making use of the Leibnitz-rule one can rewrite

Φ∆Φ = Φϵij∂i∂jΦ = ϵij∂i(Φ∂jΦ) − ϵij∂iΦ · ∂jΦ (A.59)

and arrive at the reformulation by virtue of the Gauß-theorem,

Wel = − 1
8π

∫
V

dV ϵij∂i(Φ∂jΦ) +
1

8π

∫
V

dV ϵij∂iΦ · ∂jΦ =

− 1
8π

∫
∂V

dSi ϵ
ij (Φ∂jΦ) +

1
8π

∫
V

dV ϵij∂iΦ · ∂jΦ =
1

8π

∫
V

dV ϵijEiEj (A.60)

where the first term typically vanishes faster than the surface area ∂V increases, as
Φ ∝ 1/r and ∂Φ ∝ 1/r2 at large distances from the charge distribution, dominating
over the increase of ∂V ∝ r2. This result implies that the electric field can be assigned
an energy density

wel =
ϵijEiEj

8π
=

EiDi

8π
=
ϵijDiDj

8π
with Wel =

∫
V

dV wel, (A.61)

where the dielectric tensor now acts as a metric for computing the energy density
from the fields, making it invariant under transformations. Positive definiteness of ϵij
(and consequently, of ϵij ) ensures that the energy density for electric fields comes out
as positive. The energy density associated with magnetic fields is given in complete
analogy by

wmag =
µijHiHj

8π
=

HiBi

8π
=
µijBiBj

8π
with Wmag =

∫
V

dV wmag. (A.62)

A.10 Boundary conditions for fields on surfaces

Maxwell’s equations allow a direct statement about the behaviour of the electric fields
at boundaries in the static case: If a surface carries a charge surface density σ, an
application of the Gauß-theorem to a small volume V situated on the surface yields∫
V

dV∂iD
i =

∫
∂V

dSi Di = 4π
∫
∂V

dSσ = 4πσ∆S = ∆S(D⊥2 −D⊥1 ) → D⊥2 = D⊥1 +4πσ

(A.63)

if the height of the integration volume is neglected; effectively one deals with a very
flat box. Similarly, because ϵijk∂jEk = −ϵijk∂j∂kΦ = 0 for electrostatic fields,

15



a. maxwell-equations

∫
S

dSi ϵ
ijk∂jEk =

∫
∂S

dr i Ei = ∆r (E∥2 − E∥1) = 0 → E∥2 = E∥1 (A.64)

as an application of the Stokes-theorem to a small and flat area S perpendicular
to the surface. The constitutive relations Di = ϵijEj and its inverse then allow the
computation of E⊥ and D∥.
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B potential theory

B.1 Potential theory

Computing the field configuration Ei(r) for a given distribution of electric charges
ρ(r) in the case of electrostatics requires the solution of the Poisson-equation through
a convolution integral

∆Φ(r) = −4πρ(r) → Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

(B.65)

with subsequently determining the gradient Ei(r) = −∂iΦ(r). The reason for taking
the detour over the potential Φ is that Poisson-problems of the form

∆Φ(r) = −4πρ(r) (B.66)

are scalar and very well understood, with a plethora of solution methods. They map
a single scalar source ρ onto a scalar field Φ, and from this perspective it is clear that
the components of Ei = −∂iΦ can not be independent from each other, as they have to
have a vanishing rotation, ϵijk∂jEk = 0 in the static case. Please note that the inverse
operation, i.e. determining the charge density ρ at a given position from the potential
is straightforward: It suffices to compute the divergence of the gradient of the electric
potential, ∆Φ = ϵij∂i∂jΦ to obtain ρ up to a factor of −4π.

Essentially, one needs to worry about three issues: (i) the inversion of the differen-
tial operator ∆ for isolating Φ, which is achieved with the Green-function method,
(ii) dealing with a possibly complicated geometry of the charge distribution ρ, and
(iii) including boundary conditions typical for elliptical partial differential equations
such as the Poisson-equation. The second issue is less severe and almost automatically
taken care of if the first and third issue are solved: As the Poisson-equation is linear,
the potential of an entire charge distribution should result from the superposition of
the potentials generated by each infinitesimal element of charge.

B.2 Systematic construction of Green-functions

Formally, the solution to the Poisson-equation can be thought of as applying an
inverse operator ∆−1 for isolating Φ from the relation ∆Φ = −4πρ: The well-known
convolution integral

Φ =
∫
V

dV′
ρ(r′)
|r − r′ |

(B.67)

provides a solution to the Poisson-equation and therefore, consistency requires

Φ = ∆−1∆Φ = −4π∆−1ρ. (B.68)

In this sense, the convolution∫
V

dV′
1

|r − r′ |
. . . is an inverse operation to ∆ [. . .] , (B.69)
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b. potential theory

perfectly encapsulated in the relation

∆
1

|r − r′ |
= −4πδD(r − r′). (B.70)

In this context, the integration kernel 1/ |r − r′ | is called the Green-function of the dif-
ferential operator ∆ (in three dimensions), and corresponds to the potential of a unit
point charge. Although it is bad style (in my opinion), the notation ∆−1 can be used for
denoting the convolution eqn. (B.69), and one formally solves the Poisson-equation
by application of the ∆−1-operator, Φ = ∆−1∆Φ = −4π ∆−1ρ, through convolution.

Up to this point, the approach was very intuitive: The Gauß-law suggests that
the electrostatic field around a point charge should be ∝ 1/r2 and conservative, such
that a potential exists. The potential has to have a scaling ∝ 1/r for its gradient to
describe the electric field. But there should be a general way of constructing the
Green-function ∆−1 for any differential operator ∆. For that purpose, one introduces
the k Fourier-transform of the potential

Φ(k) =
∫
V

dV Φ(r) exp(−iki r
i) ↔ Φ(r) =

∫
V

d3k

(2π)3 Φ(k) exp(+iki r
i) (B.71)

as well as of the charge density

ρ(k) =
∫
V

dV ρ(r) exp(−iki r
i) ↔ ρ(r) =

∫
V

d3k

(2π)3 ρ(k) exp(+iki r
i) (B.72)

Then, the Poisson-equation becomes

∆Φ(r) = ∆

∫
V

d3k

(2π)3 Φ(k) exp(+iki r
i) =

∫
V

d3k

(2π)3 Φ(k)∆ exp(+iki r
i) =

∫
V

d3k

(2π)3 Φ(k)(−γabkakb) exp(+iki r
i) = −4π

∫
V

d3k

(2π)3 ρ(k) exp(+iki r
i) = −4πρ(r)

(B.73)

as ∆ = γab∂a∂b acts on the plane wave exp(+iki r i) twice and generates a pre-factor
−γabkakb = −k2, for an isotropic medium for simplicity. Comparing the two Fourier-
transforms suggests that

∆Φ(r) = −4πρ(r) → k2Φ(k) = 4πρ(k), solved by Φ(k) =
4π
k2 ρ(k) (B.74)

Most interestingly, the (partial) differential equation has become a straightforward
algebraic equation, which is readily solvable. Clearly, one can isolate Φ through
division by −k2 in Fourier-space, as illustrated by the diagram:
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b.2. systematic construction of green-functions
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Figure 2: Green-functions G(r) of the Laplace-operator ∆ in different dimensions n.

Φ(r) Φ(k)

ρ(r) ρ(k)

∆ −γijkikj

F −1

F

(B.75)

which suggests that Φ = F −1
(
4π/k2 F (ρ)

)
, as the complication of solving the Poisson-

equation is replaced by finding the Fourier-transform and its inverse. There are even
performance advantages of taking the detour through Fourier-space, as there are very
powerful and efficient k Fourier-transform algorithms.

In fact, multiplications in Fourier-space are convolutions in real space, which
implies for our case that the product between the Fourier-transformed Green-function
4π/k2 and the Fourier-transformed charge distribution ρ(k) = F (ρ) yields the Fourier-
transformed potential Φ(k) in this detour. At the same time, the Fourier-transform of
4π/k2 must be equal to 1/r, which we already know to be the Green-function for ∆ in
3 dimensions.

Let’s repeat this construction for the Laplace-operator and derive an expression
for the Green-function which is generalisable beyond n = 3 dimensions: In general,
the Green-function G(r− r′) is defined as the potential for a unit point charge element,
represented by a Dirac-δD, so the Poisson-equation needs to be fulfilled:

∆G(r − r′) = −4πδD(r − r′) (B.76)

Both the Green-function as well as the Dirac-δD have a Fourier representation:

G(r− r′) =
∫

d3k

(2π)3 G(k) exp(iki(r− r′)i) and δD(r− r′) =
∫

d3k

(2π)3 exp(iki(r− r′)i),

(B.77)
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b. potential theory

where δD has a constant amplitude in Fourier-space. Substituting into the Poisson-
equation yields

∆G(r− r′) = ∆

∫
d3k

(2π)3 G(k) exp(iki(r− r′)i) =
∫

d3k

(2π)3 (−k2)G(k) exp(iki(r− r′)i) =

− 4π
∫

d3k

(2π)3 exp(iki(r − r′)i) = −4πδD(r − r′) (B.78)

such that
G(k) =

4π
k2 (B.79)

because each differentiation ∂i generates a prefactor of iki . While the proportionality
∝ 1/k2 is valid in any number of dimensions, transforming back according to

G(r − r′) =
∫

dnk
(2π)n

G(k) exp(iki(r − r′)i) (B.80)

leads to different results due to volume element dnk ∝ kn−1dk depending on dimen-
sionality. In addition, 4π is just the full k solid angle in three dimensions, and would
need to be changed if the dimensionality is different.

B.3 Green-theorems

For showing the uniqueness of solutions to potential problems and for incorporating
boundary conditions one needs the two Green-theorems, which are readily derived
as particular cases of the Gauß-theorem. Defining

Ai(r
′) = φ(r′)∂′iψ(r′) with two scalar fields φ, ψ (B.81)

that all depend on the primed coordinate for convenience in the derivations later on,
gives

γij∂′iAj = γij∂′i
(
φ∂′jψ

)
= γij∂′iφ∂′jψ + φ∆′ψ (B.82)

due to the Leibnitz-rule, and by writing γij∂′i∂
′
j = ∆′ . Applying the Gauss-theorem

yields the first Green-theorem

∫
V

dV′ γij∂′iAj =
∫
V

dV′ γij∂′i
(
φ∂′jψ

)
=

∫
V

dV′
(
γij∂′iφ∂′jψ + φ∆′ψ

)
=

∫
∂V

dS′i γ
ijAj =

∫
∂V

dS′i γ
ij
(
φ∂′jψ

)
(B.83)

The right side of the first Green-theorem,∫
V

dV′ γij∂′i
(
φ∂′jψ

)
=

∫
∂V

dS′i γ
ij
(
φ∂′jψ

)
, (B.84)
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b.3. green-theorems

can be interpreted as the scalar product of φ∂′jψ with the surface normal dS′i of the
area element.

The second Green-theorem is obtained by interchanging the fields φ↔ ψ in the
first Green-theorem and by subtracting both expressions:∫

V

dV′
(
φγij∂′i∂

′
jψ − ψγ

ij∂′i∂
′
jφ

)
=

∫
∂V

dS′i γ
ij
(
φ∂′jψ − ψ∂

′
jφ

)
(B.85)

as the symmetric mixed term γij∂′iψ ∂′jφ = γij∂′iφ∂′jψ cancels.

The potential of an electrostatic problem is unique: For a given ρ there can be only
a single potential Φ, defined up to an at most additive constant, which can be proved
by contradiction. If there were two solutions

∆Φ1 = −4πρ as well as ∆Φ2 = −4πρ → ∆ (Φ1 − Φ2) = ∆δ = 0 (B.86)

their difference δ = Φ1 − Φ2 would fulfil the Laplace-equation ∆δ = 0, as shown by
subtraction. Substituting δ into the first Green-theorem gives∫

V

dV′
[
δγij∂′i∂

′
jδ − γ

ij∂′iδ∂
′
jδ

]
=

∫
∂V

dS′i γ
ijδ∂′jδ = 0 (B.87)

The surface-integral vanishes if proper boundary conditions are chosen on ∂V:
Either, if Φ1 = Φ2 or δ = 0 on ∂V is set (Dirichlet) or if ∂′jΦ1 = ∂′jΦ2 or ∂′jδ = 0 on ∂V
(Neumann). With ∆′δ = 0 being zero because both Φ1 and Φ2 are solutions for the
same source one arrives at ∫

V

dV′ γijδ∂′jδ = 0 (B.88)

which implies that ∂ij∂′iδ∂
′
jδ = 0, as the integrand is positive definite and must

vanish over any specified volume. As a consequence, Φ2 = Φ1 + const at most, and
the constant must vanish for Dirichlet-conditions because of δ = 0 on ∂V.

The solution to the Poisson-equation did not yet incorporate boundary conditions
like specified values on surfaces or specified gradients. Setting

ψ(r′) ≡ 1
|r − r′ |

→ ∆′ψ(r′) = −4πδD(r − r′) (B.89)

as well as
φ(r′) ≡ Φ(r′) → ∆′φ(r′) = −4πρ(r′) (B.90)
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b. potential theory

suggests for the volume integrals

∫
V

dV′
(
φγij∂′i∂

′
jψ − ψγ

ij∂′i∂
′
jφ

)
=

∫
V

dV′
(
Φ(r′)(−4πδD(r − r′)) +

1
|r − r′ |

4πρ(r′)
)

=

− 4πΦ(r) + 4π
∫
V

dV′
ρ(r′)
|r − r′ |

(B.91)

and for the surface integrals∫
∂V

dS′iγ
ij
(
φ∂′iψ − ψ∂

′
jφ

)
=

∫
∂V

dS′iγ
ij

(
Φ(r′)∂′j

1
|r − r′ |

− 1
|r − r′ |

∂′jΦ(r′)
)

(B.92)

Assembling the entire expression gives the relation

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

+
1

4π

∫
∂V

dS′i γ
ij

(
1

|r − r′ |
∂′jΦ(r′) − Φ(r′)∂′j

1
|r − r′ |

)
(B.93)

with the volume integral reiterating the conventional way of computing Φ from ρ,
augmented by two additional contributions, one representing k Neumann-boundary
conditions with ∇Φ on ∂V and the second representing k Dirichlet-boundary condi-
tions with Φ on ∂V. If the boundary is at infinity, both 1/r ∇Φ and Φ∇1/r tend to zero
as 1/r3, so the first term is the only one to survive. Interestingly, the formula suggests
that there can be a nontrivial potential Φ even though ρ might be zero: Then, the
potential is determined by Φ and ∇Φ on the boundary. It might be a surprisingly sen-
sible question, if one can construct a charge distribution that replaces the boundary
conditions in an otherwise unconstrained potential problem, and the question can be
positively answered: Any potential Φ is linked to a distribution of sources ρ through
the Poisson-equation ∆Φ = −4πρ, so setting ρ = −∆Φ/(4π) would be consistent with a
potential fulfilling the boundary conditions, which is exactly the method of k mirror
charges.

B.4 Spherical multipole expansion

The Green-function 1/ |r − r′ | is the correct convolution kernel for computing the
potential Φ for any charge distribution ρ in fulfilment of the Poisson-equation
∆Φ = −4πρ. But there might be cases where an approximate computation of Φ
is sufficient, in particular because intuitively, any localised charge distribution should
generate a Coulomb-like spherically symmetric 1/r-potential at large distances, with
deviations only appearing at smaller distances: This is shown in Fig. 3, where one of
isopotential surfaces is given for a uniformly charged cube. With increasing distance
(and correspondingly, lower values for Φ), the surfaces become more and more spher-
ical, as expected from the Coulomb-potential of a point charge. The effect is more
pronounced in Fig. 4, where the isocontours of the potential of a charge distribution
with four equal charges in the corners of a tetrahedron is shown.
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b.4. spherical multipole expansion

In fact, expanding the Green-function leads to

1
|r − r′ |

=
1√

r2 − 2rr ′µ + r ′2
=

1
r

1√
1 − 2 r ′

r µ + r ′2

r2

(B.94)

where µ = cos θ is the cosine of the angle between r and r′ . If one assumes now that
the observation point r is far away from the charge distribution (and r′ points by
definition of the convolution relation to every charge element), then r ≫ r ′ and the
root can be expanded:

1
|r − r′ |

=
1
r

∞∑
ℓ=0

(
r ′

r

)ℓ
Pℓ(µ) (B.95)

where Pℓ(µ) are the Legendre-polynomials. They follow explicitly from the relation

1√
1 − 2µx + x2

=
∞∑
ℓ=0

Pℓ(µ)xℓ (B.96)

by ℓ-fold differentiation with respect to x = r ′/r ≪ 1 and successive setting of x = 0.
Explicitly, this would result in P0(µ) = 1, P1(µ) = µ and P2(µ) = (3µ2 − 1)/2.

Now, one can bridge between the Legendre-polynomals Pℓ(cos γ) and the spherical
harmonics Yℓm(θ,ϕ) with the addition theorem

Pℓ(cos γ) =
4π

2ℓ + 1

+ℓ∑
m=−ℓ

Yℓm(θ,ϕ)Y∗ℓm(θ′ ,ϕ′) (B.97)

with γ being the angle between (θ,ϕ) and (θ′ ,ϕ′). These spherical harmonics are
waves on the surface of the sphere

∆Yℓm(θ,ϕ) = −ℓ(ℓ+1)Yℓm(θ,ϕ), analogous to ∆ exp(±iki r
i) = −γabkakb exp(±iki r

i)
(B.98)

so that ℓ plays the role of a wave number, and its inverse reflects the wave length (in
radians) of the waves. The spherical harmonics (for details, see Sect. X.6) constitute
therefore a harmonic system and are naturally related to Fourier-transforms, and
generalise the idea of harmonic analysis to functions defined on the surface of a
sphere.

Replacing the Legendre-polynomials by spherical harmonics leads to

1
|r − r′ |

=
∞∑
ℓ=0

+ℓ∑
m=−ℓ

4π
2ℓ + 1

r ′ℓ

rℓ+1
Yℓm(θ,ϕ)Y∗ℓm(θ′ ,ϕ′) (B.99)

which can be substituted into the expression of the potential

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

=
∞∑
ℓ=0

+ℓ∑
m=−ℓ

4π
2ℓ + 1

1
rℓ+1

Yℓm(θ,ϕ) ×
∫
V

dV′ ρ(r′)r ′ℓY∗ℓm(θ′ ,ϕ′).

(B.100)
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b. potential theory

Figure 3: Isopotential surfaces of the potential sourced by eight equal charges, situated at
the corners of a cube, at decreasing distance
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b.4. spherical multipole expansion

Figure 4: Isopotential surfaces of the potential sourced by four equal charges, situated at
the corners of an tetrahedron, at decreasing distance
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b. potential theory

This formula is remarkable because it separates properties of the charge distribution
from the field that it would generate: Sorting the variables into primed and unprimed
leads to the definition of multipole moments qℓm

qℓm =
∫
V

dV′ ρ(r′)r ′ℓY∗ℓm(θ′ ,ϕ′). (B.101)

The multipole moments are a complete characterisation of the charge distribution
and contain information about the magnitude of the charge, the spatial size, the shape,
asphericity and orientation. Each of the multipoles is an independent contribution to
the potential Φ, whose influence decreases as 1/rℓ+1

Φ(r) =
∞∑
ℓ=0

+ℓ∑
m=−ℓ

4π
2ℓ + 1

1
rℓ+1

Yℓm(θ,ϕ)qℓm, (B.102)

which is amazingly practical, as higher-order multipoles generate contributions to
Φ which decay faster and faster with increasing distance. At large distances, only
the lowest order multipole can contribute, and it is sensible to expect that this
contribution should be a spherically symmetric potential determined by the total
charge. In fact, there is only m = 0 permissible for ℓ = 0, so that there is a single
coefficient q00,

q00 =
∫
V

dV′ r ′0︸︷︷︸
=1

ρ(r′) Y∗00(θ′ ,ϕ′)︸      ︷︷      ︸
= 1√

4π

=
q
√

4π
(B.103)

Therefore, the monopole q00 is the total charge of the system q, up to a factor of
1/
√

4π. At large distances, this term would dominate the multipole expansion and
generate a 1/r-like contribution to the potential Φ, in agreement with intuition that
the potential, viewed from a large distance of a somehow localised charge distribution,
should have this form.

The dipole ℓ = 1 allows the three choices m = −1, 0,+1, therefore, there are three
dipole moments

q1m =
∫
V

dV′ r ′ρ(r′)Y∗1m(θ′ ,ϕ′) (B.104)

whose fundamental functional form is that of ”charge × distance”, and carrying the
sequence further one defines 5 quadrupole moments q2m for m = −2ℓ,−ℓ, 0,+ℓ,+2ℓ

q2m =
∫
V

dV′ r ′2ρ(r′)Y∗2m(θ′ ,ϕ′) (B.105)

with a fundamental scaling ”charge × area”, and it is obvious how this would gen-
eralise to higher order multipoles such as octupoles and hexadecupoles. The idea is
always that the charge distribution is split up into coefficients qℓm that by construc-
tion look for smaller and smaller structures and that are sensitive to the spatial extent
(through the weighting with r ′ℓ) of the charge distribution, and to its asphericity and
orientation (through projection onto the spherical harmonics Yℓm(θ′ ,ϕ′)).
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b.5. cartesian multipole expansion

Formally, one needs the full set of multipole moments for writing down the
multipole expansion, but there is a hermiticity constraint just as in the case of the
Fourier-components of negative frequency for a real-valued function. Fundamentally,
one has

Y∗ℓm(θ,ϕ) = (−1)mYℓ,−m(θ,ϕ) (B.106)

which maps onto the relation

q∗ℓm =
∫
V

dV′ r ′ℓρ(r′)Yℓm(θ′ ,ϕ′) = (−1)m
∫
V

dV′ r ′ℓρ(r′)Y∗ℓ,−m(θ′ ,ϕ′) = (−1)mqℓ,−m

(B.107)

so that there are not 2ℓ + 1 but rather only ℓ + 1 independent multipole coefficients
for a real-valued charge distribution. With this realisation it is clear that the charged
cube in Fig. 3 can only exhibit a monopole and an octupole at lowest order. While the
monopole gives rise to a straightforward spherically symmetric Coulomb-potential,
the octupole contribution falls of very quickly ∝ 1/r4, so that it only matters very
close to the surface of the cube, and renders the isopotential surface non-spherical.

B.5 Cartesian multipole expansion

There is an alternative approach to multipole expansions in terms of Cartesian
coordinates, where the Green-function of a charge distribution localised around
the origin of the coordinate system is Taylor-expanded at r′ = 0 with respect to the
variable r′ , while r is kept fixed:

G(r, r′) ≃ G
∣∣∣∣∣
r′=0

+ ∂′iG
∣∣∣∣∣
r′=0

(x′)i +
1
2!
∂′i∂

′
jG

∣∣∣∣∣
r′=0

(x′)i(x′)j + · · · (B.108)

The necessary derivatives of G(r, r′) at r′ = 0 are easily computed to be

G
∣∣∣∣∣
r′=0

=
1
r
, ∂′iG

∣∣∣∣∣
r′=0

=
γiax

a

r3 , and ∂′i∂
′
jG

∣∣∣∣∣
r′=0

=
3γiaxaγjbxb − r2γij

r5 (B.109)

using the explicit form of the Green-function in Cartesian coordinates

G(r, r′) =
[
γab(r − r′)a(r − r′)b

]−1/2
. (B.110)

Here, we abbreviate r2 = γijx
ixj as the Euclidean norm of r. Then, the potential Φ is

given at r ≫ r ′ as

Φ(r) =
∫
V

dV′
ρ(r′)
|r − r′ |

≃
∫
V

dV′ρ(r′)

1
r

+
γiax

a(x′)i

r3 +
3γiaxaγjbxb − r2γij

r5 (x′)i(x′)j + · · ·


(B.111)
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b. potential theory

Applying the integration to each term in the series while interchanging summation
and integration gives

Φ(r) ≃ 1
r

∫
V

dV′ ρ(r′) +
xa

r3

∫
V

dV′ ρ(r′)γia(x′)i+

1
2!

3γiaxaγjbxb − r2γij

r5

∫
V

dV′ ρ(r′)(x′)i(x′)j (B.112)

where we can identify the Cartesian multipole moments: The total charge q in the
first term, the dipole moment qa in the second term, and the quadrupole moment in
the last term. They contribute to the potential Φ with increasing powers of 1/r, so
that their influence at large distance decreases with multipole order.

There might be an aesthetic issue, as 3γaixaγbjxb − r2γij is not mirrored in the
primed coordinate in the quadrupole term, likewise one might be irritated why there
seem to be six Cartesian multipole moments (There are 6 independent choices for i
and j in the tensor (x′)i(x′)j ) but only five in spherical coordinates (The index m can
assume the 5 different values −2, −1, 0, 1 and 2 for ℓ = 2). In order to remedy this
issue, one adds a zero in the expression for the quadrupole moment

3γaixaγjbxb − r2γij

r5

∫
V

dV′
(
ρ(r′) (x′)i(x′)j −r ′2

γij

3
+

becomes zero︷ ︸︸ ︷
r ′2
γij

3︸                    ︷︷                    ︸
=0

)
(B.113)

The last term in particular can be simplified, as in its contraction with the prefactor
one can write:

3γaixaγjbxb − r2γij

r5

∫
V

dV′ ρ(r′)r ′2
γij

3
= 0 (B.114)

because of γaiγbjγijxaxb = γabx
axb = r2 and because γijγij = δii = 3. Therefore, only

the combination of the first two terms remain, explicitly

3γaixaγbjxb − r2γij

r5

∫
V

dV′ ρ(r′)
(
3(x′)i(x′)j − r ′2γij

)
=

3xaxb − r2γab

r5

∫
V

dV′ ρ(r′)
(
3γai(x

′)aγbj (x
′)b − r ′2γab

)
(B.115)

establishing an identical structure in the quadrupole term. Summarising all terms
then yields the final result for the potential

Φ(r) =
q

r
+ qi

xi

r3 + qij
3xixj − r2γij

r5 (B.116)

with the monopole that shows the expected 1/r-behaviour, followed by the dipole
term with a fundamental scaling ∝ 1/r2 and an angular cosine-like behaviour en-
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Figure 5: Potential Φ of the tetrahedron as a function of distance r, in the representation
Φ × r1+ℓ, therefore, a flat section indicates a scaling Φ ∝ 1/r1+ℓ.

capsulated in the scalar product qixi . The quadrupolar term decreases ∝ 1/r3 with
distance. The moments read

q =
∫
V

dV′ ρ(r′), qi =
∫
V

dV′ ρ(r′) γai(x
′)a, (B.117)

and

qij =
∫
V

dV′ ρ(r′)
(
γai(x

′)aγbj (x
′)b − r ′2

3
γij

)
(B.118)

The typical scaling of the potential Φ proportional to 1/r for the monopole, 1/r2

for the dipole and 1/r3 for the quadrupole is illustrated in Fig. 5 for the example
of the tetrahedron. Any flat section of Φ × r1+ℓ as a function of r indicates exactly
the behaviour Φ ∝ 1/r1+ℓ. If there are four positive charges in the corners of the
tetrahedron, one sees a dominating Coulomb-potential at large distances, while at
shorter distances there is a dipole and a quadrupole contribution. If there are two
positive and two negative charges, however, the total charge is zero and there can not
be a Coulomb-type contribution to the potential: In fact there is no section with a flat
Φ × r as a function of r in this case. There is, however, a dominating dipole potential
for large radii, and a quadrupolar contribution at small distances.

And additionally, this new definition of the quadrupole moment is traceless,

qii = γijqij =
∫
V

dV′ ρ(r)
(
3γai(x

′)aγjb(x′)b − r ′2γij
)
γij = 0 (B.119)

such that the Cartesian quadrupole moment qij , as a symmetric, traceless tensor in 3
dimensions has 5 instead of 6 degrees of freedom, commensurate with qℓm for ℓ = 2
in spherical coordinates.
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b. potential theory

B.6 Potential energy of a charge distribution in a potential

The same result, perhaps with a bit more physical insight, can be reached by consid-
ering the interaction between a charge distribution ρ and an external field Φ. The
associated energy W is given by

Wel =
1
2

∫
V

dV ρ(r)Φ(r) (B.120)

where ρ acts now as a test charge distribution situated at r = 0 in a potential Φ that
gets Taylor-expanded around r = 0:

Φ(r) = Φ(r)
∣∣∣∣∣
r=0

+ ∂iΦ

∣∣∣∣∣
r=0

xi +
1
2!
∂i∂jΦ

∣∣∣∣∣
r=0

xixj (B.121)

But for keeping the distinction between test charge and external potential we need
to make sure that Φ is not actually sourced by ρ itself: The Poisson-equation would
stipulate that

∆Φ = −4πρ (B.122)

and because the Laplace-operator acting on Φ is identical to the trace of the tensor of
second derivatives of Φ, γij∂i∂jΦ = ∆Φ, it should not be contained in W. Therefore,
one defines a traceless tensor

∂i∂jΦ → ∂i∂jΦ −
∆Φ

3
γij (B.123)

by subtracting out the trace ∆Φ, such that the potential becomes

Φ(r) = Φ(r)
∣∣∣∣∣
r=0

+ ∂iΦ

∣∣∣∣∣
r=0

xi +
1
6
∂i∂jΦ

∣∣∣∣∣
r=0

(
3xixj − r2γij

)
. (B.124)

Inclusion of the r2γij-term does not make any difference, because

xixj
(
∂i∂jΦ −

∆Φ

3
γij

)
= xixj∂i∂jΦ −

∆Φ

3
γijx

ixj︸  ︷︷  ︸
=r2

= xixj∂i∂jΦ as ∆Φ = 0.

(B.125)

The definitions of total charge q, dipole moment qi and quadrupole moment qij are
then identical to those discussed before, and the final expression of the interaction
energy would be

Wel =
1
2

∫
V

dV ρ(r)Φ(r) ≃ 1
2
qΦ(r) +

1
2
qi∂iΦ +

1
12

qij∂i∂jΦ (B.126)

with the interpretation that the interaction energy of nth order multipoles of the
charge distribution is sensitive to the nth derivatives of Φ, and that they depend on
the magnitude and relative orientation of the eigensystems of the tensors. This point
of view is genuinely new, because the energy W can be changed by reorienting the
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b.7. magnetic vector potential and gauging

charge distribution, in addition to displacing it. Additionally, the nth derivatives of
the potential become measurable through their interaction energy with a multipole
of order n, separate by order.

B.7 Magnetic vector potential and gauging

Magnetostatic problems, i.e. the computation of the magnetic fields for a given current
density ȷi with no contribution from time-varying electric fields require the solution
of the fourth Maxwell-equation

ϵijk∂kHk =
4π
c
ȷi , (B.127)

where this solution needs to fulfill the second Maxwell-equation ∂iBi = 0 as a
constraint. This constraint would be automatically fulfilled if Bi is derived from a
magnetic potential Ai according to Bi = ϵijk∂jAk , because ∂iBi = ϵijk∂i∂jAk = 0,
again through contraction of an antisymmetric with a symmetric object. Introducing
the constitutive relation Hi = µijBj brings the fourth Maxwell-equation into the form

ϵijk∂jHk = µklϵ
ijk∂jB

l = µklϵ
ijkϵlmn∂j∂mAn (B.128)

which, for isotropic media with µkl = γkl /µ leads to the Grassmann-relation . In an anisotropic medium, the
Grassmann-algebra would read
µkl ϵ

ijkϵlmn = µimµjn − µinµjm
=

1
µ

(
γimγjn − γinγjm

)
∂j∂mAn =

1
µ

(
γim∂m(γjn∂jAn) − γin(γjm∂j∂mAn)

)
. (B.129)

There exists the possibility to set the divergence γjn∂jAn = 0, called the Coulomb-
gauge, showing that in fact a Poisson-type equation relates Ai and ȷi : . The Coulomb-gauge in a

medium would be µjn∂jAn = 0...

∆Ai = −
4πµ
c
γij ȷ

j , (B.130)

after multiplication of the equation with the inverse metric. Perhaps this is the right . ...and the field equation ∆Ai =
−4πµij ȷj /c with ∆ = µij∂i∂jmoment to emphasise that the ”vector” potential Ai is in fact a linear form, and

that the metric γij is needed to convert the vector ȷi to a linear form, to make the
Poisson-equation notationally consistent.

To illustrate the power of a gauge-assumption one could write eqn. (B.129) in
matrix-vector notation, for the case of an isotropic medium and brushing slightly
over the differences between vectors and linear forms, by using Ai = γijAj as a vector,

∆ 0 0
0 ∆ 0
0 0 ∆

 ·


Ax

Ay

Az

 −

∂x∂x ∂x∂y ∂x∂z

∂y∂x ∂y∂y ∂y∂z

∂z∂x ∂z∂y ∂z∂z

 ·


Ax

Ay

Az

 = −
4πµ
c


ȷx
ȷy
ȷz

 . (B.131)

While the first term, where Ai gets multiplied with a diagonal matrix that contains
the Laplace-operator ∆, defines a one-to-one mapping of each component of Ai to
its corresponding source ȷi , the association is broken by the second term, which
is non-diagonal and supplies all kinds of mixed derivatives. But the assumption
Coulomb-gauge makes these contributions vanish.

The assumption of Coulomb-gauge γjn∂jAn = 0 provides an astounding sim-
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b. potential theory

plifaction, as each entry of Ai is sourced from each corresponding entry of ȷi in
three independent Poisson-equations. Without Coulomb-gauge, the term ∂i(γjn∂jAn)
would, as the gradient in the i-direction of the divergence of A, couple all three
equations. The interplay between the magnetic potential Ai (in Coulomb-gauge), the
magnetic fields Hi , Bi and the source ȷi is summarised by this diagram,

An

Bl Hk

ȷi

ϵlmn∂m

∆γin

µkl

µlk

ϵijk∂j

∫
dV′ 1
|r−r′ | γni ...

(B.132)

The physically measurable magnetic field Bi does not change under k gauge
transforms

Ai → Ai + ∂iχ (B.133)

because

Bi = ϵijk∂jAk → ϵijk∂j (Ak + ∂kχ) = ϵijk∂jAk + ϵijk∂j∂kχ︸     ︷︷     ︸
=0

= Bi (B.134)

using that the gradient of a scalar field is always curl-free, ϵijk∂j∂k vanishes as a
contraction between an antisymmetric and symmetric tensor. This implies that the
potential is only determined up to the gradient ∂iχ of a scalar field χ (the gauge field).
A particularly constructed field ∂iχ can always be added onto Ai for computational
convenience, without ever changing the actually measurable field Bi . This conve-
nience might be the assumption of a k gauge condition, for instance γij∂iAj = 0
(called Coulomb-gauge), which is necessary to have Poisson-type potential problems
in magnetostatics.
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b.7. magnetic vector potential and gauging

The Coulomb-gauge condition transforms as

γij∂iAj = 0→ γij∂i(Aj + ∂jχ) = γij∂iAj + γij∂i∂j︸  ︷︷  ︸
=∆

χ = 0. (B.135)

If the vector potential Ai should be free of any divergence, one can construct χ as a
solution to the Poisson-type equation

∆χ = −γij∂iAj , (B.136)

effectively sourcing the gauge function χwith the yet nonzero divergence of the vector
potential. It has, due to the Green-theorems, always a unique solution. Applying the
gauge-transformation with this gauge field χ effectively cleans up the vector potential
and makes it perfectly divergence-free. We can always assume that this has already
been taken care of, just by writing γij∂iAj = 0.
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C dynamics of the electromagnetic field

C.1 Potentials and wave equations

Working with static fields was a tremendous simplification of the Maxwell-equations
and yielded, at least under the assumption of Coulomb-gauge, Poisson-type relations
between the potentials Φ and Ai and the sources ρ and ȷi , with easily computable
fields Ei and Bi . In taking the detour over the potentials one enables the full toolkit
around Green-functions including the treatment of boundary conditions. But the
existence of potentials, clearly at this point unrelated to energies as in the electrostatic
case, follows from the homogeneous Maxwell-equations in a much more general
argument: The second Maxwell-equation ∂iBi = 0 suggests that there is a vector
field Ai with Bi = ϵijk∂jAk , as then ∂iBi = ϵijk∂i∂jAk = 0 is automatically fulfilled.
Consequently, the induction law ϵijk∂jEk +∂ctBi = 0 becomes ϵijk∂jEk +∂ctϵ

ijk∂jAk =
ϵijk∂j(Ek + ∂ctAk) = 0, suggesting a potential Φ with Ei + ∂ctAi = −∂iΦ (the minus-
sign is conventional).

Therefore, the homogeneous Maxwell-equations ensure the existence of potentials
in the general case, which again are only determined up to a gauge transform: As
before, we write Ai → Ai + ∂iχ (which leaves Bi invariant) and investigate the
necessary changes to Φ: The electric field Ei is gauge-invariant only if

Ei = −∂iΦ − ∂ctAi → −∂iΦ + ∂ct∂iχ︸ ︷︷ ︸
for consistency

−∂ct(Ai + ∂iχ) = Ei (C.137)

i.e. if we include an additional term ∂ctχ, implying the transformation rule

Φ → Φ − ∂ctχ alongside Ai → Ai + ∂iχ (C.138)

for consistency, keeping in mind that partial derivatives interchange, ∂ct∂iχ = ∂i∂ctχ.

While the homogeneous Maxwell-equations safeguard the existence of potentials,
the inhomogeneous Maxwell-equations couple the fields to the charges, be it static or
dynamic. But while the homogeneous Maxwell-equations make statements about the
observable fields Ei and Bi and derive them from potentials Φ and Ai , the coupling to
sources is clarified by the inhomogeneous Maxwell-equations in terms of the auxiliary
fields Di and Hi . Hence, constitutive relations are needed.

In fact, the first Maxwell-equation makes a statement about the divergence of
Di , which is given in terms of the potentials by Ei = −∂iΦ − ∂ctAi , followed by
Di = ϵijEj = ϵγijEj , where we assume an isotropic medium. Consequently,

∂iD
i = ϵγij∂iEj = −ϵγij∂i∂jΦ − ϵγij∂ct∂iAj = 4πρ (C.139)

where we recover the conventional Poisson-equation ϵ∆Φ = −ϵγij∂i∂jΦ = −4πρ
in Coulomb-gauge, γij∂iAj = 0. The fourth Maxwell-equation links the magnetic
field Hi to ȷi and the time derivative of the electric fields ∂ctDi , implying with
Bi = ϵijk∂jAk and the constitutive relation Hi = µijBj = γijBj /µ

ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi → 1

µ
ϵijk∂jγklϵ

lmn∂mAn = +∂ctϵγ
ijEj +

4π
c
ȷi . (C.140)
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c. dynamics of the electromagnetic field

The contracted Levi-Civita symbol can be expanded in terms of the Grassmann-
idenity,

1
µ
γklϵ

ijkϵlmn∂j∂mAn =
1
µ

(
γimγjn − γinγjm

)
∂j∂mAn =

1
µ

(
γim∂m

[
γjn∂jAn

]
− γin

[
γjm∂j∂mAn

])
(C.141)

where one recognises the Coulomb-gauge term in the first and the Laplace-operator
in the second square bracket. Substitution of the expression Ei = −∂iΦ − ∂ctAi on the
right side leads to

∂ctϵγ
ijEj +

4π
c
ȷi = −∂ctϵγ

ij∂jΦ − ϵ∂2
ctγ

ijAj +
4π
c
ȷi (C.142)

By assuming a different gauge condition, namely k Lorenz-gauge1

ϵ∂ctΦ +
1
µ
γij∂iAj = 0 (C.143)

the two field equations decouple into a perfectly symmetric shape. Starting with
eqn. (C.139), one obtains by substitution of the Lorenz-gauge condition

−γij∂i∂jΦ + ϵµ∂2
ctΦ =

4π
ϵ
ρ, (C.144)

i.e. a perfectly viable wave equation for Φ, sourced by ρ/ϵ. The same procedure
applied to eqns. (C.141) and (C.142) leads likewise to a wave equation,

−γjm∂j∂mγ
inAn + ϵµ∂2

ctγ
ijAj =

4π
c
µȷi (C.145)

With the definition of the d’Alembert-operator

□ = ϵµ∂2
ct − ∆ (C.146)

as a generalisation to the Laplace-operator ∆ for dynamic situations, the two equa-
tions can be written as

□Φ =
4π
ϵ
ρ and □Ai =

4π
c
µγij ȷ

j (C.147)

and become two decoupled linear partial hyperbolic differential equations, providing
4 relations between 4 sources and 4 potentials, all decoupled by virtue of the Lorenz-
gauge condition.

1The Lorenz-gauge is named after Ludvig 4 Lorenz while the Lorentz-transformation was proposed by
Hendrik Antoon 4 Lorentz, hence the different spelling.
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c.1. potentials and wave equations

Differential equations involving the d’Alembert-operator typically have wave-like
solutions, propagating at the velocity c, in this case modified to c/

√
ϵµ, where one

recognises n =
√
ϵµ as the index of refraction:

ϵµ∂2
ct = ϵµ

∂2

∂(ct)2 =
ϵµ

c2
∂2

∂t2 =
(

c
√
ϵµ

)−2
∂2

∂t2 =
∂2

∂(c′t)2 = ∂2
c′ t where c′ =

c
√
ϵµ

(C.148)

The gauge function χ for achieving Lorenz-gauge can be computed by considering
the transformation of the expression ϵ∂ctΦ + γij∂iAj /µ = 0:

ϵ∂ctΦ +
1
µ
γij∂iAj → ϵ∂ct (Φ − ∂ctχ) +

1
µ
γij∂i

(
Aj + ∂jχ

)
=

ϵ∂ctΦ +
1
µ
γij∂iAj − ϵ∂2

ctχ+
1
µ
∆χ = 0 (C.149)

which is equivalent to

□χ = ϵµ∂2
ctχ− ∆χ = ϵµ∂ctΦ + γij∂iAj (C.150)

This is a wave-equation for χ, sourced by a possibly nonzero ϵ∂ctΦ + γij∂iAj /µ. As a
hyperbolic partial linear differential equation, it has again a unique solution for χ,
such that Lorenz-gauge can be imposed. Determining χ through ∆χ = γij∂iAj /µ for
Coulomb-gauge in the static case and □χ = ϵµ∂ctΦ + γij∂iAj for Lorenz-gauge in the
dynamic case are completely analogous.

It is important to realise that the gauge freedom only provides a mathematical
convenience for computing the potentials from the sources, and it can be used to
set terms in the potential equations to zero. Nowhere there is anything physical
happening: Purely by the act of imagining a new gauge condition the physically
observable fields can not change. In addition, it is just practicality that persuades us
to use Coulomb-gauge for the static case and Lorenz-gauge for the dynamical case,
and not a physical requirement. In fact, it is perfectly reasonable to use the Coulomb-
gauge γij∂iAj = 0 for the dynamical equations. Then, eqns. (C.139) and (C.141)
become

∆Φ = −4π
ϵ
ρ and ∆Ai − ∂2

ctAi = −4π
c
µγij ȷ

j + ϵ∂i∂ctΦ (C.151)

and deserve some explanation: The Poisson-equation provides an instantaneously
changing Φ at any distance from the dynamically changing source ρ, while there is
a wave-equation linking Ai to γij ȷi . But Ai depends as well on ∂i∂ctΦ as a dynamic,
vectorial source, hence the two equations are not yet fully decoupled. Coulomb-gauge
might still be attractive though, because of the particularly easy expression for Φ!

The relationship between source, potential and fields are summarised for the case
of static fields in Coulomb-gauge and for the dynamical case in Lorenz-gauge, where
additional terms are indicated by dashed arrows:
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c. dynamics of the electromagnetic field

Ek Bi

ρ Φ Ak γkmȷ
m

χ 0

□
∆

−∂k

∂ct

ϵijk∂j

γkl∂l

□
∆

−∂ct

∂k

∂ct

(C.152)

The fields Ei and Bi are obtained from the potentials Φ and Ai by differentiation,
and applying a second differentiation gives the sources ρ and ȷi . The direct path from
the potentials to the sources is given by application of the ∆. The dynamic case is
slightly more complicated, as Ei obtains a contribution −∂ctAi and as ϵijk∂jHk not
only depends on ȷi , but also on ∂ctDi . The gauge function χ transforms only Ai in the
static case, but both Ai and Φ in the dynamical case.

While we already know the Green-function inverting ∆ from electrostatic and
magnetostatic potentials and have encountered a systematic way of its construction,
we now have to turn to □ and find a suitable time-dependent Green-function: the
Liénard-Wiechert potentials.

C.2 Solving the wave equation for potentials

Intuitively it is clear that a changed charge distribution does not immediately affect
the fields at any distance, but that there needs to be some time passing until the
field configuration has adjusted itself to changes in the source distribution. For
this purpose, let’s assume Lorenz-gauge ϵ∂ctΦ + γij∂iAj /µ = 0 such that the field
equations become

□Φ = 4πρ and □Ai =
4π
c
γij ȷ

j (C.153)

These equations are decoupled hyperbolic partial differential equations, with the
charge density ρ and the current density ȷi as sources. Clearly, in vacuum ρ and ȷi

vanish, such that one falls back onto two homogeneous PDEs

□Φ = 0 as well as □Ai = 0 (C.154)

which can be solved with a plane wave ansatz

Φ, Ai ∝ exp
(
±i(ωt − ki r i)

)
. (C.155)
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Substitution yields for both Φ and Ai the result that

□ exp
(
±i(ωt − kkr i)

)
=

[(
± iω

c

)2
− γab (∓ika) (∓ikb)

]
exp

(
±i(ωt − ki r i)

)
=

[
−
(
ω

c

)2
+ γabkakb

]
exp

(
±i(ωt − ki r i)

)
= 0 (C.156)

i.e. the plane wave is a valid solution as long as the dispersion relation

ω2 = c2γabkakb = (ck)2 → ω = ±ck (C.157)

is fulfilled, which requires a strict proportionality between angular frequency ω and
wave number ka, with the speed of light c as the constant of proportionality. With this
particular dispersion relation one can immediately show that the phase and group
velocities are identical and have the value of c:

υph =
ω

k
= c =

dω
dk

= υgr (C.158)

which implies that wave packets in Φ and Ai propagate k dispersion-free, i.e.
without changing their shape. But perhaps more importantly, the wave equations
suggest that excitations of the fields travel at a finite speed c in the potentials Φ and
Ai (at least in Lorenz-gauge, the statement would not be true in Coulomb-gauge!).

C.3 Wave equation for fields

While propagation and the form of the propagation equations depends on the level
of the potentials Ai and Φ on the assumed gauge, the fields Ei and Bi as physical
observables can never depend on a certain gauge and always exhibit propagation at
the speed of light c. In a vacuum situation with ȷi = 0 as well as ρ = 0 both fields are
divergence-free ∂iDi = ∂iBi = 0 and the rotations are defined, up to a sign arising
from duality invariance, by

ϵijk∂jEk = −∂ctB
i and ϵijk∂jHk = +∂ctD

i . (C.159)

Taking a further rotation of any of the two equations, using rot rot = ∇div − ∆,
setting the divergence-term to zero and substituting the time derivative of the other
equation leads to . Including a source term for the

wave equations for the fields them-
selves is a bit complicated, but
we’ll return to that issue later.

(
∂2
ct − ∆

)
Ei = □Ei = 0 and, in parallel,

(
∂2
ct − ∆

)
Hi = □Hi = 0 (C.160)

i.e. perfectly symmetric wave equations for the electric and magnetic fields, with
excitations travelling at the speed of light c. The symmetry in the shape of the
equations is perhaps not too surprising, as one can always replace the fields in
a duality transform Ei → Hi and Hi → −Ei valid in vacuum. Solving the wave
equations with a plane wave ansatz ∝ exp

(
±i(ωt − ki r i)

)
is perfectly general: Due to

the linearity of the PDEs, any field configuration can be written as a superposition of
plane waves that solve the wave equation.
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Figure 6: Harmonic wave as a function of x; the shading indicates evolution with time t.

Substituting the plane wave-ansatz into the divergences shows that

γijkiEj = 0 and γijkiHj = 0 (C.161)

implying that the fields are transverse, i.e. the amplitudes are perpendicular to the
direction of propagation, and substituting into the rotation equations suggests

ϵijkkjEk = −ω
c

Bi = − ω
µc
γijHk as well as ϵijkkjHk = +

ω

c
Di = +

ωϵ

c
γijEj (C.162)

such that the amplitudes of the fields themselves are perpendicular to each other.
Please note that the statements of transversality and perpendicularity can not be
independent: Pictorially, there is simply no other direction in which k could point:
Multiplying the latter two equations with ki already implies that γijkiHj = γijkiEk =
0. It is quite instructive to multiply with the linear forms Hi and Ei , leading to

ϵijkHikjEk = −ω
c

HiB
i as well as ϵijkEikjHk = +

ω

c
EiD

i (C.163)

showing that the volume of the rectangular cuboid spanned by the linear forms Ei ,
Hi and ki is proportional to the energy densities, which are equal for a plane wave.

While the amplitudes Ei and Hi are always perpendicular to the direction of
propagation, the analogous statement for vector potential Ai is only true under
Coulomb-gauge, γijkiAj = 0: This is the reason why sometimes one refers to this
gauge condition as transverse gauge. It is quite funny to go through all vector orienta-
tions for a duality transform. As plane electromagnetic waves are vacuum solutions,
this transform must yield a physically sensible field configuration: Even the fact that
ki , Ei and Hi from a right-handed system in the sense that ϵijkkiEjHk is positive is
conserved under duality transforms.

Fig. 6 shows how a wave of the type exp(±i(ωt − ki r
i)) propagates: Not only is

it an oscillation in t at fixed r i and an oscilation in r i at fixed t, but the two are
coupled: Defining the phase velocity υph = ω/k makes the argument assume the
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c.4. electromagnetic waves in matter and the telegraph equation

form υpht − r, and moving along with this velocity with the wave an observer would
always perceive the phase function φ = ωt − ki r i to be constant. The phase function
φ has an interesting geometric shape as ki r

i − ωt = const corresponds to the k

Hesse normal form of a plane, specifically in our case the plane of constant phase.
As time progresses, this plane of constant phase moves along its surface normal ki ,
which allows the identification of the wave ”vector” ki (actually a linear form) as the
direction of propagation. . The wave ”vector” should bet-

ter be a linear form, as in quantum
mechanics it is related to the mo-
mentum pi , likewise a linear form,
by pi = ℏki !

C.4 Electromagnetic waves in matter and the telegraph equation

Electromagnetic waves in matter experience two effects: Firstly, ϵ and µ can differ
from one, such that one has to work with Di = ϵijEj and Bi = µijHj in a potentially
anisotropic way, and secondly, the electric field Ei might be able to move the charge
carries in the medium, giving rise to a current density ȷi , where the two are related
by k Ohm’s law. It reads in its differential formulation

ȷi = σijEj (C.164)

with the conductivity tensor σij . As in the case of the dielectric constant ϵ and
the permeability µ, the conductivity σ is scalar only in the case of isotropic media
(perhaps one can imagine a somehow layered material as a counter example, in which
the charges are movable at different rates in the different directions), and a linear
relationship is essentially a first order approximation.

Faraday’s induction law in an isotropic medium assumes the form

ϵijk∂jEk = −∂ctB
i = −µγij∂ctHj (C.165)

and Ampère’s law takes on the shape

ϵijk∂jHk = +∂ctD
i +

4π
c
ȷi = +ϵγij∂ctEj +

4πσ
c
γijEj (C.166)

so that taking the time derivative of the first equation, and the rotation of the second
equation, again by using the Grassmann-relation leads to a wave equation with a
damping term, the so-called k telegraph equation(

ϵµ∂2
ct − ∆

)
Hi = □Hi = −

4πσµ
c

∂ctHi (C.167)

The effective speed of propagation c′ is given by

c′ =
c
√
ϵµ
≃ c
√
ϵ

(C.168)

as effectively all known transparent media have permeabilities close to one. The
latter relation suggests that the k refractive index n is given by

√
ϵ, relating electrical

to optical properties of a medium. The damping is determined by the conductivity
σ: Non-conductive media do not show any attenuation of incident electromagnetic
waves, but if the conductivity is nonzero, the motion of the charges in the medium
dissipate the energy of the electromagnetic waves.
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c. dynamics of the electromagnetic field

Dimensional analysis shows that the term

4πσµ
c

= Latt (C.169)

must have units of a length scale Latt on which the amplitude of the wave decreases
by a factor exp(−1).

C.5 Energy transport and the Poynting vector

We have already seen that the electric and magnetic fields are real in the sense that
they accelerate test charges and contain energy at the densities

wel =
EiDi

8π
and analogously, wmag =

HiBi

8π
(C.170)

The corresponding energies, obtained by integration over space, would from a
combined energy conservation law together with the mechanical energies. As the
fields can dynamically evolve, the questions how energy is conserved by a dynamically
evolving field configuration and how it is transported through space arises naturally.

A good starting point are the two inhomogeneous Maxwell-equations that contain
time derivatives:

ϵijk∂jEk = −∂ctB
i as well as ϵijk∂jHk = +∂ctD

i +
4π
c
ȷi . (C.171)

Multiplying the first equation with Hi and the second equation with Ei in the sense
of a scalar product and subsequent subtraction yields

Eiϵ
ijk∂jHk − Hiϵ

ijk∂jEk =
4π
c

Ei ȷ
i + Ei∂ctD

i︸   ︷︷   ︸
= 1

2∂ct(EiDi )

+ Hi∂ctB
i︸   ︷︷   ︸

= 1
2∂ct(HiBi )

(C.172)

where the reshaping in the last two terms with the constitutive relation suggests
substitution of the energy densities:

4π∂ctwel =
1
2
∂ct(EiD

i) =
1
2

(
∂ctEi · Di + Ei∂ctD

i
)

=

ϵij

2

(
∂ctEi · Ej + Ei∂ctEj

)
= Ei∂ctϵ

ijEj = Ei∂ctD
i , (C.173)

relying on the symmetry of the dielectric tensor ϵij , and likewise

4π∂ctwmag =
1
2
∂ct(HiB

i) =
1
2

(
∂ctHi · Bi + Hi∂ctB

i
)

=

µij

2

(
∂ctHi · Hj + Hi∂ctHj

)
= Hi∂ctµ

ijHj = Hi∂ctB
i , (C.174)

for the magnetic fields with a symmetric permeability µij . The left hand side of the

42



c.5. energy transport and the poynting vector

equation can be written as

Eiϵ
ijk∂jHk − Hiϵ

ijk∂jEk = Eiϵ
ijk∂jHk − Hkϵ

kji∂jEi =

ϵijk(Ei∂jHk + Hk∂jEi) = ∂jϵ
ijkEiHk = −∂iϵ

ijkEjHk (C.175)

with renaming the indices i ↔ k in the second term, before reordering ϵkji = ϵikj =
−ϵijk , with a cycling permutation in the first and an interchange in the second step.
Defining the k Poynting-vector Pi . Energy transport depends on

the two linear forms Ei and Hi .

Pi =
c

4π
ϵijkEjHk (C.176)

one arrives at the final result

∂iP
i = −Ei ȷ

i − ∂t

(
wel + wmag

)
(C.177)

The Gauß-theorem allows to recast this differential conservation law into integral
form, ∫

V

dV ∂iP
i =

∫
∂V

dSiP
i = −

∫
V

dV Ei ȷ
i − d

dt

∫
V

dV
(
wel + wmag

)
(C.178)

such that the change in energy content of the inside the volume V is given by two
terms. The first term describes the energy flux integrated over the surface ∂V: If the
Poynting-vector Pi has a nonzero divergence and points outwards, the energy content
will decrease. The second term is attributed to the dissipation inside the volume:
Introducing Ohm’s law in differential form,

ȷi = σijEj (C.179)

with the conductivity tensor σij , the integral over the volume V = Aℓ∫
V

dV Ei ȷ
i =

∫
V

dVσijEiEj = σ

∫
V

dVγijEiEj ≃ σE2V =
σA
ℓ︸︷︷︸

=1/R

( Eℓ︸︷︷︸
=U

)2 =
U2

R
(C.180)

This is exactly the energy per time interval which is dissipated into heat inside the
volume V. Alternatively, one could have replaced Ei instead of ȷi , leading to∫

V

dV Ei ȷ
i =

∫
V

dV σij ȷ
i ȷj =

1
σ

∫
V

dV γij ȷ
i ȷj ≃

ȷ2V
σ

=
ℓ

Aσ︸︷︷︸
=R

( ȷA︸︷︷︸
=I

)2 = RI2 (C.181)

Only if the conductivity σ vanishes, or the resistance R is infinite, the terms is inactive
and the ideal energy conservation law is given by

∂iP
i = −∂t

(
wel + wmag

)
→

∫
∂V

dSi Pi = − d
dt

∫
V

dV
(
wel + wmag

)
(C.182)
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C.6 Momentum transport and the Poynting linear form

Similarly to the Poynting-law for energy conservation of the electromagnetic field
there is an associated momentum conservation law: Starting at the Lorentz-equation
for a volume element that contains a charge density ρ and a current density ȷi allows
to express the rate of change of the volume’s momentum

dpi
dt

=
∫
V

dV
(
ρEi +

1
c
ϵijk ȷ

jBk
)

(C.183)

which would fall back onto eqn. (A.1) by setting dq = ρdV, q =
∫

dq =
∫

dV ρ.
As in the calculation for the energy density of the electromagnetic fields we can

replace the charge density ρ and the current density ȷi by using the two inhomoge-
neous Maxwell-equations ∂iDi = 4πρ and ϵjmn∂mHn = ∂ctDj + 4π/c ȷj leading to the
change of the momentum associated with the fields themselves

dpi
dt

=
1

4π

∫
V

dV
(
Ei ∂jD

j + ϵijkϵ
jmn∂mHn · Bk − ∂ctD

j · Bk
)

(C.184)

Aiming at making the expression more symmetric, it is clearly possible to add the
term Hi∂jBj as ∂iBi = 0, and replacing the last term ∂ctDj ·Bk using the Leibnitz-rule
according to

∂ct

(
DjBk

)
= ∂ctD

j · Bk + Dj∂ctB
k . (C.185)

Then, the penultimate term requires the time-derivative of the magnetic field, which
suggests to substitute the induction equation ∂ctBk = −ϵkmn∂mEn:

ϵijk∂ctD
j · Bk = ∂ct

(
ϵijkDjBk

)
− ϵijkDj∂ctB

k = ∂ct

(
ϵijkDjBk

)
+ ϵijkDjϵkmn∂k∂mEn

(C.186)

The formula suggests a Poynting linear form Yi. Momentum transport depends
on the vectorial fields Di and Bi .

Yi =
c

4π
ϵijkDjBk (C.187)

analogous to the vector Pi = c/(4π) ϵijkEjHk , but composed of the two vectorial fields
Di and Bi . The missing c suggests that it has units of a momentum density, and hence
it describes the k momentum content associated with the fields inside volume.

The expression for the momentum change presents itself in a wonderfully sym-
metric form

d
dt

pi +
∫
V

dV Yi

 =

1
4π

∫
V

dV
(
Ei∂jD

j + Hi∂jB
j − ϵijkϵkmn∂mEn · Dj + ϵijkϵ

jmn∂mHn · Bk
)

(C.188)

If the right side of this equation could be written as a divergence, one would
recover the archetypical form of a continuity equation, this time for the momentum
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c.6. momentum transport and the poynting linear form

of the field configuration inside the volume V. As the left side of the equation is
vectorial and because taking a divergence reduces the rank of a tensor by one, we
are looking for a tensor of rank two on the right side. Treating the electric fields first,
shows that

Ei∂jD
j − ϵijkϵkmn∂mEn · Dj = Ei∂jD

j −
(
δmi δ

n
j − δ

m
j δ

n
i

)
∂mEn · Dj =

Ei∂jD
j − ∂iEj · Dj + ∂jEi · Dj = Ei∂jD

j + ∂jEi · Dj︸                  ︷︷                  ︸
=∂j(EiDj)

− ∂iEj · Dj︸    ︷︷    ︸
=δij∂j(EkDk)/2

, (C.189)

after a reordering of terms. While the first combination is just an application of the
Leibnitz-rule, the rewriting of the last term deserves a more thorough argument:

∂iEj · Dj = δ
j
i∂jEk · Dk = δ

j
i ϵkm∂jEk · Em =

1
2
δ
j
i ϵ

km∂j (EkEm) =

1
2
δ
j
i∂j

(
ϵkmEkEm

)
=

1
2
δ
j
i∂j

(
EkDk

)
. (C.190)

The terms involving magnetic fields are treated in complete analogy up to a difference
in sign, caused by the different contraction. This is quickly remedied by interchanging
the indices ϵijk = −ϵikj :

Hi∂jB
j + ϵijkϵ

jmn∂mHn · Bk = Hi∂jB
j − ϵikjϵjmn∂mHn · Bk (C.191)

The subsequent steps are identical:

Hi∂jB
j − ϵikjϵjmn∂mHn · Bk = Hi∂jB

j −
(
δmi δ

n
k − δ

m
k δ

n
i

)
∂mHn · Bk =

Hi∂jB
j − ∂iHk · Bk + ∂kHi · Bk = Hi∂jB

j + ∂kHi · Bk︸                  ︷︷                  ︸
=∂j(HiBj)

− ∂iHk · Bk︸     ︷︷     ︸
=δij∂j(HkBk)/2

. (C.192)

where an identical argument applies to the last term:

∂iHj · Bj = δ
j
i∂jHk · Bk = δ

j
iµkm∂jHk · Hm =

1
2
δ
j
iµ

km∂j (HkHm) =

1
2
δ
j
i∂j

(
µkmHkHm

)
=

1
2
δ
j
i∂j

(
HkBk

)
. (C.193)

Collecting all terms finally gives the sought-after divergence

d
dt

pi +
∫
V

dV Yi

 =
∫
V

dV ∂jT
j

i =
∫
∂V

dSj T j
i (C.194)

where the Gauß-theorem was applied in the last step, yielding a surface integral over
the k Maxwell stress tensor T j

i

T j
i =

1
4π

(
EiD

j + HiB
j − 1

2
δ
j
i

(
EkDk + HkBk

))
(C.195)
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c. dynamics of the electromagnetic field

The Maxwell-tensor is symmetric, T j
i = T i

j in the case of isotropic media, but in

general not: Examining EiDj , for instance, shows with the substitution

EiD
i = ϵijEiEj = ϵijD

iDj (C.196)

that it can only be symmetric if ϵij and EiEj , despite being both symmetric on their
own, have coinciding eigensystems. This would be the case for isotropic media, as
γij and EiEj are simultaneously diagonalisable. A straightforwardly mathematical

condition would be a vanishing commutator
[
ϵij , EiEj

]
= 0.

It is striking that in an anisotropic medium the direction of energy transport and
momentum transport are not collinear, as

Yi =
c

4π
ϵijkDjBk =

c
4π
ϵijkϵ

jmEmµ
knHn (C.197)

Forming the scalar product between the Poynting vector Pi and its associated linear
form Yi gives

YiP
i =

c2

(4π)2 ϵijkϵ
imnDjBkEmHn =

c2

(4π)2

(
δmj δ

n
k − δ

m
k δ

n
j

)
DjBkEmHn =

c2

(4π)2

(
DmEmBnHn − DjHjB

kEk

)
=

c2

(4π)2

(
ϵimEiEmµ

jnHjHn − ϵimEiHmµ
jnHjEn

)
,

(C.198)

with the squared norms of the two fields in the first and the scalar products in the
second term: This suggests that the scalar product YiPi is positive definite, as a result
of the k Cauchy-Schwarz inequality. After rewriting the expression in terms of the
two constitutive tensors instead of the fields one arrives at

YiP
i =

c2

(4π)2 ϵ
imµjn

(
EiHjEmHn − EiHjEnHm

)
=

c2

(4π)2

(
ϵimµjn − ϵinµjm

)
EiHjEmHn

(C.199)

For a plane wave with perpendicular electric and magnetic fields one would obtain,
under the assumption of an isotropic medium, a vanishing second term, yielding the
largest possible result for YiPi , which indicates a parallel momentum and energy
transport.

The trace tr(T) = δijT
j

i = T i
i computes to the negative energy density of the fields,

as

T i
i =

1
4π

EiD
i + HiB

i −
δ
j
i δ

i
j

2

(
EkDk + HkBk

) = − 1
8π

(
EiD

i + HiB
i
)

= −(wel + wmag)

(C.200)

as δji δ
i
j = δii = 3. To be honest, this result can only be understood later, when we

derive the Maxwell-tensor for electrodynamics as a relativistic field theory.

Looking at the mechanical aspect of the continuity equation for the momentum
density as the change of momentum needs to be equal to the force acting on the
volume element, and because dpi is given as
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dṗi = T j
i dSj → T j

i =
∂ṗi
∂Sj

, (C.201)

one would associate T j
i with a force per unit area: Those elements are referred to as

stresses, of which the isotropic component is called k radiation pressure. Depending
on the field configuration, the stresses into different coordinate directions do not
need to be equal. Commonly, one would expect radiation pressure to be exerted in
the direction of propagation of an electromagnetic wave, but not perpendicularly to
it. On the other hand, an isotropic superposition of plane electromagnetic waves, as
for instance in a blackbody, can be assigned a radiation pressure. The combined term
on the left side of the equation is the mechanical momentum pi of the matter inside
the volume V and the volume-integrated Poynting linear form Yi as the momentum
content of the electromagnetic field.

We will see that the four entities energy density w = wel +wmag, Poynting vector Pi

or energy flux density, Poynting linear form Yi or momentum density and the Maxwell
stress tensor T j

i can be assembled into a larger object, the k energy momentum-
tensor T ν

µ :

T ν
µ =

(
w Yi

Pj T j
i

)
, (C.202)

which will, when a combined derivative ∂ν = (∂ct , ∂j ) is applied to it, yield energy
conservation in the first column, and the three components of momentum conser-
vation in the second, third and fourth columns. All conservation laws would then
follow jointly from the divergence ∂νT ν

µ = 0, for media of zero conductivity, and the

entire tensor is traceless, δµνT ν
µ = T µ

µ = 0 = w + δijT
j

i = w + T i
i .

In summary, there is a clear notion of energy and momentum conservation in the
electromagnetic field. One can associate energy and momentum densities to any field
configuration, and as the configuration evolves dynamically, energy and momentum
is transported through space in a way that is described by continuity equations.
Possible dissipation can be described by Ohm’s law, and would convert field energy
into heat. The Poynting-vector plays the role as energy flux and is constructed from
the linear forms Ei and Hi , while the transport of momentum density is encapsulated
in the related linear form Yi , which depends on the two vectors Di and Bi . It is
straightforward to see and not unexpected that for a plane electromagnetic wave
the energy transport proceed along the wave vector, as Pi is collinear with ki , which
in turn is poynting (pardon me!) into the direction ϵijkEjHk . In metric spaces or
spacetimes it is always possible to write the Maxwell stress-tensor and the energy-
momentum tensor with one type of index, covariant for instance,

Tij = γjkT k
i and Tµν = ηναT α

µ , (C.203)

such that the traces read γijTij and ηµνTµν, and the divergences γai∂aTij = 0 and
ηαµ∂αTµν = 0.

C.7 Time-dependent Green-functions and retardation

Clearly, the propagation speed of excitations in the electromagnetic field is finite, so
any change in the source configuration is not perceived instantaneously at any point
at nonzero distance: In fact, the changed field configuration only arrives after a time
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c. dynamics of the electromagnetic field

c∆t = ∆r at distance ∆r, which is referred to as retardation. The same is true for the
potentials Φ and Ai if one assumes Lorenz-gauge ϵ∂ctΦ + γij∂iAj /µ = 0, because then
the wave equations for the potentials

□Φ = 4πρ and □Ai =
4π
c
γij ȷ

j (C.204)

are identical to those of the fields Ei and Bi . This particular form of an inhomoge-
neous wave equation, where we always verified that the homogeneous differential
equation is solved by a plane wave, is referred to as the Helmholtz differential equa-
tion

□ψ(r, t) =
(
∂2
ct − ∆

)
ψ(r, t) = 4πq(r, t) (C.205)

where ψ could be either of the potentials Φ and Ai , and q the corresponding source,
i.e. ρ or γij ȷj . The Helmholtz differential equation is a hyperbolic linear partial
differential equation of second order with an inhomogeneity. As a linear differential
equation, a suitable solution strategy would be a Green-function, that depends both
on space and time coordinates:

□G(r − r′ , t − t′) = 4πδD(r − r′)δD(t − t′) (C.206)

As before, the Green-function is the formal solution for the potential at r and t to a
point-like source existing at r′ and t′ , such that

□ψ(r, t) = 4πq(r, t) → ψ(r, t) =
∫

dV′
∫

dt′ G(r − r′ , t,−t′)q(r′ , t′) (C.207)

in a convolution relation, which is consistent because of

□ψ(r, t) =
∫

dV′
∫

dt′ □G(r − r′ , t,−t′)q(r′ , t′) =

4π
∫

dV′
∫

dt′δD(r − r′)δD(t − t′)q(r′ , t′) = 4πq(r, t) (C.208)

as a consequence of the shifting relation of the δD-function.

In Fourier-space, the Green-function is given by

G(ω, k) =
∫

dV
∫

dt G(r − r′ , t − t′) exp(−iω(t − t′)) exp(−iki(r − r′)i) (C.209)

with the inversion

G(r − r′ , t − t′) =
1

(2π)4

∫
dω

∫
d3k G(ω, k) exp(iω(t − t′)) exp(iki(r − r′)i) (C.210)
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so that the application of the d’Alembert-operator gives

□G(r − r′ , t − t′) = □
1

(2π)4

∫
dω

∫
d3k G(ω, k) exp(iω(t − t′)) exp(iki(r − r′)i) =

− 1
(2π)4

∫
dω

∫
d3k

[
ω2

c2 − k
2
]

G(ω, k) exp(iω(t − t′)) exp(iki(r − r′)i), (C.211)

as ∂ct acts on exp(iω(t − t′)), and ∂a on exp(iki(r − r′)i), yielding iω/c and ika each
twice; and we abbreviate k2 = γabkakb:

ψ(r, t) ψ(k,ω)

q(r, t) q(k,ω)

□ ω2/c2−γijkikj

F −1

F

(C.212)

On the other hand, this expression needs to be equal, according to eqn. (C.206), to
the Fourier-representation of the δD-distributions,

δD(t − t′)δD(r − r′) =
1

(2π)4

∫
dω

∫
d3k exp(iω(t − t′)) exp(iki(r − r′)i) (C.213)

with all frequencies appearing at equal amplitude. By comparing the latter two
expressions, one can extract the Fourier-transformed Green-function G(ω, k) to be

G(ω, k) = 4π
c2

ω2 − (ck)2 . (C.214)

But transforming back to configuration space reveals a problem: Formally, one writes
down

G(r − r′ , t − t′) =
1

4π3

∫
dω

∫
d3k

c2

ω2 − (ck)2 exp(iω(t − t′)) exp(iki(r − r′)i) (C.215)

where one encounters two singularities of the integrand at ω = ±ck when performing
the dω-integration, for every value of k, as indicated by Fig. 7. This issue is most
elegantly solved by the methods of complex integration.

For carrying out the dω-integration one can extend the function to complex
arguments and close the integration path along the real axis by a loop: In this way,
one deals with a closed loop integral over a holomorphic function, where the two
poles can be shifted inside the integration contour by adding +iϵ to them, which does
not change the final result. Then, the value of the integral is entirely fixed by the
values of the two residuals associated with the two poles:∫

dω
c2

(ck)2 − ω2 exp(iω(t − t′))→ −c2
∮

dω
exp(iω(t − t′))
ω2 − (ck)2 , (C.216)
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Figure 7: Function 1/(ω2 − (ck)2) over the complex plane ω = Re(ω) + i Im(ω), for ck = 1,
with color indicating phase and hue indicating the absolute value. The two singularities at
ω = ±ck are clearly visible.

where the denominator factorises (ω2 − (ck)2) = (ω + ck)(ω − ck), by virtue of the
binomial formula.

Let’s investigate the residues at the two poles at ω+ = ω + ck and ω−ω − ck
separately: Computing the residues requires the limits

Res+ = lim
ω→+ck

(ω − ck)
exp(iω(t − t′))

(ω + ck)(ω − ck)
= − c

2k
exp(+ick(t − t′)) (C.217)

and

Res− = lim
ω→−ck

(ω + ck)
exp(iω(t − t′))

(ω + ck)(ω − ck)
= +

c
2k

exp(−ick(t − t′)) (C.218)

Cauchy’s k residue theorem now states that the value of the loop integral is equal to
the sum of the residues, up to a factor of 2πi,

∮
dω

exp(iω(t − t′))
ω2 − (ck)2 = 2πi (Res+ + Res−) =

2π
i

( c
2k

exp(+ick(t − t′)) − c
2k

exp(−ick(t − t′))
)

=
2πc
k

sin(ck(t − t′)) (C.219)

The remaining d3k-integration reads:

G(r − r′ , t − t′) =
c

2π2

∫
d3k

sin(ck(t − t′))
k

exp(iki(r − r′)i) (C.220)

and can be most sensibly carried out in spherical coordinates: d3k = k2dkdµdφ, with
azimuthal symmetry and µ being the cosine of the angle between k and r − r′ .
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c.7. time-dependent green-functions and retardation

Then,

G(r − r′ , t − t′) =
c
π

∞∫
0

kdk sin(ck(t − t′))
+1∫
−1

dµ exp(iµk
∣∣∣−r − r′∣∣∣) (C.221)

The dµ-integral has an elementary solution in term of the sine, so we arrive at

G(r − r′ , t − t′) =
1

|r − r′ |
2c
π

∞∫
0

dk sin(ck(t − t′)) sin(k
∣∣∣r − r′∣∣∣) (C.222)

The integral can be carried out by rewriting both sines as differences of complex
exponentials, multiplying out the expression and integrate. For convenience, we
abbreviate ∆t = t − t′ and ∆r = |r − r′ |:

2

∞∫
0

dk sin(ck∆t) sin(k∆r) =

+∞∫
−∞

dk sin(ck∆r) sin(k∆r) =

1
(2i)2

+∞∫
−∞

dk (exp (+ick∆t) − exp (−ick∆t)) × (exp (+ik∆r) − exp (−ik∆r)) . (C.223)

Rearranging the terms leads to

. . . =
1

(2i)2

+∞∫
−∞

dk exp(+ik[c∆t + ∆r]) + exp(−ik[c∆t + ∆r])−

exp(+ik[c∆t − ∆r]) − exp(−ik[c∆t − ∆r]), (C.224)

where one recognises the sum and difference of the two frequencies c∆t and ∆r. The
integrals are effectively the Fourier-representation of the δD-function,

+∞∫
−∞

dk exp(ikx) = 2πδD(x) (C.225)

so that one arrives at

. . . =
4π

(2i)2 δD(c∆t + ∆r) − 4πδD(c∆t − ∆r) (C.226)

as each term appears twice. By applying the scaling property of Dirac’s δD-function

δD(αk) =
1
α
δD(k) (C.227)

one arrives at
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c. dynamics of the electromagnetic field

. . . = −4π
c
δD

(
t − t′ +

|r − r′ |
c

)
+

4π
c
δD

(
t − t′ − |r − r

′ |
c

)
(C.228)

where the factors c and π cancel with the corresponding factors in eqn. (C.222).
Putting everything together yields as a final result for the Green-function

G±(r − r′ , t − t′) =
1

|r − r′ |
[
δD(t − t′ − |r − r

′ |
c

)︸                 ︷︷                 ︸
retarded

− δD(t − t′ +
|r − r′ |

c
)︸                 ︷︷                 ︸

advanced

]
(C.229)

with the conventional Green-function of ∆ as a prefactor, modified by δD-functions.
They take care of the fact that changes in the fields propagate at finite speed, such
that the source configuration at distance |r − r′ | contributes to the potential at most at
a time |r − r′ | /c later than t′ , which necessitates that one of the terms is discarded as
being acausal: It would have the effect, that a source configuration at a time difference
|r − r′ | /c in the future contributes to the fields. Finally, one arrives at the expression
for the retarded Green-function G−(r − r′ , t − t′),

G−(r − r′ , t − t′) =
1

|r − r′ |
δD

(
t − t′ − |r − r

′ |
c

)
, (C.230)

which serves for determining the potential ψ(r, t) from the source q(r′ , t′),

ψ(r, t) =
∫

dV′
∫

dt′
1

|r − r′ |
δD

(
t − t′ − |r − r

′ |
c

)
q(r′ , t′) =

∫
dV′

1
|r − r′ |

q

(
r′ , t − |r − r

′ |
c

)
. (C.231)

C.8 Liénard-Wiechert potentials

With the Green-functions for the d’Alembert-operator □,

G±(r − r′ , t − t′) =
1

|r − r′ |
δD

(
t − t′ ± |r − r

′ |
c

)
(C.232)

it is possible to solve the wave equation

□ψ(r, t) = 4πq(r, t) (C.233)

in a convolution relation,

ψ±(r, t) =
∫

dt′
∫

dV′ G±(r − r′ , t − t′)q(r′ , t′) (C.234)

where changes to the source configuration q(r′ , t′) (to be interpreted as the charge
distribution ρ(r, t) or the current density γij ȷ

i(r, t)) can only influence the fields
(or potentials Φ(r, t) and Ai(r, t), even though this statement depends on the gauge
choice) after a time |r − r′ | /c has elapsed, and not instantaneously, due to the finite
propagation speed c of excitations in the electromagnetic field.
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Substituting the k retarded Green-function G− into the convolution relation for
the potentials for obtaining them from the source distribution one arrives at

ψ(r, t) =
∫

dV′
∫

dt′ G−(r − r′ , t − t′)q(r′ , t′) =∫
dV′

1
|r − r′ |

∫
dt′ δD

(
t − t′ − |r − r

′ |
c

)
q(r′ , t′) =

∫
dV′

1
|r − r′ |

q

(
r′ , t − |r − r

′ |
c

)
(C.235)

because the Dirac-δD fixes t′ to the value t − |r − r′ | /c. This expression applied to the
potentials

Φ(r, t) =
∫

dV′
1

|r − r′ |
ρ

(
r′ , t − |r − r

′ |
c

)
(C.236)

and

Ai(r, t) =
∫

dV′
1

|r − r′ |
γij ȷ

j

(
r′ , t − |r − r

′ |
c

)
(C.237)

is referred to as the k Liénard-Wiechert potentials, which provide a solution in the
case a time-varying source distribution, taking retardation, i.e. the finite speed of
propagation of the fields (or potentials in Lorenz gauge) into account. Clearly, in the
limit c → ∞ the fields and potentials would change instantaneously. Already now
a causal structure becomes apparent, with a finite propagation speed at which the
fields react to changes in the source. Taking the derivatives Bi = ϵijk∂jAk and Ei =
−∂iΦ−∂ctAi then leads to k Jefimenko’s equations, if one interchanges differentiation
∂i and ∂ct with the dV′-integration for an expression for the fields for the case of time
varying sources.

C.9 Anatomy of partial differential equations

Differential equations are the natural language in which laws of Nature are formu-
lated: They set the rates of change of quantities into relation and depend crucially
on initial and boundary conditions. Many different categories are relevant in the
classification of differential equations:

• ordinary vs. partial:

In ordinary differential equations, only derivatives with respect to a single
variable or coordinate appear, whereas partial differential equations consist of
derivatives with respect to two or more variables.

• homogeneous vs. inhomogeneous:

If all terms depend on the field and its derivatives, the differential equation is
homogeneous, but if a term appears that does not depend on the field or its
derivatives, the equation is inhomogeneous.

• linear vs. nonlinear:

If all terms in a differential equation are proportional to the field or its deriva-
tives, the equation is linear, but if there are higher-order powers or nonlinear
functions of the field, then the differential equation is nonlinear.
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c. dynamics of the electromagnetic field

• derivative order:

The highest derivative that appears in the differential equation sets the deriva-
tive order.

Given these definitions, the damped harmonic oscillator equation for the amplitude
x(t) with external driving a(t)

ẍ + γẋ + ω2
0x(t) = a(t) (C.238)

is an ordinary, inhomogeneous, linear differential equation of second order. The k

Schrödinger equation

i∂tψ = − ℏ2

2m
∆ψ + Φ(r)ψ (C.239)

on the other hand is a partial, homogeneous and linear differential equation, but its
derivative order is likewise two.. It’s well worth going through

this categorisation as a checklist
whenever you need to deal with
ODEs/PDEs. C.9.1 Hyperbolic, parabolic and elliptical differential equations

We have already encountered two partial differential equations of second order, the
Laplace-equation

∆Φ = γij∂i∂jΦ = 0 (C.240)

as the field equation of electrostatics, and the wave equation

□Φ = ηµν∂µ∂νΦ =
(
∂2
ct − ∆

)
Φ = 0 (C.241)

of electrodynamics, here obtained in Lorenz-gauge. It suffices to consider the case of
homogeneous partial differential equations because any inhomogeneity ±4πρ could
be dealt with the Green-formalism. Comparing □Φ = 0 as a wave equation with
∆Φ = 0 as a static field equation shows that the signs of the derivative operators
(+,−,−,−) and (+,+,+) matter a lot, as one obtains oscillatory solutions for the wave
equation, and (decreasing, at least in 3 dimensions or more) power-law solutions for
the Poisson-equation. Please note that the choice of gauge does not have any influence
at all on the derivative order (it is a statement involving only the first derivatives of
the fields), but that it can change the character between hyperbolical and elliptical.

The classification of differential equations borrows many ideas from curves, here
in particular from the theory of k conic sections. A quadratic form of two coordinates
x and y would be given by(

x
y

)t (
a b/2
b/2 c

)
︸          ︷︷          ︸

=D

(
x
y

)
= ax2 + bxy + cy2 = const. (C.242)

Depending on the structure of eigenvalues, which decide on the sign of the deter-
minant of the (discriminant) matrix D, the quadratic form describes very different
curves: If b = 0 (for simplicity) and a = c = 1 > 0 one obtains x2 + y2 = const, which
can be rewritten in a parametric form by setting x = cosϕ and y = sinϕ such that
the quadratic form describes a circle as a consequence of cos2 ϕ + sin2 ϕ = 1, and in
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c.9. anatomy of partial differential equations

the peculiar case of a , c an ellipse. If a = 1 and c = −1, the quadratic form becomes
x2 − y2 = const, i.e a hyperbola with the hyperbolic functions as parametric forms,
using cosh2 ψ − sinh2 ψ = 1. More generally, the picture arises that det D > 0 for the
elliptical conic section and conversely, det D < 0 for the hyperbolic conic section.

Applying this idea to the classification of partial differential equations, we start
with a homogeneous second-order PDE for the field φ in two coordinates in full
generality,

a(x, y)
∂2

∂x2φ(x, y) + b(x, y)
∂2

∂x∂y
φ(x, y) + c(x, y)

∂2

∂y2φ(x, y) = A(x, y)φ(x, y) (C.243)

and assemble the matrix D

D =
(

a(x, y) 1
2b(x, y)

1
2b(x, y) c(x, y)

)
(C.244)

The determinant of D then establishes, whether the PDE is elliptical, det D > 0,
parabolic, det D = 0 or hyperbolic, det D < 0. A visual impression is provided by
Fig. 8 which shows these curves, actually conic sections, for various choices of the
parameters.

Sticking to 2 dimensions, a PDE like the Poisson-equation

∆φ =
∂2

∂x2φ(x, y) +
∂2

∂y2φ(x, y) = 0 (C.245)

would be elliptical, as the determinant of D would come out positive: a = c = 1 and
b = 0: k elliptical differential equations have only unique solutions after boundary
conditions are specified. They can be of the Dirichlet-type, the Neumann-type or be
of mixed type. Please note that vacuum boundary conditions, where the fields and
their derivatives approach zero at infinity, are perfectly admissible. Typical solutions
are decreasing (for Poisson-like problems, at least in 3 dimensions or higher) with
increasing coordinates and parity invariant, as (x, y) → (−x,−y) does not change
anything.

On the other hand, a wave-equation exhibits a sign change,

□φ(t, x) =
∂2

∂(ct)2φ(t, x) − ∂2

∂x2φ(t, x) = 0 (C.246)

with a = 1, c = −1 and b = 0 in these coordinates and would be k hyperbolic as
det D < 0. In this case, it is enough to specify initial conditions and the PDE evolves
them in a well-defined and unique way into the future. Specification of boundary
conditions as in the case of elliptical PDEs is unnecessary, and in contrast to elliptical
PDEs, hyperbolic PDEs show typically wavelike-solutions.

There is clearly the notion of a light-cone due to retardation, which persists even
when a change of coordinates is carried out: Switching to k light-cone coordinates
∂u = ∂ct + ∂x and ∂v = ∂ct − ∂x brings the wave equation into the form

□φ(u, v) =
∂2

∂u∂v
φ(u, v) = 0 (C.247)
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c. dynamics of the electromagnetic field

this time with a = c = 0 and b = 1, but the determinant det D < 0 nonetheless. It. Please go through all iconic
PDEs in theoretical physics
and classify them as elliptical,
parabolic or hyperbolic partial
differential equations!

is actually the case that the metric structure of spacetime, which we focus on in the
next chapter, with the Minkowski-metric is uniquely suited for hyperbolic PDEs: It is
even the fact. The Lorentzian spacetime is the only metric spacetime with naturally
hyperbolic evolution!

C.9.2 Wave-equation and its reductions

Central to electrodynamic theory was the wave-equation

□φ(r, t) = 4πq(r, t) with □ = ηµν∂µ∂ν = ∂2
ct − ∆ and ∆ = γij∂i∂j (C.248)

as a linear, inhomogeneous, hyperbolical, partial differential equation of derivative
order two. Separating out oscillations in time with an ansatz φ ∝ exp(±iωt) leads to
the k Helmholtz-equation

∆φ+ k2φ = −4πq(r, t) (C.249)

with k = ω/c. Under the stronger assumption of a static solution, where neither φ
nor q depended on t, one arrives at the Poisson-equation,

∆φ = −4πq(r) (C.250)

further reducing to the Laplace-equation

∆φ = 0 (C.251)

for the vacuum case with vanishing sources. In all cases is the incorporation of an
inhomogeneity q(r, t) straightforwardly possible by means of the Green-formalism.
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Figure 8: Conic sections: circles (det(D) = 1), ellipses (det D > 0) and hyperbolæ(det(D) <
0), from top to bottom.
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D special relativity

D.1 Lorentz-transforms

The relativity principle stipulates that the laws of Nature and the constants of Nature
should be the same in all frames, or in other words: There is no preferred frame in
which the laws of Nature should be formulated. Space, or spacetime is homogeneous
as there neither a particular location nor a particular instant in time for the formula-
tion of laws of Nature, and the transition between one coordinate choice and the next
one should be a linear, affine function: Any nonlinearity would single out a particular
location or instant, breaking homogeneity. In short, the transition between frames S
and S′ , with their associated coordinates xµ and x′µ,

S : xµ =
(

t
xi

)
→ S′ : xµ =

(
t′

x′ i

)
(D.252)

is necessarily an affine transformation.

There is a very good physical argument why this needs to be the case: Imagine
now that an observer with a clock moves through spacetime on a trajectory with
coordinates xµτ as seen by S, and coordinates x′µ(τ) as seen by S′ , where the parameter
τ by which the trajectory is parameterised, is the proper time of the observer - the time
displayed on her or his wrist watch. For an inertial trajectory, where all accelerations
are zero, the velocity υi = dxi /dτ is constant, as well as the size of the time intervals
dt/dτ. In summary,

dxµ

dτ
= const and

d2xµ

dτ2 = 0 (D.253)

But that statement needs to be true within the frame S′ just as well:

dx′µ

dτ
= const and

d2x′µ

dτ2 = 0 (D.254)

Coordinate transforms can be written as an invertible, and differentiable functional
relationship between the coordinate sets, i.e. in the form x′(x). In this case, the velocity
in the new coordinate choice becomes

dx′µ

dτ
=

∂x′µ

∂xν
dxν

dτ
(D.255)

with a Jacobian ∂x′µ/∂xν mediating the coordinate change. The acceleration though
acquires two terms, as both the Jacobian as well as the velocity could change with τ,
albeit indirectly through the trajectory xµ(τ):

d2x′µ

dτ2 =
∂x′µ

∂xν
d2xν

dτ2 +
∂2x′µ

∂xν∂xρ︸   ︷︷   ︸
A
µ
νρ

dxν

dτ
dxρ

dτ
(D.256)

Only if the term Aµ
νρ is equal to zero, one can conclude from d2xµ/dτ2 = 0 that

d2x′µ/dτ2 = 0. But then, the transformation between the two coordinate frames is
linear:
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∂2x′µ

∂xν∂xρ
= 0 → ∂x′µ

∂xν
= Λ

µ
ν → x′µ = Λ

µ
νx
µ + bµ (D.257)

with integration constants Λµν and bµ.
To be more specific one needs some empirical, physical input: Let’s assume that

the two frames S and S′ move at a constant relative speed υ. Without loss of generality,
the two frames should be oriented in the same direction and the relative displacement
should be along the x-axis of the coordinate frame, and the two frames should coincide
in their origins at t = t′ = 0. Then, the origin of S has the coordinate x′ = −υt′ seen
from S′ , whereas the origin of S′ is at x = +υt from the point of view of S.

Linearity of the transforms commands that x′ = ax + bt with two constant coef-
ficients a and b, that can be functions of υ. Because x = υt implies x′ = 0, one can
write: x′ = 0 = aυt + bt = (aυ + b)t, from which follows that b = −aυ and therefore
x′ = a(x − υt). Reversing the roles of S and S′ then requires from x = ax′ + bt′ that
x′ = −υt if x = 0 should hold, implying x = 0 = −aυx′ + bt′ = (−aυ + b)t′, and conse-
quently b = +aυ and x = a(x′ + υt′). The symmetry of the transform has effectively
reduced the number of free parameters from two to a single one.

At this point Nature can make a choice. Most straightforwardly, she might choose
the time to be universal, t = t′ , and humans thought this was the case until k 1905.
x′ = a(x − υt) and x = a(x′ + υt) can only be compatible if a = 1, leading us straight to
the Galilei-transforms. Or, the speed of light could be the same in all frames, c = c′ ,
with x = ct in S and x′ = ct′ in S′, as the distance a light signal covers in the two
respective frames. Then, {

ct = a(ct′ + υt′) = a(c + υ)t′

ct′ = a(ct − υt) = a(c − υ)t
(D.258)

Multiplying both equations leads to c2tt′ = a2(c + υ)(c − υ)tt′ , such that

a ≡ γ =
1√

1 − β2
with β =

υ

c
. (D.259)

The quantity γ is known as the Lorentz-factor, and by convenience one works with a
dimensionless velocity β = υ/c.

A k Taylor-expansion for small velocities β,
∣∣∣β∣∣∣ ≪ 1, or |υ| ≪ c of the Lorentz-

factor yields

γ = 1 +
dγ
dβ

∣∣∣
β=0

β +
d2γ

dβ2

∣∣∣
β=0

β2

2
+ · · · = 1 +

β2

2
+ · · · (D.260)

showing that the Lorentz-factor depends to lowest order quadratically on the velocity
before diverging as β approaches unity.

The definition of β = υ/c allows a more consistent notation for Lorentz transforms:
ct as a time coordinate is then measured in units of length, just as x, there is no
ambiguity as c has by virtue of the relativity principle the same value in all frames.
The term υt in the Lorentz transform becomes βct, leading to{

ct′ = γ (ct + βx)
x′ = γ (x + βct)

(D.261)
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Figure 9: Lorentz γ-factor as a function of dimensionless velocity β, and the parabolic
approximation for small β.

Alternatively, the transformation reads in matrix notation,(
ct′

x′

)
︸ ︷︷ ︸

x′µ

=
(
γ βγ

βγ γ

)
︸        ︷︷        ︸

Λ
µ
ν

(
ct
x

)
︸︷︷︸

xν

(D.262)

with a clearly common transformation of the ct and x coordinates, that are now
combined into a single vector xµ, following the transformation law xµ → x′µ = Λ

µ
νxν.

For small velocities, γ ≃ 1 and one obtains(
ct′

x′

)
=

(
1 β

β 1

) (
ct
x

)
(D.263)

With either positive or negative off-diagonal elements it is clear that a coordinate
frame undergoes a shearing under Lorentz transforms, in contrast to antisymmetric
transformation matrices in the case of rotations. Quantitatively for small velocities
υ≪ c the relation reduces to t′ = t (neglecting βx = υx/c for υ≪ c) and x′ = υt + x in
recovery of the Galilei transform.

D.2 Lorentz-invariants

While the coordinates depend on a chosen frame and undergo a joint change under
Lorentz tranforms, one might wonder whether there are quantities that remain
constant and offer the possibility to say something true for a system that would not
depend on the choice of frame. Clearly, rotations leave the length of a vector, defined
as its norm r2 = δijx

ixj unchanged, and in this vein one can construct the quantity

(ct′)2−(x′)2 = γ2
(
(ct)2 − 2ctβx + β2x2 − x2 + 2ctβx − β2(ct)2

)
= γ2(1 − β2)︸      ︷︷      ︸

=1

(
(ct)2 − x2

)
(D.264)
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Figure 10: Spacetime diagrams under Lorentz transform for positive velocities (ct+, x+) and
negative velocities (ct−, x−) relative to the frame (ct, x). Reproduction with kind permission
of I. Neutelings.

which remains in fact constant under Lorentz transforms. In order to write the
invariant quantity s2 = (ct)2 − δijxixj , extended to three spatial dimensions, one
introduces the Minkowski-metric,

s2 = ηµνx
νxν with ηµν =


+1

−1
−1

−1

 (D.265)

which combines the Euclidean scalar product r2 = γijx
ixj mediated by by the

Euclidean metric γij to the new invariant s2 = ηµνx
µxν, as soon as Lorentz boosts are

involved.

D.3 Rapidity

Rotations of the coordinate frame can be written in terms of a rotation matrix,(
x′

y′

)
=

(
cos α sin α
− sin α cos α

) (
x
y

)
(D.266)

which begs the question whether (i) a similar parameterisation of the group of
Lorentz transforms is possible, and if yes, (ii) which parameter ψ would replace the
rotation angle α. A Lorentz-boost, written in matrix notation, would be(

ct′

x′

)
=

(
γ βγ

βγ γ

) (
ct
x

)
(D.267)
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where a notable structural difference is of course the different sign in the lower
left corner. But clearly, we are not looking for a rotation, as the Lorentz invariant s2

differs from the invariant r2! The values of the entries of the matrix are 1 ≤ γ < +∞ as
well as −∞ < βγ < +∞, which an additional symmetry of γ for positive and negative
velocities, and a sign change of βγ. With a bit of intuition, one might be tempted to
use the hyperbolic functions to set γ = coshψ and βγ = sinhψ (compare Fig. 11) with
the so-called rapidity ψ,

tanhψ =
sinhψ
coshψ

=
βγ

γ
= β → ψ = artanh β =

1
2

ln
1 + β
1 − β

. (D.268)

where the inverse hyperbolic tangent has a surprising representation in terms of
elementary functions. More accurately, one might use the relation γ2(1 + β2) = 1 to
verify that

γ2(1 − β2) = γ2 − γ2β2 = cosh2 ψ − sinh2 ψ = 1 (D.269)

as the defining characteristic of the hyperbolic functions.
The rapidity ψ diverges as β → 1 and keeps, due to the antisymmetry of the

hyperbolic sine, information about the direction of the boost velocity. With the
rapidity as a parameter, the Lorentz-boost can be written as a hyperbolic ”rotation”,(

ct′

x′

)
=

(
coshψ sinhψ
sinhψ coshψ

) (
ct
x

)
. (D.270)

Then, the invariant s2 = (ct)2 − x2 is unchanged because cosh2 ψ − sinh2 ψ = γ2 −
β2γ2 = γ2(1 − β2) = 1, just as the invariant r2 = x2 + y2 is unchanged because of
cos2 α + sin2 α = 1. For a more geometric intuition, one can imagine that any point
(ct, x) follows a hyperbola, purely in the timelike region for a positive norm or in the
spacelike region of the spacetime diagram in the case of a negative norm. Along these
hyperbolae, the norm is strictly conserved. Taking things to extremes would be a
point with a lightlike norm s2 = 0, which moves along the diagonals of the spacetime
diagram.

D.4 Spacetime symmetries

A notion of spacetime was established fusion of the spatial and temporal coordinates
into a coordinate tuple xµ and the extension of the Euclidean scalar product xiy i =
γijx

iyj to the Minkowski scalar product xµy
µ = ηµνx

µyν. Lorentz-transforms and
rotations act on these coordinate tuples, xµ → Λ

µ
αxα and xi → Ri

ax
a, respectively,

leaving the scalar products invariant, ηµνxµxν → ηµνΛ
µ
αΛ

ν
βx
αxβ = ηαβx

αxβ and

γijx
ixj → γijRi

aRj
bx

axb = γabx
axb, expressed in coordinates s2 = ηµνx

µxν = (ct)2 −
x2 − y2 − z2 and r2 = γijx

ixj = x2 + y2 + z2.
Clearly, the Lorentz-transforms as well as the rotations form groups: Successive

transforms can be summarised into a single transform, for each transform there is an
inverse (boosting with the negative velocity and rotating by a negative angle), and
the neutral element is part of each group (corresponding to a boost with velocity zero
or a rotation by an angle of zero). But there seems to be a peculiarity: The groups
contain uncountably many elements and are parameterised by a continuous, real
valued parameter (rapidity ψ or rotation angle α). As such, they are examples of
Lie-groups.
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Figure 11: Hyperbolic functions γ = cosh(ψ) and βγ = sinh(ψ) with exponentials as their
asymptotics, as a function of the rapidity ψ.
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Because of the real-valued parameter, one can actually perform a differentiation of
the group element with respect to that parameter, consider an infinitesimal transform
and assemble all possible group elements from this infinitesimal transform as a
building block:

In the case of rotations in 2 dimensions by a small angle α one could expand the
rotation matrix Ri

a(α) into a Taylor-series,

Ri
a(α) = Ri

a

∣∣∣
α=0

+
d

dα
Ri

a

∣∣∣
α=0

α =
(

1 α

−α 1

)
=

(
1 0
0 1

)
+ α

(
0 1
−1 0

)
= σ(0) + ασ(2).

(D.271)

Such a construction with two of the Pauli-matrices

σ(0) =
(

+1 0
0 +1

)
and σ(2) =

(
0 +1
−1 0

)
(D.272)

for an infinitesimally small angle suggest that any finite rotation by an angle α should
be composable from n rotations by α/n in the limit n→∞:

Ri
a(α) = lim

n→∞

(
σ(0) +

α

n
σ(2)

)n
= exp

(
ασ(2)

)
(D.273)

where the matrix-valued exponential function is explained in terms of its series,

Ri
a = exp

(
ασ(2)

)
=

∑
n

αn

n!

(
σ(2)

)n
= σ(0)

∑
n

α2n

(2n)!
(−1)n + σ(2)

∑
n

α2n+1

(2n + 1)!
(−1)n

= σ(0) cos α + σ(2) sin α =
(

cos α sin α
− sin α cos α

)
(D.274)

which is the reason why σ(2) is referred to as the generator of all rotations, or equiva-
lently, as the basis of the rotations as a Lie-group.

The same line of reasoning applies to Lorentz-transforms: They form likewise a
Lie-group, parameterised by the rapidity ψ,

Λ(ψ) = exp(ψσ(3)) =
∑
n

ψn

n!

(
σ(3)

)n
= σ(0)

∑
n

ψ2n

(2n)!
+ σ(3)

∑
n

ψ2n+1

(2n + 1)!

= σ(0) coshψ + σ(3) sinhψ =
(

coshψ sinhψ
sinhψ coshψ

)
(D.275)

where the Pauli-matrix σ(3),

σ(3) =
(

0 +1
+1 0

)
(D.276)

can now be identified as the generator of the Lorentz-transforms. Comparing to the
rotations one notices that the powers of σ(3) do not show changes in sign, but alternate
between σ(3) for odd and σ(0) for even powers of n.
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Figure 13: The rapidity ψ corresponds to the arc length that is covered by the end point of a
vector with unit Minkowski norm s2 = (ct)2 − x2 = ±1 under Lorentz transforms, in the
same way as the rotation angle α is the arc length (or radian) covered by a point with unit
Euclidean norm r2 = x2 + y2 = 1 under a rotation. Reproduction with kind permission of
I. Neutelings.

D.5 Lorentz-group as a Lie-group

It is intuitively clear that rotations form a group as subsequent rotations can be
combined into a single rotations, and likewise, combinations of Lorentz transforms
are Lorentz transforms again, Mathematically speaking, this is expressed by the group
structure that is defined by the axioms: closedness, the existence of a unit element,
the existence of an inverse element and lastly associativity.

For the closedness of a group one needs to show that the combination of group
elements is again a group element. In a Lie-group, where the elements are generated
by means of an exponential, one gets for instance for rotations

R(α)R(β) = exp
(
ασ(2)

)
exp

(
βσ(2)

)
=

∑
i

αi

i!

(
σ(2)

)i
∑

j

βj

j!

(
σ(2)

)j . (D.277)

Multiplying the two exponential series can be achieved by application of the Cauchy-
product

=
∑
i

i∑
j

αj

j!
βi−j

(i − j)!
(
σ(2)

)j (
σ(2)

)i−j
=

∑
i

1
i!

∑
j

(
i
j

)
αjβi−j

 (σ(2)
)i

(D.278)

by using the definition of the binomial coefficient(
i
j

)
=

i!
j!(i − j)!

, (D.279)

which leads to

=
∑
i

(α + β)i

i!

(
σ(2)

)i
= R(α + β) (D.280)

66



d.5. lorentz-group as a lie-group

by virtue of the generalised k binomial formula,

(α + β)i =
∑
j

(
i
j

)
αjβi−j , (D.281)

which confirms the intuitive expectation that combining two rotations leads to a
rotation again. In complete analogy one can show that Λ(ψ)Λ(ϕ) = Λ(ψ + ϕ) for
Lorentz transforms, with the rapidity as an additive parameter.

The unit element, which leaves a vector unchanged, is the quite obviously obtained
for a rotation by the angle zero or a boost by zero rapidity:

R(α = 0) = exp(0 × σ(2)) = exp(σ(2))0 = id (D.282)

Alternatively, one might argue that

R(α = 0) = σ(0) cos(0) + σ(3) sin(0) = σ(0) ≡ id (D.283)

and likewise obtain the unit matrix.
Associativity is very obvious for Lie-groups as their additive parameters naturally

obey associativity:
R (α + (β + γ)) = R ((α + β) + γ) (D.284)

which implies

R (α + (β + γ)) = R(α)R(β + γ) = R(α) [R(β)R(γ)] =

[R(α)R(β)] R(γ) = R(α + β)R(γ) = R ((α + β) + γ) (D.285)

Conservation of the norm of vectors under transformations, or equivalently, the
orthogonality of the transform is realised in the following way, keeping in mind that
(σ(2))t = −σ(2),

Rt(α)R(α) = exp
(
ασ(2)

)t
exp

(
ασ(2)

)
= exp

(
α(σ(2))t

)
exp

(
ασ(2)

)
=

exp
(
−ασ(2)

)
exp

(
ασ(2)

)
= exp

(
(−α + α)σ(2)

)
= id (D.286)

which differs slightly in the case of Lorentz-transforms, as they are orthogonal with
respect to the the Minkowski-metric η = σ(1) instead of the Euclidean metric σ(0) = id,

Λ(ψ)tηΛ(ψ) = η with η = σ(1) =
(

+1 0
0 −1

)
(D.287)

Invariants of the transform such as determinants are realised in a funky way in
Lie-groups: As an auxiliary result, we need that for any transform A with eigenvalues
λi ,

ln det(A) = ln
∏
i

λi =
∑
i

ln λi = tr ln(A) (D.288)

where the matrix-valued logarithm ln(A) is naturally defined in terms of its series.
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d. special relativity

Because the logarithm can not be expanded at zero, where it is undefined, one uses
this neat trick,

ln(A) = ln(id + (A − id)) =
∑
n

(−1)n+1

n
(A − id)n. (D.289)

Then,
exp ln det(A) = det(A) = exp tr ln(A), (D.290)

and with the substitution B = ln(A) one arrives at

det exp(B) = exp tr(B), (D.291)

which is particular suitable for our purpose, as the determinant of a Lie-generated
group element is related to the trace of its generator. Applied to the rotations this
implies

det(R) = det exp
(
ασ(2)

)
= exp tr

(
ασ(2)

)
= exp

(
α tr σ(2)

)
= exp(0) = 1 (D.292)

because the Pauli-matrix σ(2) is traceless. The same result for the Lorentz-transforms
Λ(ψ) follows in complete analogy,

det(Λ) = det exp
(
ψσ(3)

)
= exp tr

(
ψσ(3)

)
= exp

(
ψ tr σ(3)

)
= exp(0) = 1. (D.293)

Essentially, the determinant of the Lie-group is fixed to unity by the tracelessness of
the generator.

Up to this point, we have been dealing with a single generator, but in 3+1 dimen-
sions there might be cases where one combines rotations about different axes, boosts
in different directions or even considers combinations between boosts and rotations!
In these cases commutativity plays an important role, as it provides a correction factor
to the rule exp(A) exp(B) = exp(A + B) known as the k Baker-Hausdorff-Campbell
formula:

exp(A) exp(B) = exp(A + B) exp
(
−1

2
[A, B]

)
, (D.294)

with the commutator [A, B] = AB − BA.

D.6 Adding velocities

Subsequent Lorentz-transforms can be combined into a single transformation, and
we already know that the Lorentz-transforms form a Lie-group with the rapidity ψ
as an additive parameter instead of the velocity β = tanhψ. Luckily, there is a handy
addition theorem for the k hyperbolic tangent function:

tanh(ψ + ϕ) =
tanhψ + tanhϕ

1 + tanhψ · tanhϕ
(D.295)
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Figure 14: Relativistic addition theorem for velocities, with the particular case of βψ = βϕ
along the diagonal. βψ+ϕ remains strictly below unity, excluding superluminal velocities.
Clearly the relation needs to be linear if one of the velocities is zero, as seen at the edges.

Therefore, one obtains for the velocities

βψ+ϕ =
βψ + βϕ

1 + βψ · βϕ
< 1 (D.296)

leading to a combined velocity strictly smaller than the speed of light. Linearising
the relationship shows a straightforward addition of velocities,

βψ+ϕ ≃ βψ + βϕ, (D.297)

as one would expect from Galilean physics. A proof that the added velocities are
strictly smaller than c might be done along these lines: Writing βψ = 1 − x and
βϕ = 1 − y with positive x and y lead to

βψ+ϕ =
(1 − x) + (1 − y)

1 + (1 − x)(1 − y)
=

2 − x − y
2 − x − y + xy

< 1 (D.298)

because the product xy is larger than zero.

D.7 Relativistic effects

There are quite a number of relativistic effects, and they all hinge on the fact that
spatial and temporal coordinates change jointly under Lorentz transforms, while
only invariants constructed from them are truly fixed. If one chooses to ignore that
the coordinates transform jointly and only looks at a single coordinate, surprising
things will happen. Invariants will have identical values in all frames and take into
account all coordinates. As such, they are the means for making statements that do
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∆s2 = 0∆s2 = 0

lightlike vector
s2 = 0

Figure 15: Classification of distances as spacelike ∆s2 < 0, timelike ∆s2 > 0 and lightlike
∆s2 = 0. Reproduction with kind permission of I. Neutelings.

not depend on a particular coordinate choice and hence transcend frames. Personally,
I like skewed spacetime diagrams where the rapidities are chosen to be ±ψ/2 because
then the relative lengths in both frames are equal, and one can compare distances
directly.

D.7.1 Constancy of the speed of light

In every frame, the speed of light comes out as constant, to the same numerical
value, as illustrated by Fig. 16. This is no surprise, was it was the defining choice that
differentiated Lorentz- from Galilei-transforms. In the diagram one immediately sees
that a point on the diagonal, which corresponds to the light cone, acquires x- and
ct-coordinates that change in proportionality to each other, indicating that their ratio
is constant – the speed of light.

D.7.2 Relativity of simultaneity

Events at nonzero spatial separation, which take place at the same time (but at
different positions), i.e. simultaneously on one frame, take place at different times in
another frame, as shown in Fig. 17.

D.7.3 Time dilation

A time interval ct′ taken at constant spatial coordinate x′ gets mapped onto a time
interval ct with differing spatial coordinates. The ratio between the two time intervals
is proportional to the Lorentz-factor γ ≥ 1. Fig. 18 shows how the time interval
appears longer in projection.
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Figure 16: Constancy of the speed of light: The ratio of the two coordinates of a light-like
event is always constant.

ct′
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Figure 17: Relativity of simultaneity: Events that take place at the same time ct′ in one
system (blue), take place at different times in another system (green).
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ct′

x′

ct
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Figure 18: A duration ct′ of a process in one system (blue), seems to take more time when
viewed from another system (green)

D.7.4 Length contraction

An object with a given length on one frame will appear to have a shorter length
as viewed from another frame. This is ultimately traced back to the relativity of
simultaneity: The length of an object is defined as the distance between its ends at the
same time, but in a different frame, one effectively combines coordinates at different
times, as demonstrated in Fig. 19. The contraction effect is proportional to the inverse
Lorentz-factor 1/γ ≤ 1.

D.7.5 Causal ordering inside the light cone

The temporal order of time-like events is conserved under Lorentz-transforms,
lightlike-events take place simultaneously, while the order of space-like separated
events depends on the frame. To formulate this in a more extreme way, there is causal
ordering only inside the light cone, and no causal ordering outside the light cone, as
shown in Fig. 20.

D.8 Proper time

If a particle moves through spacetime along a trajectory xµ(τ) in the sense that it
passes by the coordinates xµ as its proper time τ evolves, one can define the 4-velocity
uµ of the particle as a tangent to the trajectory

uµ =
dxµ

dτ
(D.299)

which is consistent with the definition of infinitesimal arc length ds along the
trajectory, as

ds2 = ηµνdx
µdxν = ηµνu

µuνdτ2 = c2dτ2 (D.300)

i.e. if the 4-velocity is defined with proper time τ as an affine parameter, it is
normalised to ηµνuµuν = c2, and the arc length is measurable by means of a clock.
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Figure 19: A yardstick at rest in the primed system (blue) seems to be contracted as viewed
from another system (green).

ct′
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Figure 20: Spacelike separated events do not have an absolute causal ordering. The event
seems to have a positive time coordinate ct (blue) and takes place after the event at the
origin, but a negative coordinate ct′ (green) in the other frame and precedes the event at
the origin.
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x = +ctx = −ct
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Figure 21: Spacetime diagram with spacelike (both left and right) and timelike (both past
and future) regions, along with the worldline xµ(τ) of a massive particle, with 4-velocity
uµ = dxµ/dτ. As ηµνuµuν = c2 > 0, the massive particle necessarily moves inside the light
cone. Reproduction with kind permission of I. Neutelings.

Proper time is the time elapsing on a clock that is carried along with the particle:
The infinitesimal arc length can be expressed in terms of the coordinate differentials

ds2 = ηµνdx
µdxν = c2dt2 − γijdxidxj = c2dτ2 (D.301)

as the change of spatial coordinates dxi is zero for the comoving clock. This implies
three things: Proper time measures the arc length of the trajectory of a particle
through spacetime,

s =

B∫
A

ds = c

B∫
A

dτ =

B∫
A

√
ηµνdxµdxν (D.302)

and is, as a Lorentz scalar, invariant under Lorentz transforms. And in addition, the
normalisation of the 4-velocity is c2 if τ is used as the affine parameter for xµ(τ).

Returning to the expression of s in terms of the infinitesimal coordinate changes
leads to

s =

B∫
A

ds = c

B∫
A

dt

√
1 −

γij

c2
dxi

dt
dxj

dt
= c

B∫
A

dt
√

1 − γijβiβj = c

B∫
A

dt
1
γ

= c

B∫
A

dt L

(D.303)

which can be used to compute arc lengths through spacetime.
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Trajectories that have extremal values for s would result from a variational princi-
ple applied to L = 1/γ. Hamilton’s principle δS = 0 implies

δ

B∫
A

dt L(xi , υi) =

B∫
A

dt
(
∂L
∂xi

δxi +
∂L
∂υi

δυi
)

= 0 (D.304)

with the typical replacement

δυi = δ
dxi

dt
=

d
dt
δxi (D.305)

which enables integration by parts, yielding the Euler-Lagrange equation

δS =

B∫
A

dt
(
∂L
∂xi
− d

dt
∂L
∂υi

)
= 0 → d

dt
∂L
∂υi

=
∂L
∂xi

(D.306)

The identical calculation can be done if the velocities are 4-velocities, expressed
in terms of proper time τ

δ

B∫
A

dτ L(xµ, uµ) =

B∫
A

dτ
(
∂L
∂xµ

δxµ +
∂L
∂uµ

δuµ
)

= 0 (D.307)

with the typical replacement

δuµ = δ
dxµ

dτ
=

d
dτ
δxµ (D.308)

which enables integration by parts, yielding the Euler-Lagrange equation

δs =

B∫
A

dτ
(
∂L
∂xµ
− d

dτ
∂L
∂uµ

)
= 0 → d

dτ
∂L
∂uµ

=
∂L
∂xµ

(D.309)

for motion through 4-dimensional spacetime.

D.9 Relativistic motion

It would be a good idea to see if relativistic motion with the correct transformation
property of all quantities involved would result naturally from a variational principle:
This will be the case, and sometimes it appears to me that variational principles,
always presented as the pinnacle of classical physics, are in fact relativistic: In some
sense they are a piece of mathematics that has been discovered a few hundred years
too early to appreciate them properly. They incorporate the idea that an invariant
(under coordinate transforms) Lagrange-function gives rise to a covariant equation of
motion. To see how this works, let’s start at a classical Lagrange-function L(xi , υi)

L(xi , υi) =
γij

2
υiυj − Φ(xi) (D.310)
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where both terms are invariant under e.g. rotations, Φ is scalar anyways and γijυiυj

as the norm of the vector ẋ. Hamilton’s principle δS = 0 with the action

S =

tf∫
ti

dt L(xi , υi) (D.311)

yields the Newtonian equation of motion

ẍi = −γij∂jΦ (D.312)

which sets the vector ẍ in relation with the gradient ∂Φ, which is likewise a vector.
While this is perfectly nice, there are some points of criticism for the variational
principle that one can not answer from a classical point of view: There is no obvious
interpretation of L or S, they are not measurable in a direct way and they behave
funnily under Galilei transforms:

xi → xi + ui t and consequently υi → υi + ui for a constant relative velocity ui

(D.313)

This implies for the Lagrange function

L(xi , υi)→
γij

2
υiυj +γijυ

iuj +
γij

2
uiuj =

γij

2
υiυj +

d
dt

(
γijx

iuj +
γij

2
uiuj t

)
(D.314)

In fact, the Lagrange function is not invariant under Galilei-transforms, but the
additional term appearing is a total time derivative and does therefore not play a
role in the variational principle. It might strike you as odd (and rightfully so), that
rotations and Galilei-transforms are treated so differently.

Thinking about a relativistic Lagrange-function that should be intuitive, measur-
able and invariant leads to proper time

cτ = c

B∫
A

dτ =

B∫
A

ds =

B∫
A

√
ηµνdxµdxν (D.315)

It is the time that is displayed as elapsed on a clock that is moving along with the
particle and is, geometrically, the arc length of the trajectory through spacetime,
measured with the Minkowski-metric ηµν. As this metric defines an invariant, the
arc-length cτ = s will be identical in any Lorentz frame, and it will be a convex
functional in the velocity υ = cβ, making sure that the variational principle finds a
uniquely defined minimum and enabling Legendre-transforms to find the associated
energy. As affine transformations L → aL + b of the Lagrange-function or the action
do not have any influence on the Euler-Lagrange-equation, we can include a prefactor
−mc to yield

S = −mc2

B∫
A

dτ = −mc

B∫
A

ds = −mc

B∫
A

dt
γ

→ L = −mc
γ

(D.316)
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Figure 22: Relativistic Lagrange function L(β) = ±
√

1 − β2 in comparison to its classical
limits L(β) = ±1 ∓ β2/2.

where the difference between the arc length s and the action S has vanished, or in
other words: We’ve found a geometric interpretation of the action.

It is very instructive to reformulate time proper time integral in terms of the
4-velocity uµ,

uµ =
dxµ

dτ
=

dt
dτ

dxµ

dt
= γ

(
c
υi

)
for xµ =

(
ct
xi

)
(D.317)

with the definition of the conventional velocity as υi = dxi /dt. Then,

ds2 = ηµνdx
µdxν = ηµν

dxµ

dτ
dxν

dτ
dτ2 = γ2

(
c2 − υiυi

)
dτ2 = c2 γ2(1 − β2)︸      ︷︷      ︸

=1

dτ2 = c2dτ2

(D.318)

and the normalisation of the 4-velocity is timelike, ηµνuµuν = c2 > 0, as the particle
moves necessarily inside the light cone.

D.10 Relativistic dispersion relations

With the relativistic Lagrange function L being equal to the inverse Lorentz-factor,

L = −1
γ

= −
√
c2 − υ2 (D.319)

one can derive the canonical momentum p

p =
∂L
∂υ

=
υ

√
c2 − υ2

such that υ =
cp√

1 + p2
(D.320)
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Carrying out the Legendre-transform for obtaining H from L

H = υ(p)p − L(υ(p)) (D.321)

then implies

H = υ
υ

√
c2 − υ2

+
√
c2 − υ2 = υp +

υ

p
= υ

(
p +

1
p

)
= c

p√
1 + p2

1 + p2

p
= c

√
1 + p2

(D.322)

and if one would include mc as a prefactor,

H =
√

(cp)2 + (mc2)2 (D.323)

which is exactly the relativistic dispersion relation. Surprisingly, the energy H is not
zero even for p = 0, which is why we associate this energy mc2 to the rest mass of a
particle. With this dispersion relation it is straightforward to compute the group and
phase velocities of a wave packet associated with a relativistic particle,

υgr =
dH
dp

= c2 p

H
and υph =

H
p

(D.324)

such that their geometric average is exactly c2:

υgr × υph = c2 (D.325)

Because for any momentum H > cp, it is the case that υgr < c while υph > c. It
is reassuring to see that the group velocity, associated with the motion of massive
particles, is always subluminal.
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The Euler-Lagrange equation for minimising the arc-length s =
∫

ds reads

d
dτ

∂L
∂uα

=
∂L
∂xα

for L =
√
ηµνuµuν (D.326)

where the right side is automatically zero in this case, because L does not depend on
xα. Evaluating the left side gives:

d
dτ

(
1
2c
ηµν

[
∂uµ

∂uα
uν + uµ

∂uν

∂uα

])
=

d
dτ

( 1
2c
ηµν

[
δ
µ
αu

ν + uµδνα
])

=

1
2c

d
dτ

(
ηανu

ν + ηµαu
µ
)

=
1
c

duα
dτ

= 0 (D.327)

implying that in the absence of forces, the particle moves through spacetime at a
constant 4-velocity, or equivalently, that a straight line corresponds to motion free
of acceleration: This is exactly the relativistic version of Newton’s law of inertia.
And it remains true, even in Minkowski-space, that inertial motion along a straight
line minimises the arc length: The straightest trajectory is the shortest. It is quite
astonishing to see the geometric picture behind Newton’s axioms that is somewhat
hidden in classical mechanics.

Expanding the arc length s in terms of a Taylor-expansion for small velocities

s =

B∫
A

ds = c

B∫
A

dt

√
ηµν

dxµ

dt
dxν

dt
= c

B∫
A

dt
√
c2 − υ2 ≃

B∫
A

dt
(
1 − υ

2

2

)
(D.328)

recovering the square of the velocity familiar from classical mechanics, in the ap-
proximation

√
1 − β2 ≃ 1 − β2/2 for β ≪ 1. Weirdly enough, we see that it doesn’t

have anything to do with kinetic energies, it is just the lowest-order Taylor-expansion
of the relativistic arc length and is a purely geometrical object. With the suggestive
identification of the arc length as the action and the line element or proper time
interval as the Lagrange function, one really falls back onto the kinetic energy as the
Lagrange function of classical mechanics, because it is only ever defined up to an
affine transform, negating the influence of the additive 1, and allowing to multiply
the line element with the negative mass.
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E covariant electrodynamics

E.1 Covariant formulation of electrodynamics

Relativity provides the tools to formulate the Maxwell-equations very compactly,
elegantly, and in a Lorentz-covariant way. For this purpose, one needs to construct
a differential operator ∂µ for derivatives with respect to the coordinates, which
themselves form a Lorentz-vector xµ. . Sometimes, ∂µ is used, defined

as ∂µ = ηµν∂ν, but please avoid
notations like ∂µ = ∂/∂xµ.

∂µ =
∂

∂xµ
= (∂ct ,+∂i) (E.329)

For consistency, the divergence ∂µx
µ needs to be equal to the dimensionality

∂µx
µ =

∂xµ

∂xµ
= ∂ct(ct) + ∂ix

i = 4 (E.330)

which comes out naturally. With this differential form ∂µ, the d’Alembert-operator is
given as a Lorentz-square,

□ = ηµν∂µ∂ν = ∂2
ct − γij∂i∂j = ∂2

ct − ∆, (E.331)

and is in fact a Lorentz-scalar, as shown by the orthogonality relation of the Lorentz-
transforms,

□ = ηµν∂µ∂ν → ηµνΛ α
µ Λ

β
ν︸       ︷︷       ︸

=ηαβ

∂α∂β = ηαβ∂α∂β = □, (E.332)

reflecting the fact that wave propagation according to □ takes place at the velocity
c in every frame, which was the defining principle of the Lorentz transforms. The
transformation property ∂µ → Λ α

µ ∂α generalises the transformation ∂i → R j
i ∂j to

the full Lorentz group. In the same way as ∆ is invariant under rotations, □ becomes
invariant under combined rotations and Lorentz transforms.

With the operator ∂µ it is straightforward to formulate the continuity equation for
the charge density: . ȷµ contains the electric charge

density ρ and the current density
ȷi as a vector.

ȷµ =
(
ρc
ȷi

)
with ∂µȷ

µ = ∂ct(ρc) + ∂i ȷ
i = 0 (E.333)

where it is interesting to see, that ȷt = ρc has the same units as ȷi , reflecting the
consistency of the units in ∂ct and ∂i , with the additional benefit that a charge at rest
in a given frame has a nonzero t-component ȷt = cρ, as it moves with the velocity c
along the ct-axis!

As a Lorentz-vector, the 4-current density transforms according to

ȷµ → Λ
µ
αȷ
α (E.334)

and necessarily inversely to ∂µ, such that ∂µȷµ is indeed a Lorentz-scalar and has the
same value in all Lorentz-frames: The derivative transforms according to ∂µ → Λ α

µ ∂α
and the vectorial ȷµ inversely, ȷµ → Λ

µ
αȷα, such that
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e. covariant electrodynamics

∂µȷ
µ → Λ α

µ Λ
µ

β∂αȷ
β = δαβ∂αȷ

β = ∂αȷ
α (E.335)

with Λ α
µ Λ

µ

β = δαβ , as the two Lorentz-transforms are inverse to each other.

This differential formulation with its clear Lorentz-invariance has a giant advan-
tage over an integral formulation within a given frame: Earlier, we would have written

d
dt

∫
V

dV ρ = −
∫
∂V

dSi ȷ
i . (E.336)

Observed from a different Lorentz frame, the integration volume V is relativistically
contracted by a Lorentz-factor γ, while the charge density ρ is larger by the same
factor, as the charge is squeezed into a seemingly smaller volume. The two effects
compensate each other, after all, it is the same charge within V. The surface ∂V of the
volume is smaller by γ, too, for this to be true one can easily imagine a cuboid which
is contracted by γ along the direction of motion. But for the same reasons as for the
charge density, the current density ȷ is changed by the inverse factor. Lastly, there is
relativistic time dilation appearing in d/dt as well as in the current density ȷi , again
compensating each other: One sees all charge carries changing position at a slower
rate due to their dilated proper time, leading to smaller fluxes ȷi and smaller rates of
change of ρ.

E.2 Maxwell’s equations

E.2.1 Inhomogeneous Maxwell equations

The inhomogeneous Maxwell-equations are first of all a divergence ∂iDi = 4πρ and a
rotation ϵijk∂jHk = +∂ctDi +4π/c ȷi . But with the help of the dual tensor Hij = ϵijkHk

the first term of Ampère’s law becomes a divergence as well, ϵijk∂jHk = ∂jHij . This
motivates to package the two equations into a single divergence-like tensorial relation,

∂µGµν =
4π
c
ȷν, in components Gµν =


0 +Dx +Dy +Dz

−Dx 0 +Hz −Hy

−Dy −Hz 0 +Hx

−Dz +Hy −Hx 0

 (E.337)

with the antisymmetric field tensor Gµν. When inspecting the coordinates separately,
one obtains ∂µGµt = ∂iDi = 4π/c ȷt = 4πρ and ∂µGµi = −∂ctDi + ϵijk∂jHk = 4π/c ȷi .. Gµν contains the fields Di and

Hi (effectively as Hij = ϵijkHk)
in matter. One of the first conclusion we drew from the Maxwell-equations was that the field

respected charge conservation, which becomes very apparent in this formalism:

∂µGµν =
4π
c
ȷν → ∂ν∂µGµν =

4π
c
∂νȷ

ν = 0 (E.338)

implying that the continuity equation ∂νȷ
ν = 0 is valid because of the contraction of

the symmetric operator ∂ν∂µ with an antisymmetric tensor Gµν. With 6 free entries
as an antisymmetric tensor, Gµν can accommodate 3 components of the electric field
Di and 3 components of the magnetic field Hi .. It follows from the antisymme-

try of Gµν that in n + 1 dimen-
sions, there would be n compo-
nents for Di but n(n − 1)/2 com-
ponents for Hi .
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Figure 24: Electric and magnetic field components under Lorentz boosting F̃αβ →
ΛαµΛ

β
νF̃µν as a function of rapidity ψ.

E.2.2 Homogeneous Maxwell equations

Writing the two homogeneous Maxwell-equations as divergences requires a similar
construction: For that purpose, one defines the dual field tensor F̃µν with a suitable
arrangement of the fields Ei and Bi : The rotation appearing in the induction law
is recast into a divergence ϵijk∂jEk = ∂jϵ

ijkEk = ∂jEij with the dual Eij = ϵijkEk .
Combining the electric field components in a similar alternating fashion with the
magnetic field components leads to, . F̃µν contains the fields Bi and

Ei (effectively as Eij = ϵijkEk) in
vacuum.

∂µF̃µν = 0, in components F̃µν =


0 −Bx −By −Bz

+Bx 0 +Ez −Ey

+By −Ez 0 +Ex

+Bz +Ey −Ex 0

 . (E.339)

With this definition of the dual field tensor, one can write analogously ∂µF̃µt =
∂iBi = 0 (the overall minus-sign does not matter) and ∂µF̃µi = ∂ctBi + ϵijk∂jEk = 0.
Electromagnetic duality in vacuum now amounts simply to interchanging Gµν and
F̃µν, because ∂µGµν = ∂µF̃µν = 0 as soon as ȷν = 0. . Again, antisymmetry of F̃µν re-

quires that in n + 1 dimensions,
there would be n components for
Bi but n(n − 1)/2 components for
Ei .

Both field tensors transform under boosting according to F̃µν → Λ
µ
αΛ

ν
βF̃αβ and

Gµν → Λ
µ
αΛ

ν
βGαβ, which has a strong effect ∝ γ2 (in fact, two Λs needed because

the tensors have two indices) on the fields, as illustrated in Fig. 24.
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E.3 Relativistic potentials and gauging

The next step would be to package the potentials Φ and Ai into a 4-potential, accord-
ing to

Aµ = (Φ,−Ai) , (E.340)

which allows to write the Lorenz gauge-condition in a very compact way as a diver-
gence:

ηµν∂µAν = ∂ctΦ + γij∂iAj = 0, (E.341)

where the minus signs from the spatial part of the metric ηµν and of the spatial part
of Aµ cancel each other. Defining the potential Aµ as in eqn. (E.340) allows to write. Aµ contains the electric poten-

tial Φ and the magnetic potential
Ai as a linear form.

wave equation in Lorenz-gauge in a very compact form,

□Aµ =
4π
c
ηµνȷ

ν, (E.342)

which at the same time explains the minus-sign in the spatial part of Aµ as well as
the cancellation of the additional factor of c in ȷt = ρc.

Linking the potential Aµ to the k Faraday tensor Fµν is possible by writing

∂µAν − ∂νAµ = Fµν, (E.343)

because then the the electric field components would be given as Fit = ∂iAt −∂ctAi =
−∂iΦ − ∂ctAi = Ei as well as Fij = ∂iAj − ∂jAi with mutually different indices (ijk).
It is interesting to see, how the requirement of antisymmetry reduces the number of
free field components from initially 16 in ∂µAν to 6, corresponding to 3 components
of the electric and 3 components of the magnetic field. Weirdly enough, it’s a bit of a
coincidence that in 3 + 1 dimensions there are as many components of the electric
and of the magnetic field, allowing to write Bi as a vector:

Bi = ϵijkFjk = ϵijk
(
∂jAk − ∂kAj

)
(E.344)

albeit with a small caveat: Under parity transform P , Bi does not change its sign,
because both ∂i and Aj change their signs. In contrast, Ei does change its sign, because
in ∂iΦ only ∂i changes its sign, and in ∂ctAi only Ai ! Consequently, one calls Ei a
polar vector and Bi an axial vector.

Applying gauge transformations would change the potentials, Aµ → Aµ + ∂µχ,
but leaves the Faraday tensor Fµν invariant, as

Fµν → ∂µ (Aν + ∂νχ) − ∂ν
(
Aµ + ∂µχ

)
= ∂µAν − ∂νAµ + ∂µ∂νχ− ∂ν∂µχ︸            ︷︷            ︸

=0

= Fµν (E.345)

as partial derivatives interchange. The same result applies to the tensor Gµν as it
originates from Fµν through a linear transform. It is well possible to derive F̃µν from
the potential directly, through

F̃µν =
1
2
ϵµναβFαβ =

1
2
ϵµναβ

(
∂αAβ − ∂βAα

)
= ϵµναβ∂αAβ, (E.346)
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e.3. relativistic potentials and gauging

using an antisymmetry-argument in the second step. Gauge transforms on the
potential imply

ϵµναβ∂αAβ → ϵµναβ∂α
(
Aβ + ∂βχ

)
= ϵµναβ∂αAβ + ϵµναβ∂α∂βχ = ϵµναβ∂αAβ = F̃µν

(E.347)

with the contraction of the symmetric ∂α∂β with the antisymmetric ϵµναβ vanishes.
In consequence, not only Fµν but also F̃µν is gauge-invariant, and by extension G̃µν.

An interesting manipulation shows a derivative relation for Fµν as it originates
from the potential. Composing a cyclic permutation of indices in ∂λFµν yields

∂λFµν + ∂µFνλ + ∂νFλµ = ∂λ(∂µAν − ∂νAµ) + ∂µ(∂νAλ − ∂λAν) + ∂ν(∂λAµ − ∂µAλ) = 0
(E.348)

with a pairwise cancellation of the terms. This derivative relation is called the k

Bianchi-identity and is in fact equivalent to the field equation ∂µF̃µν = 0 for the dual
tensor F̃µν,

∂µF̃µν =
∂µ
2
ϵµναβFαβ =

∂µ
2
ϵµναβ(∂αAβ − ∂βAα) = ∂µϵ

µναβ∂αAβ = ϵµναβ∂µ∂αAβ = 0,

(E.349)

with the well-used argument that a contraction between a symmetric and an anti-
symmetric index pair, here (α, µ), has to vanish. One sees immediately, that working
with a potential is enabled by the condition ∂µF̃µν = 0 instead of F̃µν being sourced
by a magnetic charge density ıν, in the spirit of

∂µF̃µν = −4π
c
ıν, (E.350)

with an associated conservation law ∂νı
ν = 0. Only then can we make the argument

that a potential Aµ invalidates a nonzero divergence of F̃µν.

The field tensor Gµν containing Di and Hi can be related to the field tensor Fµν
containing Ei and Bi by means of a generalised constitutive relation,

Gαβ = XαβµνFµν ↔ Fαβ = XαβµνGµν (E.351)

with the orthogonality relation

XαβµνXµνγδ = δαγ δ
β

δ
, implying Gαβ = XαβµνXµνγδ Gνγδ = δαγδ

β

δ
Gγδ = Gαβ (E.352)

The tensor Xαβµν is antisymmetric in each index pair (α, β), (µ, ν) and maps an
antisymmetric linear form Fµν to an antisymmetric vectorial tensor Gµν. Tensors of
that type can be written as being proportional to proper antisymmetrisations of the
metric,

Xαβµν =
ηαµηβν − ηανηβµ

2
, (E.353)

allowing us to convert the divergence ∂µGµν = 4π/c ȷν into a wave equation for the
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e. covariant electrodynamics

potentials,

∂µGµν = ∂µXµναβFαβ = ∂µXµναβ(∂αAβ − ∂βAα) = 2∂µXµναβ∂αAβ =(
ηαµηβν − ηανηβµ

)
∂µ∂αAβ = ηαµ∂µ∂α︸   ︷︷   ︸

=□

ηβνAβ − ηαν∂α ηβµ∂µAβ︸   ︷︷   ︸
=0

= □ηβνAβ =
4π
c
ȷν.

(E.354)

In summary, under the assumption of Lorenz-gauge, the wave equation

□Aβ =
4π
c
ηβνȷ

ν (E.355)

relates potential and source, where we have already discussed solutions in terms
of Liénard-Wichert retarded potentials. Effectively, with the time-component of the
source being cρ, and the overall coupling constant being 4π/c, one can combine both
potentials into a single linear form and all sources into a single vector.

E.4 Dual field tensors and the Bianchi-identity

The duality transformation interchanges the positions of the electric and magnetic
field components when transitioning from Fµν to F̃µν and vice versa:

F̃αβ = −1
2
ϵαβµνFµν ↔ Fµν =

1
2
ϵµναβF̃αβ (E.356)

making Fµν autodual

˜̃Fµν = −1
4
ϵµναβϵ

αβγδFγδ = δ
γδ
µνFγδ =

1
2

(
δ
γ
µδ
δ
ν − δ

γ
νδ
δ
µ

)
Fγδ =

1
2

(
Fµν − Fνµ

)
= Fµν, (E.357)

where analogous formulas apply to F̃µν. For the contraction between the two Levi-
Civita symbols we have used the relation

ϵi1...iqk1...kpϵk1...kpj1...jq = −p!q!δ
i1...iq
j1...jq

, (E.358)

valid for Minkowksi-spaces, with the dimension n = p + q and the overlap p between

the indices to be contracted. Specifically, we need p = 2 = q in n = 4. δ
i1...iq
j1...jq

refers to

the generalised Kronecker symbol. In complete analogy, there is a dual G̃µν of the
field tensor Gµν,

G̃µν =
1
2
ϵµναβGαβ ↔ Gαβ = −1

2
ϵαβµνG̃µν. (E.359)

To make things more concrete, one can follow through how the duality transform
reorganises the tensors F̃µν and Gµν isolated from the homogeneous and inhomoge-
neous Maxwell-equations. First of all, ϵαβµνF̃µν maps the antisymmetric (µ, ν) index
pair to an object Fαβ, which is likewise antisymmetric, this time in (α, β). For a non-
vanishing contribution, all indices in the Levi-Civita-symbol need to be different,
which implies that there is no linear combination being formed, but simply a remap-
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ping of all components: For instance, choosing (α, β) = (t, x) for Fαβ can only acquire
a combination from F̃µν for (µ, ν) = (y, z) or (z, y). But F̃y,z = −F̃z,y due to the antisym-
metry of the field tensor, therefore the two are equal, and are added twice, which in
turn is remedied by the prefactor of 1/2.

Specifically Ftx will be set equal to F̃yz = Ex, and Fxy will become F̃tz = −Bz : We
observe, how the first row and the first column of Fαβ will accommodate the electric
field components which had been stored in the interior of the tensor F̃µν, while the
first row and first column of F̃µν get scattered into the interior of the tensor Fαβ:
Effectively, the magnetic and electric field components get interchanged up to a sign,
leading to:

Fµν =


0 +Ex +Ey +Ez

−Ex 0 −Bz +By

−Ey +Bz 0 −Bx

−Ez −By +Bx 0

 . (E.360)

The same rearrangement takes place in the duality transform of the tensor Gαβ:

G̃µν =


0 −Hx −Hy −Hz

+Hx 0 −Dz +Dy

+Hy +Dz 0 −Dx

+Hz −Dy +Dx 0

 (E.361)

with the replacement of Di and Hi , again with a sign change: This sign change is very
important, as it recovers the idea of duality of electromagnetism in vacuum, where
under the replacement of electric and magnetic fields the Maxwell equations do not
change.

The duality transform respects the antisymmetry of F̃µν and Fµν, which is impor-
tant because it links charge conservation to gauge invariance of the potentials: Nature
has chosen to have ıµ = 0 and ∂µı

µ = 0 which has important implications, as we can
now differentiate between the inhomogeneous and homogeneous Maxwell equations,
which read:

∂µGµν =
4π
c
ȷν and ∂µF̃µν = 0 (E.362)

With Fµν following from a potential Aµ in an antisymmetrised, gauge-invariant way,

Fµν = ∂µAν − ∂νAµ (E.363)

the homogeneous Maxwell equation is automatically fulfilled, as

∂µF̃µν =
1
2
∂µϵ

µναβFαβ = ϵµναβ∂µ∂αAβ = 0 (E.364)

through the contraction of the antisymmetric Levi-Civita symbol over the symmetric
index pair (α, µ).

The equivalence of the Bianchi-identity

∂µFαβ + ∂βFµα + ∂αFβµ = 0 (E.365)

and the divergence-like field equation for the dual tensor F̃µν
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∂µF̃µν = 0 (E.366)

can be shown as follows:

∂µF̃µν = −1
2
ϵµναβ∂µFαβ = +

1
2
ϵνµαβ∂µFαβ (E.367)

by substituting the definition of the duality transform and by interchanging µ↔ ν in
the last step, which brings in a minus-sign because of the antisymmetry of ϵ. In fact,
any cyclic permutation of the indices does not change anything, so that one can write

. . . =
1
6

[
ϵνµαβ + ϵναβµ + ϵνβµα

]
∂µFαβ =

1
6
ϵνµαβ

(
∂µFαβ + ∂βFµα + ∂αFβµ︸                      ︷︷                      ︸

=0

)
= 0 (E.368)

making ∂µF̃µν = 0 equivalent with eqn. (E.365), after renaming the indices in the
second and third term.

The Bianchi-identity is particularly interesting because it provides a propagation
mechanism for electromagnetic waves: Acting on eqn. (E.365) with the derivative
ηµν∂ν gives

ηµν∂ν
(
∂µFαβ + ∂βFµα + ∂αFβµ

)
= ηµν∂ν∂µ︸   ︷︷   ︸

=□

Fαβ + ∂β η
µν∂νFµα︸    ︷︷    ︸

=0

−∂α ηµν∂νFµβ︸    ︷︷    ︸
=0

= 0, (E.369)

and substituting the field equation for vacuum twice has us arrive at a wave equation
for the fields,

□Fαβ = 0. (E.370)

It can be solved with a wave ansatz Fαβ ∝ exp(±ikµxµ), leading to the null-
condition

ηµνkµkν = 0 equivalent with
(
ω

c

)2
− γijkikj = 0→ ω = ±ck (E.371)

such that group velocity dω/dk and phase velocity ω/k are both c, and dispersion
can not occur.

The wave equation for a non-vacuum situation looks a bit weird: Substituting the
sources ȷα and ȷβ gives

□Fαβ =
4π
c

(
∂αηβµȷ

µ − ∂βηαµȷµ
)
, (E.372)

where it is interesting to see that the antisymmetry in the index pair (α, β) appears
consistently in the sources on the right side. The same result could have been derived
from the potentials, too, as □Aµ = 4π/c ηµνȷν in e.g. Lorenz-gauge becomes

□Fαβ = □
(
∂αAβ − ∂βAα

)
= ∂α□Aβ − ∂β□Aα =

4π
c

(
∂αηβµȷ

µ − ∂βηαµȷµ
)
. (E.373)
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Actually, eqn. (E.373) is able to explain an interesting fact: Naively, one would
think that it is not entirely clear how the six components of Gµν are sourced by the four
components of ȷµ, and only going through the potential Aµ resolves the issue: There
is, in particular in Lorenz-gauge (just for illustration, any gauging term ∂µχwould
drop from the expression), a one-to-one relation linking Aµ to ȷµ in □Aµ = 4π/c ηµνȷν,
and the definition of Fµν as ∂µAν − ∂νAµ then generates six mutually independent
field components, to be related linearly to the six free components of Gµν through the
constitutive relation.

On the other hand, eqn. (E.373) may be interpreted in a way that it is not the
current density ȷα that sources Fαβ, but rather its antisymmetric derivative ∂αηβµȷ

µ −
∂βηαµȷ

µ. Its six components determine each individually and independently the six
components of Fαβ, even in a physical and gauge independent way.

A summary of the two field tensors and their duals, along with all four possi-
ble quadratic Lorentz-invariants (three of which are distinct, and reduce to two in
vaccum) is given by this diagram:

Aν F̃αβG̃αβ = EiDi − HiBi

F̃αβ G̃γδ

F̃αβFαβ ∝ EiBi 0 G̃µνGµν ∝ HiDi

Fγδ Gµν

Aδ FµνGµν = EiDi − HiBi ȷν

ϵαβµν∂µ

∂α

−ϵµνγδ/2

X̃αβγδ

−ϵαβγδ/2

Xµνγδ

∂αFγδ+∂γFδα+∂δFαγ

∂µ∂γAδ−∂δAγ

(E.374)

E.5 Covariant electrodynamics

Summarising the results from the previous chapters shows that there is a clear
conceptual picture defining Maxwell-electrodynamics: .

vector form
matter Gµν G̃µν
vacuum F̃µν Fµν

• The 4-potential Aµ and the 4-current ȷµ are a Lorentz-linear form and a Lorentz-
vector, respectively.

• The inhomogeneous Maxwell-equation take on the form ∂µGµν = 4π/c ȷν and
the homogeneous Maxwell-equations are written as ∂µF̃µν = 0, as there are no
magnetic charges.

• Equivalent to the homogeneous Maxwell equation is the Bianchi-identity, ∂λFµν+
∂µFνλ + ∂νFλµ = 0, which is automatically fulfilled if Fµν = ∂µAν − ∂νAµ.
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• Charge is conserved and the inhomogeneous Maxwell-equation ∂µȷ
µ = 0 re-

spects it through the antisymmetry of Gµν.

• Gauging with a gauge function χ implies the transformation Aµ → Aµ + ∂µχ,
leaving the Faraday tensor Fµν invariant through its antisymmetry.

• Under the Lorenz-gauge condition ηµν∂µAν = 0 one obtains a typical wave
equation □Aµ = 4π/c ηµνȷν from the inhomogeneous Maxwell-equation, with
Lorentz-invariant propagation speed c.

• The geometry is defined by the metric tensor ηµν which is relevant for the
vacuum fields in Fµν. The constitutive relation Xαβµν links Gµν to Fµν and falls
back onto the metric in vacuum.

It is amazing to see how clearly gauge-transforms and Lorentz-transforms are
incorporated into the formalism, and how the mathematical structure of the Maxwell-
equations results from the antisymmetry of the field tensor, as well as its gauge-
independence. It’s worthwhile to contemplate, how the Lorenz-gauge condition
ηµν∂µAν = 0 is at the same time a Lorentz-invariant: As a Lorentz-scalar it has the
same value, zero in this case, in all frames. The electromagnetic field, too, possesses
Lorentz-invariants, which are necessarily quadratic or of higher order in the fields,
as all contractions Fµµ = ηµνFµν = 0, F̃µµ = ηµνF̃µν = 0, G̃µ

µ = ηµνG̃µν = 0 and lastly
Gµ

µ = ηµνGµν = 0 vanish because of the antisymmetry of Fµν, Gµν and their respective
duals.

Quadratic invariants are first of all

FµνGµν = F̃µνG̃µν = EiD
i − HiB

i , (E.375)

which is a properly scalar quantity which is in addition parity-positive: The product
of two parity-even magnetic fields is parity-even and the product of two parity-odd
electric fields is likewise parity-even. Mixed contractions involving a single dual,

F̃µνFµν = 4EiB
i and G̃µνGµν = 4HiD

i (E.376)

are parity negative, as products of a parity-even magnetic field and a parity-odd
electric field.. The Maxwell-field has a sin-

gle, scalar quadratic invariant,
FµνGµν; there are two pseu-
doscalar quadratic invariants,
F̃µνFµν and G̃µνGµν, where the
last two coincide in vacuum.

In particular the first invariant does not reflect an energy density Ttt ∝ EiDi +
HiBi , which should depend on the choice of frame and can not be invariant. Its
numerical value is actually zero for all vacuum solutions, as can be quickly verified
by considering a plane wave: The electric and magnetic energy densities are equal
at every point and instant, EiDi = HiBi , making sure that FµνGµν = 0. Furthermore,
the electric and magnetic fields are orthogonal to each other, such that EiBi = 0 and
HiDi = 0.

The invariant discussed above are contractions between the vectorial tensors Gµν

and F̃µν on one side and the linear forms Fµν and G̃µν on the other. In a vacuum
situation, all vectorial quantities are trivially related to their linear forms through the
Minkowski-metric, so it is possible to construct 4 more invariants

ηαµηβνFαβFµν = ηαµηβνG̃αβG̃µν = ηαµηβνGαβGµν = ηαµηβνF̃αβF̃µν ∝ γijEiEj − γijBiBj .
(E.377)
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E.6 Lagrange-density for the dynamics of fields

To our knowledge, all fundamental physical theories can be derived from k varia-
tional principles, and electrodynamics is no exception. At the basis of all variational
principles is the notion that the action is invariant under a certain relativity prin-
ciple, in our case Lorentz-relativity, which leads to a covariant equation of motion,
where all quantities are consistently behaving under changes in the frame: This was
already the case for Galilean dynamics, as a rotationally invariant Lagrange-function
L(xi , ẋi) = γij ẋ

i ẋj /2 − Φ(xi) with the Euclidean, rotationally invariant scalar product
γij ẋ

i ẋj gave rise to a equation of motion ẍi = −γij∂jΦ relating two vectors to each
other. From this point of view one would hope to arrive at a Lorentz-covariant equa-
tion of motion from a Lorentz-invariant Lagrange function. As the Euler-Lagrange- . invariance/covariance princi-

ple: covariant field equations from
invariant Lagrange functionsequation usually reduces the powers by one in the derivative process, one would like

to begin with quadratic Lorentz-invariants in order to arrive at a linear field equation
which respects the superposition principle. Then, if the Lagrange-function does not . Quadratic Lagrange functions

lead to linear field equations: su-
perposition principledepend explicitly on the coordinates xµ, i.e. if xµ is a cyclic variable, one has reasons

to expect that the theory is conserving energy and momentum. And lastly, charge
. coordinates as cyclic variables
imply energy-momentum conser-
vation

conservation should result from gauge-invariance as the symmetry principle.

. gauge symmetry is related to
charge conservationE.6.1 Scalar field on a Euclidean background

Let’s illustrate how variational principles work with a simpler example than the full
Maxwell-theory. Electrostatics is fully characterised by a potential Φ which is linked
to the source ρ by means of the Poisson-equation ∆Φ = −4πρ, in other words: We’re
looking for a variational principle for a scalar field ϕ on a Euclidean background, that
is coupled to a source and does not have any dynamics on its own. Writing the action
S as an integral over a Lagrange-density L would give

S =
∫
V

d3x L(ϕ, ∂iϕ) (E.378)

and Hamilton’s principle δS = 0 then suggests the variation

δS = δ

∫
V

d3x L =
∫
V

d3x

(
∂L
∂ϕ

δϕ +
∂L
∂∂iϕ

δ∂iϕ

)
(E.379)

Interchanging the partial derivative and the variation, δ∂iϕ = ∂iδϕ, allows an
integration by parts. One can isolate the Euler-Lagrange-equation for a scalar field ϕ

δS =
∫
V

d3x

(
∂L
∂ϕ
− ∂i

∂L
∂∂iϕ

)
δϕ = 0 → ∂i

∂L
∂∂iϕ

=
∂L
∂ϕ

(E.380)

because the variation δϕ is zero by construction on the boundary ∂V,∫
V

dV ∂i

(
∂L
∂∂iϕ

δϕ

)
=

∫
∂V

dSi

(
∂L
∂∂iϕ

δϕ

)
= 0 as

∂L
∂∂iϕ

δϕ

∣∣∣∣
∂V

= 0. (E.381)

The Poisson-equation as a second order partial differential equation should result
from an action that contains squares of first derivatives of the potential ϕ, for instance
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e. covariant electrodynamics

L(ϕ, ∂iϕ) =
γab

2
∂aϕ∂bϕ − 4πρϕ. (E.382)

Concerning the invariance-covariance principle, we note that the first term is as
a scalar product, invariant under rotations. Substitution into the Euler-Lagrange
equation gives

∂L
∂ϕ

= −4πρ (E.383)

as well as (please always rename the indices when you’re doing this)

∂L
∂∂iϕ

=
γab

2

(
∂∂aϕ

∂∂iϕ
∂bϕ + ∂aϕ

∂∂bϕ

∂∂iϕ

)
=

γab

2

(
δia∂bϕ + ∂aϕδ

i
b

)
=

1
2

(
γib∂bϕ + γai∂aϕ

)
= γib∂bϕ (E.384)

such that one arrives precisely at the Poisson-equation

∂i
∂L
∂∂iϕ

= ∂iγ
ib∂bϕ = ∆ϕ =

∂L
∂ϕ

= −4πρ. (E.385)

where the Laplace-operator ∆ is scalar and does not change under rotations.

E.6.2 Scalar field on a Lorentz background

Repeating the entire derivation for a relativistic field theory with the Lagrange density

L(ϕ, ∂µϕ) =
ηµν

2
∂µϕ∂νϕ + 4πρϕ (E.386)

leads with the Euler-Lagrange equation

∂α
∂L

∂∂αϕ
=

∂L
∂ϕ

(E.387)

for varying the action

S =
∫
V

d4x L(ϕ, ∂µϕ) (E.388)

that results as an integral over the spacetime volume d4x = cdtd3x. Carrying out the
variation δS = 0 implies the wave equation

□ϕ = 4πρ with □ = ηµν∂µ∂ν. (E.389)

as a generalisation to the Poisson-equation.
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E.6.3 Maxwell field on a Lorentz background

The Maxwell-equations expressed in terms of the potential Aµ are likewise second or-
der differential equations, where the action should contain squares of first derivatives
of the potential. The new aspect now is that the potential has (4) internal degrees
of freedom and is not scalar as in the previous two examples. The squares of the
first derviatives of Aµ should be Lorentz-invariants, and we will only utilise the
parity-positive one for the time being.

Driven by analogy, one would write for a vacuum situation . please keep in mind that the
Lagrange-density is invariant un-
der affine transforms, L → αL+β,
therefore only the ratio of prefac-
tors matters.

S =
∫
V

d4x L(Aµ, ∂µAν) =
∫
V

d4x ηαµηβνFαβFµν︸          ︷︷          ︸
square of first derivatives

+
16π
c

Aµȷ
µ︸     ︷︷     ︸

coupling to the source

(E.390)

Please keep in mind that it is only through broken duality and the non-existence
of magnetic charges that the potentials Aµ exist such which ultimately enables a
Lagrangian description as in eqn. (E.390). A suitable Euler-Lagrange equation would
result from variation δS of the action S with respect to δA, which becomes

δS = δ

∫
V

d4x L =
∫
V

d4x

(
∂L
∂Aγ

δAγ +
∂L

∂∂γAδ

δ∂γAδ

)
=

∫
V

d4x

(
∂L
∂Aδ

− ∂γ
∂L

∂∂γAδ

)
δAδ = 0 (E.391)

where as always we wrote δ∂γAδ = ∂γδAδ for the integration by parts, finally allowing
the extraction of the Euler-Lagrange equation by means of Hamilton’s principle δS = 0:

∂γ
∂L

∂∂γAδ

=
∂L
∂Aδ

, (E.392)

again keeping the variation δAδ fixed on the boundary,∫
V

dV ∂γ

(
∂L

∂∂γAδ

δAδ

)
=

∫
∂V

dSγ

(
∂L

∂∂γAδ

δAδ

)
= 0 as

∂L
∂∂γAδ

δAδ

∣∣∣∣
∂V

= 0. (E.393)

Substitution of the Lagrange-density L is rather straightforward for the ∂Aδ-
derivative,

∂L
∂Aδ

=
16π
c

∂Aµ

∂Aδ

ȷµ =
16π
c
δδµȷ

µ =
16π
c

ȷδ (E.394)

but involves handling many indices for the derivatives with respect to ∂γAδ.

93



e. covariant electrodynamics

Instead, one can rewrite the derivative as

∂
∂∂γAδ

=
∂Fστ
∂∂γAδ

∂
∂Fστ

=
∂(∂σAτ − ∂τAσ)

∂∂γAδ

∂
∂Fστ

=
(
∂∂σAτ

∂∂γAδ

− ∂∂τAσ

∂∂γAδ

)
∂

∂Fστ
=

(
δ
γ
σδ
δ
τ − δ

γ
τδ
δ
σ

) ∂
∂Fστ

=
∂

∂Fγδ
− ∂
∂Fδγ

= 2
∂

∂Fγδ
. (E.395)

In both cases, the elementary derivatives give either 0 or 1 according to

∂∂µAν

∂∂γAδ

= δ
γ
µδ
δ
ν as well as

∂Aµ

∂Aγ

= δ
γ
µ, (E.396)

because the field components and their derivatives into the different coordinate
directions are all independent. The derivatives ∂Fαβ/∂Fµν of the field tensor with
respect to itself are slightly more involved, because of the antisymmetry of both Fαβ
and Fµν. The necessary (anti-)symmetrisation reads

∂Fαβ
∂Fµν

=
1
4

(
δ
µ
αδ
ν
β − δ

ν
αδ
µ

β − δ
µ

βδ
ν
α + δνβδ

µ
α

)
=

1
2

(
δ
µ
αδ
ν
β − δ

ν
αδ
µ

β

)
(E.397)

with a simplification due to the pairwise identity of terms.

Then, application of the differentiations to the kinetic term required by the Euler-
Lagrange equation yields:

∂L
∂∂γAδ

= 2
∂

∂Fγδ
ηαµηβνFαβFµν = 2ηαµηβν

(
∂Fαβ
∂Fγδ

Fµν + Fαβ
∂Fµν
∂Fγδ

)
=

ηαµηβν
((
δ
γ
αδ
δ
β − δ

δ
αδ
γ

β

)
Fµν + Fαβ

(
δ
γ
µδ
δ
ν − δδµδ

γ
ν

))
= 4ηγµηδνFµν. (E.398)

Collection of all results suggests as the field equation the relation

∂γ
∂L
∂γAδ

= 4∂γη
γµηδνFµν =

∂L
∂Aδ

=
16π
c

ȷδ → ηγµ∂γFµν =
4π
c
ηδνȷ

δ (E.399)

which one immediately recognises as the inhomogeneous Maxwell-equation in
vacuum, with the divergence of the field tensor being equated to the source. The
invariance of the Lagrangian description and the covariance of the field equation is
summarised by this diagram,

S =
∫
V

d4x ηαµηβνFαβFµν + 16π
c Aµȷ

µ

ηαµηβν∂µFαβ − 4π
c ȷν = 0,

δS=0 δS=0 (E.400)

and substitution of the expression for Fµν = ∂µAν − ∂νAµ finally leads to
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ηγµ∂γFµν = ηγµ∂γ
(
∂µAν − ∂νAµ

)
= ηγµ∂γ∂µAν︸       ︷︷       ︸

=□Aν

−∂ν ηγµ∂γAµ︸    ︷︷    ︸
=0

=
4π
c
ηδνȷ

δ, (E.401)

which clearly demonstrates a covariant wave equation with the potential Aν as a
linear form related to the source ηδνȷδ, a vector converted into a linear form, with the
assumption of Lorenz-gauge ηγµ∂γAµ = 0 for making the second term disappear.

Formal application of the variation to the action integral would be an expression

δS = δ

∫
V

d4x ηαµηβνFαβFµν = 2
∫
V

d4x ηαµηβνFαβ δFµν = 0 (E.402)

where one can interpret the requirement of Hamilton’s principle, namely δS = 0, as an
orthogonality condition between Fαβ and its variation δFαβ, as a modern embodiment
of the k principle of virtual work.

It might be an interesting endeavour to understand how exactly the structure
ηαµηβνFαβFµν in the kinetic term of the Lagrange density is to be interpreted, beyond
the fact that it is a quadratic Lorentz-invariant. With the antisymmetry of Fµν = −Fνµ
one can write

S =
∫
V

d4x ηαµηβνFαβFµν =
∫
V

d4x ηαµηβν
1
2

(
FαβFµν − FαβFνµ

)
(E.403)

which becomes, after renaming the indices µ↔ ν in the second term,

S =
1
2

∫
V

d4x ηαµηβνFαβFµν − ηανηβµFαβFµν =
∫
V

d4x
ηαµηβν − ηανηβµ

2
FαβFµν (E.404)

which can be written as

S =
∫
V

d4x XαβµνFαβFµν with a measure Xαβµν =
ηαµηβν − ηανηβµ

2
(E.405)

as tensor with two antisymmetric index pairs (α, µ) and (β, ν). Perhaps the index
structure reminds you of the Grassmann-relation γilϵijkϵlmn = γjmγkn − γjnγkm of
a square of a vector product, which quantifies the area spanned by two vectors: In
some sense, the same happens in the Lagrange density, which is an abstract measure
of the area between ∂µ and Aν, induced by the metric ηµν.

E.6.4 Maxwell field in matter

For the behaviour of the Maxwell field in matter a suitable starting point could be
the action

S =
∫
V

d4x FµνGµν +
16π
c

Aµȷ
µ (E.406)

where the Lorentz invariant in matter constitutes the kinetic term. Expressed in
terms of the fields it reads FµνGµν = EiDi − HiBi . On possible pathway to carry out

95

https://en.wikipedia.org/wiki/Virtual_work


e. covariant electrodynamics

the variation and to perform the derivatives with respect to Aγ and ∂γAδ is provided
by the constitutive relation,

Gαβ = XαβµνFµν, (E.407)

that relates the fields Di and Hi contained in Gµν to the vacuum fields Ei and Bi in
Fµν. After all, only Fµν follows from the derivation of the potential Aµ and is accessible
to variation. As both tensors are antisymmetric, Xαβµν has to be antisymmetric in
each index pair, Xαβµν = −Xαβνµ = −Xβαµν = Xβανµ. Then, the action integral reads

S =
∫
V

d4x XαβµνFαβFµν +
16π
c

Aµȷ
µ (E.408)

Variation proceeds as in the previous case, as

∂L
∂∂γAδ

= 2
∂

∂Fγδ
XαβµνFαβFµν = 2Xαβµν

(
∂Fαβ
∂Fγδ

Fµν + Fαβ
∂Fµν
∂Fγδ

)
=

Xαβµν
((
δ
γ
αδ
δ
β − δ

δ
αδ
γ

β

)
Fµν + Fαβ

(
δ
γ
µδ
δ
ν − δδµδ

γ
ν

))
= 4XγδµνFµν = 4Gγδ. (E.409)

Combined with the previous result on the derivative with respect to Aδ, the Euler-
Lagrange equation yields:

∂γ
∂L
∂γAδ

= 4∂γXγδµνFµν = 4∂γGγδ =
∂L
∂Aδ

=
16π
c

ȷδ → ∂γGγδ =
4π
c
ȷδ, (E.410)

which is in fact the Maxwell field equation in matter. While the Lagrange density
eqn. (E.406) is the source of the field equation and links ultimately of the fields Di

and Hi to the sources, the dynamics of the dual field tensor F̃µν with Ei and Bi is
already fixed by the Bianchi-identity.

E.7 Optics

It is fair to say that the covariant constitutive relation falls back in isotropic media on
the antisymmetrised metric,

Xαβµν =
ηαµηβν − ηανηβµ

2
(E.411)

possibly with (ϵµ) as a prefactor in isotropic media in the spatial part of the metric.
In fact, in isotropic media one gets for the effective metric. Please keep in mind that

Di = ϵijEj ∝ ϵγijEj and Hi =

µijBj ∝ µγijBj , so the mapping
from the vacuum fields Ei , Bi in
Fµν to Di , Hi in Gµν picks up a
factor of ϵµ = n2 in the spatial
components.

ηµν =


1
−n2

−n2

−n2

 ↔ ηµν =


1
−n−2

−n−2

−n−2

 (E.412)

with the refractive index n =
√
ϵµ.
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In this particular case, a plane-wave ansatz exp(±ikαxα) yields a modified null-
condition

ηµνkµkν = 0 =
(
ω

c

)2
− k2

n2 → ω = ± ck
n

(E.413)

Consequently, the velocities are diminished by the refractive index n,

υgr =
dω
dk

=
c
n

=
ω

k
= υph (E.414)

and the light cone becomes narrower by the factor n. As constitutive tensor Xαβµν

is composed of the two contributions, namely the permissivity tensor ϵij and the
permeability tensor µij , on the spatial components are affected: This effectively means
that in a medium, the wave length λ = 2π/k is affected by the refractive index and
not the angular frequency ω.

The notion, that wave length changes in a medium according to λ → nλ with
the refractive index n, paving the way for k Fermat’s principle for refraction: The
optical path length is effectively increased by the same factor of n. The spatial distance
between two point A and B is given by

s =

B∫
A

ds →
B∫

A

ds n =

B∫
A

dλ

√
γij

dxi

dλ
dxj

dλ
n(xi) (E.415)

and is extremised according to δs = 0 to yield the actual light path, technically
through application of the Euler-Lagrange equation albeit for a rather unusual form
of the Lagrange-function

L =

√
γij

dxi

dλ
dxj

dλ
n(xi) (E.416)

with no additive separation in a kinetic and potential part. Instead, in applying the
Euler-Lagrange equation (abbreviating ẋi = dxi /dλ)

d
dλ

∂L
∂ẋa

=
∂L
∂xa

(E.417)

one needs to be careful because after the ∂ẋi-differentiation, L still depends on xi ,
which yields additional terms involving ẋi in the dλ-differentiation, in particular the
gradient of the refractive index dn/dλ = ∂an ẋa. The first two derivatives are

∂L
∂xa

=
√
γij ẋi ẋj∂an, followed by

∂L
∂ẋa

=
nγai ẋ

i

√
γmnẋmẋn

, (E.418)

but increase dramatically in their complexity in the dλ-differentiaton. Ultimately,
these equations lead to the concept of k Lagrangian optics and can only be solved
sensibly either through numerical methods or in approximations. While we commonly
assumed homogeneous media, the formalism is still applicable in the limit of k

geometric optics where the scale on which n changes is large compared to the scale
on which the fields vary, i.e. the wave length λ.
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e. covariant electrodynamics

While it is clear that the metric in an anisotropic medium can show different light
propagation speeds along the three coordinate directions, the constitutive tensor
Xαβµν: The wave equation in the most general case reads

∂αGαβ = Xαβµν∂αFµν = 2Xαβµν∂α∂µAν = 0, (E.419)

which suggest for an ansatz Aµ ∝ A(0)
µ exp(±ikγxγ), with an amplitude A(0)

µ that
contains information about polarisation. Then, the null-condition reads

XαβµνA(0)
ν kαkµ = 0 (E.420)

and is effectively a polarisation-dependent dispersion relation, with differences in
propagation speeds even into the same direction for different polarisations: This
phenomenon is known as k birefringence, and can be observed in e.g. k calcite
crystals.. Please note how the null-

condition requires a summation
over the pair (α, µ) and not (µ, ν)
which would be trivially zero.

E.8 Gauge-invariance and charge conservation

Gauge-invariance of the term ηαµηβνFαβFµν is clearly given, as Fµν does not change
under gauge-transformation anyways. But it is interesting to see how gauge-invariance
is recovered in the entire Lagrange-formalism. In fact, with Aµ → Aµ+∂µχ one obtains

S =
∫
V

d4x L → S +
16π
c

∫
V

d4x ∂µχ ȷ
µ = S +

16π
c

∫
V

d4x
[
∂µ(χȷµ) − χ∂µȷµ

]
(E.421)

where ∂µȷµ = 0 due to continuity of the charge density. The first term can be converted
into a surface integral with the Gauß-theorem,

S→ S +
16π
c

∫
∂V

dSµ (χȷµ) = S (E.422)

i.e. one recovers gauge invariance when assuming a localised charge distribution:
moving the integration surface ∂V out leads to χȷµ vanishing faster than ∂V increases,
and consequently, the integral approaches zero. Hence, the action is gauge invariant if
charge is conserved. To show the opposite is impossible for our current understanding
of charge as a source of the electromagnetic field and requires a more detailed model
for the charge-carrying matter in the form of a quantum theory.. Please note that there are differ-

ent concepts at play to have terms
vanish in S (locality of the charge
distribution) and in δS (fixed vari-
ation on boundary). E.9 Conservation of energy and momentum

E.9.1 Scalar field on a Lorentz background

The Lagrange-density of the electromagnetic field does not depend explicitly on
the coordinates xµ, meaning that it is truly universal: The way in which the field is
coupled to its charges and the internal dynamics is the same everywhere and at every
time. As a consequence of the translation invariance along the ct- and xi-coordinates,
energy and momentum are conserved, which we should derive first for a scalar field
ϕ. There, the Lagrange-density is given by L(ϕ, ∂µϕ) but not by L(φ, ∂µϕ, xµ). The
Euler-Lagrange equations follow from the variation of the action S
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e.9. conservation of energy and momentum

S =
∫
V

d4x L(ϕ, ∂µϕ) → δS =
∫
V

d4x

(
∂L
∂ϕ
− ∂µ

∂L
∂∂µϕ

)
δϕ = 0 (E.423)

such that Hamilton’s principle δS = 0 implies

∂µ
∂L

∂∂µϕ
=

∂L
∂ϕ

(E.424)

If the Lagrange density L depends only on the fields themselves and not on the
position, meaning the functional principle of the field theory as defined by L is the
same everywhere and at very time, there is only one way in which the Lagrange
density can change is moving through spacetime to a new point where the fields and
their derivatives are different: The fields themselves need to change. This implies that
under an infinitesimal shift in the coordinates into the direction ϵµ,

xµ → xµ + ϵµ, (E.425)

one expects a variation of the field δϕ to be

δϕ = ϕ(xµ + ϵµ) − ϕ(xµ) = ϵα∂αϕ (E.426)

and the corresponding variation of the Lagrange density would become

δL = ϵα∂αL (E.427)

On the other hand, the variation of the Lagrange density is given by

δL =
∂L
∂ϕ

δϕ +
∂L

∂∂µϕ
δ∂µϕ =

(
∂L
∂ϕ

δϕ − ∂µ
∂L

∂∂µϕ

)
δϕ + ∂µ

(
∂L

∂∂µϕ
δϕ

)
(E.428)

using the Leibnitz-rule. As the physical fields fulfil the Euler-Lagrange equation in
the first term, only the second term remains, implying

δL = ∂µ

(
∂L

∂∂µϕ
δϕ

)
(E.429)

Assembling the final expression from the variation δL in eqn. (E.429) with the
expression eqn. (E.427) and the variation δϕ in eqn. (E.426) leads to

∂µ

(
∂L

∂∂µϕ
δϕ

)
− ϵα∂αL = 0 (E.430)

such that, using ∂α = δ
µ
α∂µ,

ϵα ∂µ

(
∂L

∂∂µϕ
∂αϕ − δ

µ
αL

)
= 0 (E.431)

implying that there is a covariant divergence which vanishes,
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e. covariant electrodynamics

∂µT µ
α = 0 (E.432)

with the energy-momentum tensor T µ
α

T µ
α =

∂L
∂∂µϕ

∂αϕ − δ
µ
αL. (E.433)

Effectively, this suggests a multidimensional Legendre-transform with the canonical
field momentum πµ

πµ =
∂L

∂∂µϕ
such that T µ

α = πµ ∂αϕ − δ
µ
αL(ϕ,πµ) (E.434)

where the structural similarity to the relation H = pi ẋ
i − L from classical mechanics

is quite apparent.

If the Lagrange density had an additional dependence on the coordinates xµ, it’s
variation (E.428) when transitioning form xµ to xµ + ϵµ would not only be caused by
the different field amplitudes and their derivatives, but there would be a new term
Qα,

δL = ϵα∂αL(field variation) + ϵαQα(explicit coordinate dependence) (E.435)

where this new term is effectively a source term to the otherwise vanishing continuity
equation,

∂µT µ
α = Qα. (E.436)

The identification of T µ
α with the energy-momentum tensor becomes sensible for

the case of a standard Lagrange-density for a scalar field ϕ,

L(ϕ, ∂µϕ) =
ηµν

2
∂µϕ∂νϕ − V(ϕ) (E.437)

with a self-interaction potential V(ϕ) that would contain e.g. a coupling to sources.
Variation by substitution into the Euler-Lagrange equation yields directly the Klein-
Gordon equation

□ϕ = −∂V
∂ϕ

because πµ =
∂L
∂µϕ

= ηµν∂νϕ and
∂L
∂ϕ

= −∂V
∂ϕ

(E.438)

with the next differentiation generating □ϕ = ∂µπ
µ = ηµν∂µ∂νϕ. Then, the tensor

Tµα becomes

T µ
α = πµ∂αϕ − δ

µ
αL(ϕ,πµ) = ηµν∂νϕ∂αϕ − δ

µ
α

ηγδ

2
∂γϕ∂δϕ + δµαV(ϕ) (E.439)

with the sign change in front of V(ϕ) which is typical for the Legendre transform.
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e.9. conservation of energy and momentum

E.9.2 Maxwell field on a Lorentz background

There is a very important detail in the derivation of the energy-momentum tensor
of the electromagnetic field, which otherwise proceeds exactly as in the case of the
scalar field ϕ: When shifting the potential to compute δAδ one should not use the
derivative ∂αAδ for forming δAδ = ϵα∂αAδ because it is not gauge-invariant. Rather,
the variation should be given by the antisymmetrised form,

δAδ = ϵα∂αAδ → ϵα (∂αAδ − ∂δAα) = ϵαFαδ (E.440)

as the Faraday tensor Fαδ is the gauge-invariant derivative of Aδ . The variation in . watch out for gauge-
independence in the derivativethe Lagrange-density becomes formally

δL = ϵα∂αL (E.441)

but expressed in terms of the fields, by virtue of the Leibnitz-rule,

δL =
∂L
∂Aδ

δAδ +
∂L

∂∂γAδ

δ∂γAδ =
(
∂L
∂Aδ

− ∂L
∂∂γAδ

)
δAδ + ∂γ

(
∂L

∂∂γAδ

δAδ

)
, (E.442)

where the first bracket disappears as it fulfils the Euler-Lagrange equation, that
appears after the usual replacement δ∂γAδ = ∂γδAδ. The divergence in the second
term can be reformulated as

∂γ

(
∂L

∂∂γAδ

δAδ

)
= ϵα∂γ

(
∂L

∂∂γAδ

Fαδ

)
= δL = ϵα∂αL = ϵαδ

γ
α∂γL = ϵα∂γδ

γ
αL (E.443)

so that the combination of the second and the sixth term suggest, as the shift ϵα was
arbitrary:

∂γ

(
∂L

∂∂γAδ

Fαδ − δ
γ
αL

)
= 0, (E.444)

i.e. a conservation law for the energy momentum tensor,

∂γT γ
α = 0, with T γ

α =
∂L

∂∂γAδ

Fαδ − δ
γ
αL. (E.445)

The energy-momentum tensor T ν
µ is the relativistic generalisation of the Maxwell-

tensor T j
i , which makes up the spatial part of it. In vacuum, it is symmetric, T ν

µ = T µ
ν

and traceless, T µ
µ = ηµνTµν = 0: The physical meaning of this is not straightforward

to understand, but essentially corresponds to the fact that there is no mass associated
with the photons, i.e with excitations of the electromagnetic field. The components
of T ν

µ contain the energy density, T t
t = EiDi − HiBi = wel + wmag and the Poynting-

vector, 4π/cPi = T i
t . In particular, the formulation of the Poynting-law would become

∂µT µ

t = ∂t(wel + wmag) + ∂iPi = 0.

Perhaps it’s a weird and funny thought that 4 Kirchhoff’s k mesh and knot rules
for electric circuits are essentially reflections of the coordinate-independence of the
Lagrange-function L giving rise to energy conservation, and of the gauge invariance
of L compatible with charge conservation. And as a last remark in this context I would

101

https://en.wikipedia.org/wiki/Gustav_Kirchhoff
https://en.wikipedia.org/wiki/Kirchhoff%27s_circuit_laws


e. covariant electrodynamics

C PT CPT
derivative ∂µ + − −
electric 4-current ȷµ − + −
magnetic 4-current ıµ − − +
Faraday tensor Fµν − + −
field tensor F̃µν − − +

Table 2: Summary of the behaviour of all fields and sources in extended electrodynamics
with electric and magnetic sources.

like to add that the construction with the infinitesimal shift of the Lagrange-density is
in some sense a trick: Actually, one would like to construct a gradient ∂L of Lwhich is
caused by the fact that the fields and their derivatives have gradients. But one usually
works with the convention that partial derivatives of functionals only apply to their
explicit dependence on the coordinates, not their ”indirect” position-dependence
through the fields (and their derivatives). With this convention, ∂µL would be zero,
even though of course L changes as a function of position, because the fields do
change. On a larger scale, the derivation of a conserved energy-momentum tensor
from the Lagrange-density or the action is an example of a k Lie-derivative.

E.10 Maxwell’s equations under discrete symmetries, revisited

The behaviour of the Maxwell-equations under the three discrete symmetries charge
conjugation C, parity inversion P and time reversal P was already the subject of
Sect. A.7, but can be extended to deal with covariant objects like Gµν, F̃µν or ∂µ in a
straightforward way. As before, we will treat the general case with electric charges ȷµ

as well as magnetic charges ıµ:

∂µGµν = +
4π
c
ȷν and ∂µF̃µν = −4π

c
ıν (E.446)

In both cases the antisymmetry of the field tensors Gµν and F̃µν makes sure that the
currents are conserved, i.e. ∂νȷν = 0 and ∂νı

ν = 0.

∂µ, combining spatial and temporal derivatives, transforms sensibly only under
the combined PT -operation: Clearly, PT xµ = −xµ and in consequence, PT ∂µ = −∂µ.
The electric 4-current ȷµ transforms under PT like a velocity, PT ȷµ = ȷµ, and under
C as Cȷµ = −ȷµ, and therefore CPT ȷµ = −ȷµ under the full CPT transform. Magnetic
charges, however are pseudoscalar such that PT ıµ = −ıµ, but in fact the additional
minus sign does not matter when considering the continuities ∂µȷµ = 0 and ∂µı

µ = 0.

Please note that one can only invoke arguments that relate Gµν to the potential Aµ

if there are no magnetic charges and duality is broken. It will be sufficient to consider
the Faraday tensor Fµν as its properties are identical to Gµν because the two are related
in a linear way by a mere prefactor. If there are only electric charges, Fµν = ∂µAν−∂νAµ

suggests that PT Fµν = −Fµν, using the wave equation □Aµ = 4π/c ηµνȷν, such that Aµ

inherits its properties from ȷµ, in summary PT Aµ = +Aµ. This is consistent with the
field equation ∂µGµν = 4π/c ȷµ, as the minus signs brought in by ∂µ and Gµν cancel.
Similarly, PT F̃µν = +F̃µν to reflect the plus-sign in PT ıµ = +ıµ.
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e.11. links to particle physics

E.11 Links to particle physics

E.11.1 Axions and pseudoscalar particles

There is a second quadratic field invariant, FµνF̃µν ∝ EiBi , which is pseudo-scalar: de-
spite being ”just” a number, it changes its sign under application of parity-transforms
P and time reversal T . This is the reason why we disregarded this particular term,
despite being quadratic, as a contender for the Lagrange density L for electrodynam-
ics. But multiplying with a field θ which itself is pseudoscalar, would amend this
problem:

L =
ηαµηβν

4
FαβFµν + αθFµνF̃µν +

4π
c

Aµȷ
µ +

ηµν

2
∂µθ∂νθ− V(θ) (E.447)

with a coupling strength α. This k axion field θneeds its own dynamics and interacts
with itself through the potential V(θ). Looking at the Taylor-expansion of V(θ) one
can only admit even powers

V(θ) =
∑
n=0

α2n

(2n)!
θ2n (E.448)

as only those are invariant under parity transform: Essentially, this is a very strong
restriction on the form of the potential for self-interaction of the axion field: it is
necessarily an even function. Please note that a mass term of the type

V(θ) =
m2

2
θ2 (E.449)

would be naturally contained in the interaction potential V(θ) even in the restriction
to parity positive terms, by setting α2 = m2 for n = 1.

Variation of the Lagrange-density with respect to Aµ yields an extension to the
Maxwell field-equation, and the variation with respect to θ a corresponding equation
of motion for θ, which is coupled to Fµν, i.e. a modified field equation

ηαµηνβ∂αFµβ =
4π
c
ȷν + α∂µ

(
θF̃µν

)
=

4π
c
ȷν + α∂µθ · F̃µν (E.450)

because ∂µF̃µν = 0, if duality is properly broken, and alongside a dynamical equation
for θ,

□θ = αFµνF̃µν − dV
dθ

(E.451)

Therefore, θ obeys a wave equation that is coupled to the electromagnetic field
and driven by the potential gradient −dV/dθ. Experiments with axions are always
great and fascinating, for instance Ì light through wall-type experiments. There,
one tries to take a very strong photon source, such as a laser beam, and convert the
photons by means of the θFµνF̃µν-term to axions. Clearly, FµνF̃µν is zero for a plane
electromagnetic wave, so one provides an additional magnetic field to make the
scalar product between the laser’s electric field Ei and the external magnetic field Bi

nonzero, enabling the conversion. The experimental setup continues then to block the
laser beam by a wall and invert the conversion behind the wall, hopefully recoving
photons from the axion field by supplying again a strong magnetic field.
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e. covariant electrodynamics

E.11.2 Massive fields, Proca-terms and the Higgs-mechanism

For a scalar field ϕ it is rather straightforward to make it massive. In fact, it suffices to
add a term that is quadratic in the field amplitude ϕ to the Lagrange-density. Then,

L(ϕ, ∂µϕ) =
ηαβ

2
∂αϕ∂βϕ −

m2

2
ϕ2. (E.452)

Substitution into the Euler-Lagrange equation gives the equation of motion, which
now reads

□ϕ = m2ϕ (E.453)

and a plane-wave ansatz of the type ϕ ∝ exp(±ikαxα) would yield as a dispersion
relation

ηµνkµkµ =
(
ω

c

)2
− γijkikj = m2 such that ω = ±c

√
k2 + m2 (E.454)

The wave number kµ has clearly a time-like normalisation, ηµνkµkν = m2 > 0, such
that the propagation takes place inside the future light cone, as expected from a
massive object. In addition, the group- and phase velocities are

υgr =
dω
dk

= c
k

√
k2 + m2

< c and υph =
ω

k
= c

√
k2 + m2

k
> c (E.455)

because
√
k2 + m2 > k, but their geometric mean is exactly

υph × υgr = c2 (E.456)

i.e. the phase velocity is superluminal, but the group velocity which is associated
to the propagation speed of wave packets representing massive particles, remains
subluminal. This is nicely illustrated by Fig. 25, where both velocities reach the same
limiting value of c for k → ∞, i.e. for k ≫ m, as the mass becomes less and less
relevant in that limit.

Motivated by this example one could think of a modified Lagrange density for the
Maxwell field of the form

L =
ηαµηβν

4
FαβFµν +

m2

2
ηαµAαAµ (E.457)

with a so-called k Proca-term ηαµAαAµ. Variation with the corresponding Euler-
Lagrange equation would yield a seemingly sensible result, as

ηαµ∂αFµν = □Aν = m2Aν (E.458)

in Lorenz-gauge, where the same plane-wave ansatz exp(±ikαxα) would give a time-
like normalisation ηαµkαkµ = m2 > 0 that corresponds to subluminal motion inside
the light cone. But there is a fundamental problem already present in the Lagrange
density: It is not gauge-invariant,

ηαµAαAµ → ηαµAαAµ + 2ηαµ∂αχ Aµ + ηαµ∂αχ ∂µχ, (E.459)
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Figure 25: Dispersion relation, i.e. group and phase velocity as a function of wave number,
for different masses.

so the choice of a suitable gauge is not possible. In fact, the problem of gener-
ating masses dynamically in a gauge-invariant way is solved only by the k Higgs-
mechanism for field theories and misses yet a complete solution for k massive gravity.
Electrodynamics as a theory without masses is backed up by stringent experimental
upper bounds on the k photon mass.

One should add, though, that Lorenz-gauge is still a very sensible choice for cases
with a non-zero Proca-mass. Clearly, constructing the action S from the Lagrange-
density eqn. (E.457) includes the additional terms

S =
∫
V

d4x
(
2ηαµ∂αχAµ + ηαµ∂αχ∂µχ

)
= −

∫
V

d4x
(
2χηαµ∂αAµ︸    ︷︷    ︸

=0

+χηαµ∂α∂µχ︸     ︷︷     ︸
=□χ

)
(E.460)

after integration by parts: In fact, Lorenz-gauge then makes the first term disappear
and forces the gauge field χ to obey a wave-equation □χ = 0.

E.11.3 Modifications of the Coulomb-potential

Scalar fields ϕ, even in the case of linear field equations, show an interesting phe-
nomenology on large scales: Starting from the most general Lagrange-density L(ϕ, ∂µϕ)
including all terms up to ϕ2 would ensure a linear field equation, as in the variation
process the powers get reduced by one:

L(ϕ, ∂µϕ) =
γµν

2
∂µϕ ∂νϕ −

m2

2
ϕ2 − 4πρϕ + λϕ, (E.461)

leading by variation to the field equation

(□ + m2)ϕ = 4πρ + λ (E.462)
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Figure 26: Field amplitude ϕ(r) for the most general linear scalar field theory.

where one admits a source term ρ and an inhomogeneity λ, which would be present
even in a charge free space and which would, in a gravitational theory, correspond to
the k gravitational constant. Focusing on a static, spherically symmetric situation
for a point charge one recovers from the field equation

(∆ −m2)ϕ = −4πρ − λ with ∆ϕ =
1
r2∂r

(
r2∂rϕ

)
, (E.463)

depending on the choice of the two parameters, the classical Coulomb-potential

ϕ(r) =
1
r

(E.464)

for m = 0 = λ. Admitting a nonzero mass leads to the k Yukawa-potential

ϕ(r) =
exp(−mr)

r
(E.465)

for m , 0 = λ, where the field amplitude ϕ is suppressed at large r. The full theory
implies

ϕ(r) =
exp(−mr)

r
+ λr2 (E.466)

for m , 0 , λ, with modifications large scales, while λ alone gives rise to

ϕ(r) =
1
r

+ λr2 (E.467)

for m = 0 , λ, which would, up to a sign, be the gravitational potential of a point
mass in the classical limit including a cosmological constant. Common to the results
are the definition of two additional length scales 1/m and 1/

√
λ, which modify the

otherwise k scale-free Coulomb-solution. Fig. 26 summarises these modifications.
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Figure 27: Field gradients −dϕ/dr for the most general linear scalar field theory.

The gradient −∂ϕ/∂r would, if ϕ is interpreted as a potential, accelerate a test
charge. The acceleration as a function of r is shown in Fig. 27, illustrating how on
small scales r ≪ 1/m and r ≪ 1/

√
λ, the unaffected Coulomb-potential is recovered,

while there are modifications on large scales r ≫ 1/m and r ≫ 1/
√
λ. It should be

noted that the generalised inhomogeneity λ is not admissible in a non-scalar theory
like electrodynamics, as a term linear in the 4-potential λAµ is clearly non-scalar.

E.12 Conformal invariance of the Maxwell-theory

Apart from Lorentz- and gauge-invariance, and the spacetime shift symmetries of the
Lagrange-density of Maxwell-electrodynamics there is, at least for vacuum-solutions,
a weird scale-symmetry. Applying a rescaling of the spacetime coordinates

xα → λxα and consequently, ∂α →
1
λ
∂α. (E.468)

The fields obey homogeneous wave equations in vacuum,

□Fµν = 0 and □Gµν = 0, (E.469)

where in fact the λ−2 factor generated in □→ □/λ2 drops out because of the vanishing
right hand side of the two equations. This is an example of k conformal symmetry.
It is broken because the charge density ρ changes under the scaling ∝ λ−3 instead of
∝ λ−2 as the differential operators.

E.13 Gauge-invariance as a geometric concept

The relationship between the fields and the derivatives in a relativistic notation
are summarised by this diagram: The potential Aν has an antisymmetric derivative
F̃αβ = ϵαβµν∂µAν, and this dual is divergence-free in fulfilment of the Bianchi-identity:
∂αF̃αβ = ϵαβµν∂α∂µAν, with an exchange symmetry in the index pair (α, µ) which
makes the expression disappear in conjunction with the antisymmetry of the Levi-
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Civita symbol: This is quite important because of two reasons: Not only does one
recover the homogeneous Maxwell-equations, but it is clear that the potential Aµ is
incompatible with a hypothetical nonzero magnetic source ıβ.

Converting F̃αβ into Fγδ and bringing in the constitutive relation yields the field
tensor Gγδ. The divergence ∂γGγδ is the source ȷδ, as an expression of the field
equation. And finally, charge conservation in the sense of ∂δȷ

δ = 0 is ensured by
∂γ∂δGγδ, again with a contraction of a symmetric with an antisymmetric tensor.

The gauge function χ changes Aµ, but leaves Fµν invariant: This is accomplished
by the derivative ϵαβνµ∂ν∂µχ = 0, as the two derivatives interchange, ∂µ∂ν = ∂ν∂µ,
but ϵαβνµ is antisymmetric in the index pair (µ, ν).

Fγδ, Gγδ ȷδ Maxwell

Aν F̃αβ 0 Bianchi

χ ∂νχ 0 gauging

∂γ

ϵαβµν∂µ ∂α

ϵαβγδ

∂ν

+

ϵαβµν∂µ

+

(E.470)

Finding a gauge function χ for a given gauge condition, usually a derivative
property of the potential like a particular value for ηµν∂µAν as in the Lorenz gauge
requires the solution of a wave equation: Substitution Aµ → Aµ + ∂µχ into the gauge
condition leads to ηµν∂µ∂νχ = −b with b = ηµν∂µAν. Wave-equations of this type are
readily solvable by means of the retarded Green-functions.

Aµ b condition

χ ∂µχ □χ gauging

ηµν∂ν

∂µ

−

ηµν∂ν

− (E.471)

The same diagram with identical arguments can be more concisely expressed in
the language of k differential forms: Starting from the 4-potential Aµ as a one-form
A, application of the exterior derivative d leads to the two-form F, corresponding
to the field tensor Fµν. The co-differential δ, which can be expressed as ⋆d⋆ with the
Hodge-star operator ⋆, leads to the source ȷ, again a one-form. The Hodge-dual of the
field two-form F would be ⋆F, whose co-differential δ⋆ F = ⋆d⋆⋆F = ⋆dF = ⋆ddA = 0,
recovering the Bianchi-identity. The gauge field χ has an exterior derivative dχ, which
can be added to the one-form A without changing the observable fields contained in
the two-form F, as dA→ d(A + dχ) = dA + ddχ = dA. On the other hand, F = dA is
only sensible if δ ⋆ F = 0 physically, i.e. that the magnetic charges are non-existent:
The existence of a potential A requires broken duality.
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⋆F 0 Bianchi

A F, G ȷ Maxwell

χ dχ 0 gauging

δ

d δ

⋆

d

+

d

+

(E.472)

The construction of a (scalar) gauge function χ for ensuring e.g. Lorenz-gauge
δA = 0 implies that dχ, now a one-form, is added to A and leads to δdχ = −b, with
a source b = δA after substitution into the gauge condition. δdχ, however is the
Laplace-de Rham-operator, which for our case of a Lorentzian metric background is
the d’Alembert-operator □, up to a symmetrisation.

A b condition

χ dχ □χ gauging

δ

d

−

δ

− (E.473)

E.14 Motion of particles through spacetime

E.14.1 Fermat’s or Hamilton’s principle?

The relativistic expression for the arc length s through spacetime, as mapped out by
proper time, can be amended by a second term, qAµdxµ which should incorporate the
accelerating effects of electric and magnetic fields on a test particle with charge q:

s =

B∫
A

dτmc
√
ηµνuµuν + qAµdxµ → L(xµ, uµ) = mc

√
ηµνuµuν + qAµu

µ, (E.474)

where in isolating the Lagrange function one rewrites dxµ = uµdτ, from the definition
uµ = dxµ/dτ. Variation of the arc-length, now a function of both uµ and xµ (through
the coordinate dependence of Aµ) is achieved with the Euler-Lagrange equation, . The term Aµuµ emphasises

how natural velocity-dependent
forces in relativity are!d

dτ
∂L
∂uα

=
∂L
∂xα

. (E.475)

The expression (E.474) for the relativistic arc length is remarkable, as it combines
the metric distance in the first term with a second distance measure Aµdxµ mediated
by the vector potential, called k Finsler geometry.

An intuitive (but gauge-dependent) picture might be, that different paths through
spacetime have the particle change its proper time according to the magnitude and
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direction of Aµ relative to its velocity uµ, like a tail- or headwind that changes travel
time. The necessary derivatives are

∂L
∂xα

= quµ∂αAµ (E.476)

and

∂L
∂uα

= mηµαu
µ + qAα → d

dτ
∂L
∂uα

= mηµα
duµ

dτ
+ quµ∂µAα (E.477)

where the last term appears in the time derivative through the coordinate dependence
of Aα:

dAα

dτ
=

dxµ

dτ
∂Aα

∂xµ
= uµ ∂µAα. (E.478)

Collecting all results yields

mηµα
duµ

dτ
= q

(
∂αAµ − ∂µAα

)
uµ = qFαµu

µ (E.479)

by identifying the Faraday-tensor in the last step: Finally, we recover the Lorentz
equation of motion, and the appearance of Fµν makes sure that the acceleration does
not depend on gauge. Multiplying both sides of the equation with uα leads to an
interesting result:

ηµαu
αduµ

dτ
=

m
2

d
dτ

(
ηµαu

αuµ
)

= qFαµu
αuµ = 0, (E.480)

where the last term is necessarily zero as the contraction between the symmetric
tensor uαuµ and the antisymmetric Fαµ. This safeguards the norm ηµαu

αuµ = c2 from
any changes, and keeps the particle from being accelerated to superluminal velocities
outside the light cone.

While the equation of motion is perfectly gauge-invariant (and Lorentz-covariant),
the gauge-invariance of the Lagrange-function requires additional arguments: Per-
forming a gauge transform Aµ → Aµ + ∂µχ with a gauge function χ changes the
relativistic arc length according to

s =

B∫
A

dτ
(
mc

√
ηµνuµuν + qAµu

µ
)
→ s + q

B∫
A

dτ ∂µχ u
µ. (E.481)

This new term can be rewritten, by falling back onto the form how it was introduced,

B∫
A

dτ ∂µχ u
µ =

B∫
A

dxµ∂µχ =

B∫
A

dχ = (χB − χA) , (E.482)

using dχ = ∂µχdxµ. In summary, there is a constant, additive term that becomes
irrelevant for the variation for obtaining the trajectory.
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Figure 28: Trajectory through spacetime, with the metric contribution ηµνdxµdxν to the
line element ds2 in the background shading and the Finsler contribution Aµdxµ generated
by the potential Aµ as arrows.

An impression on the contributions to the line element ds2 given by the metric
ηµνdxµdxν and the Finsler-term Aµdxµ is given in Fig. 28.

E.14.2 Relativistic horizons

We can probe the limits of special relativity by looking at accelerated, non-inertial
motion through spacetime. Starting from the coordinates xµ we already defined the
4-velocity uµ,

uµ =
dxµ

dτ
=

d
dτ

(
ct
x

)
=

dt
dτ

d
dt

(
ct
x

)
= γ

(
c
υ

)
(E.483)

with υ = ẋ and γ = dt/dτ. Repeating this argument one computes the 4-acceleration
aµ as

aµ =
duµ

dτ
=

d
dτ
γ

(
c
υ

)
=

dt
dτ

d
dt
γ

(
c
υ

)
=
υa

c2 γ
4
(
c
υ

)
+ γ2

(
0
a

)
(E.484)

with a = υ̇ = ẍ, and the derivative dγ/dt = γ3υa/c2. This system of equations
can be integrated numerically for e.g. an assumed constant acceleration a, giving
a parametric solution (ct(τ), x(τ)). The resulting trajectories in xµ(τ) are shown in
Fig. 29, where the accelerated trajectory evades light signals that are emitted at x = 0
later than ct ≥ 4, which is impossible for inertial motion. Effectively, evading light
signals means that there is a relativistic k horizon between the emitter of light signals
and the accelerated particle.
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Figure 29: Paths through spacetime at constant velocity, and in comparison a path with
constant acceleration, with the emergence of a relativistic horizon.

The 4-acceleration aµ is always perpendicular to the 4-velocity uµ,

ηµνu
µaν = 0, (E.485)

as a direct computation with the above expression shows. This has in fact dramatic
consequences, as

d
dτ

(
ηµνu

µuν
)

= ηµν

(
duµ

dτ
uν + uµ

duν

dτ

)
= 2ηµνu

µaν = 0, (E.486)

implying that the (timelike) norm ηµνu
µuν = c2 > 0 of uµ is conserved. At this point

it is worth mentioning that many texts attribute the impossibility of accelerating a
massive object past c to the k relativistic mass increase, which is really superfluous
as a concept as it is completely covered by the geometric, kinematical structure of
spacetime. Proper acceleration is defined in terms of proper time τ, which is dilated. ”The concept of ”relativis-

tic mass” is subject to misunder-
standing. That’s why we don’t use
it. First, it applies the name mass
– belonging to the magnitude of a
4-vector – to a very different con-
cept, the time component of a 4-
vector. Second, it makes increase
of energy of an object with velocity
or momentum appear to be con-
nected with some change in inter-
nal structure of the object. In real-
ity, the increase of energy with ve-
locity originates not in the object
but in the geometric properties of
spacetime itself.”, E. F. Taylor and
J. A. Wheeler, Spacetime Physics

relative to the coordinate time t by the Lorentz-factor γ. A faster-moving system
reacts to an accelerating force as if it had more inertia and therefore a higher mass,
but it is really the conversion between proper time and coordinate time that brings in
the Lorentz-factor, and one does not need to invoke a new relativistic effect on mass,
and surely the number of atoms inside an object would be unchanged under Lorentz
transforms!

E.14.3 Tachyons and tardyons

k Tachyons are hypothetical, superluminally moving particles with 4-velocities
uµ outside the light cone, ηµνuµuν = −c2 < 0. On the other side, k tardyons are
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Figure 30: Curves of constant Minkowski-norm ηµνx
µxν = ±1, or equivalently, curves

traced out by the endpoint of a timelike and spacelike unit vector under Lorentz-transforms.

conventional, massive particles with subluminal velocities inside the light cone,
ηµνu

µuν = +c2 > 0. Naturally, these norms are conserved under Lorentz-transforms,
as illustrated by Fig. 30, where the hyperbolic curves traced out by the unit vectors
along the x- and ct-axes never leave their associated timelike or spacelike quadrants.
For a timelike vector this would be,(

ct
x

)
=

(
coshψ sinhψ
sinhψ coshψ

) (
1
0

)
=

(
coshψ
sinhψ

)
(E.487)

and for a spacelike vector correspondingly,(
ct
x

)
=

(
coshψ sinhψ
sinhψ coshψ

) (
0
1

)
=

(
sinhψ
coshψ

)
. (E.488)

For a particle moving on a spacelike trajectory one would write down a line
element

c2dτ2 = ηµνdx
µdxν = c2dt2 − γijdxidxj =

(
c2 − γijυiυj

)
dt2 (E.489)

with υi = dxi /dt. Negative norms would then imply that γijυiυj > c2, and hence that
the magnitude of υ exceeds c. The velocity uµ for such a particle would necessarily
have the same negative norm, as one writes uµ = dxµ/dτ, and because c2dτ2 =
ηµνu

µuνdτ2 has to have the same overall sign.

The relativistic dispersion relation H2 = (cp)2 + (mc2)2 suggests the definition of
a relativistic 4-momentum pµ (as a linear form), whose norm is positive for tardyonic
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and negative for tachyonic particles, according to the location of the corresponding
velocities in the respective quadrants in a spacetime diagram,

pµ =
(
H, cpi

)
with ηµνpµpν = H2−c2γijpipj = H2−(cp)2 = ±(mc2)2, (E.490)

resulting in a funny shape of the dispersion relation,

H(p) =
√

(cp)2 ± (mc2)2, (E.491)

for the negative sign: This is in fact consistent with their superluminality, as p2 is
bounded from below by (mc)2: Tachyons need to be faster than the speed of light, and
if they brake down to approach the speed of light from above, they can only reach
mc. In a weird sense, this is analogous to the non-vanishing energy associated with
the rest mass for normal, tardyonic particles: While for them the energy is nonzero
even for vanishing momenta, tachyons have a minimal momentum even at zero
energies. To some degree of overinterpretation, tachyons have a minimal momentum
mc whereas the tardyons have a minimal energy mc2. Reexpressing the tachyonic
dispersion relation in terms of wave number and angular frequency would be

ω = ±c
√
k2 −m2 (E.492)

Group and phase velocities for tachyons come out as

υgr =
dω
dk

=
ck

√
k2 −m2

> c and υph =
ω

k
=

c
√
k2 −m2

k
< c, (E.493)

exactly inverted compared to massive particles: The group velocity, associated with
particle propagation, is always superluminal because

√
k2 −m2 < k, and the phase

velocity subluminal. Their geometric average, though, comes out as

υgr × υph = c2. (E.494)

Of course one should keep in mind that outside the light cone there is no causal
ordering due to the relativity of simultaneity, so it would be problematic to have
tachyons influence the causal world inside the light cone. To conclude, there is no
place for tachyons in a Galilean world: In the formal limit of c→∞, the future light
cone opens up: The timelike region increases while the spacelike region decreases,
until all of spacetime reaches an absolute causal ordering according to the universal,
Galilean time. And of course, every velocity is subluminal as c→∞.
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X fourier-transforms and orthonormal systems

X.1 Scalar products and orthogonality

The fundamental idea of Fourier-transforms is the question whether a function can
be represented as a linear combination of a parameterised family of base functions
which acts as a basis system, very much like the representation of a vector in terms
of its basis. For this purpose, one needs to generalise the notion of a projection to
functions, i.e. one needs to define a sensible scalar product. Scalar products in vector
spaces over R have the properties

1. positive definiteness:

⟨u, u⟩ ≥ 0, and ⟨u, u⟩ = 0 implies u = 0

2. bilinearity:

⟨u, v1 + v2⟩ = ⟨u, v1⟩ + ⟨u, v2⟩ as well as ⟨u1 + u2, v⟩ = ⟨u1, v⟩ + ⟨u2, v⟩, and

⟨αu, v⟩ = α⟨u, v⟩ as well as ⟨u, αv⟩ = α⟨u, v⟩

3. symmetry:

⟨u, v⟩ = ⟨v, u⟩

whereas in vector spaces over C there are slight differences,

1. positive definiteness:

⟨u, u⟩ ≥ 0, and ⟨u, u⟩ = 0 implies u = 0

2. sesquilinearity (instead of bilinearity):

⟨u, v1 + v2⟩ = ⟨u, v1⟩ + ⟨u, v2⟩ as well as ⟨u1 + u2, v⟩ = ⟨u1, v⟩ + ⟨u2, v⟩, and

⟨u, αv⟩ = α⟨u, v⟩ but ⟨αu, v⟩ = α∗⟨u, v⟩ with a complex conjugation

3. hermiticity (instead of symmetry):

⟨u, v⟩ = ⟨v, u⟩∗

In analogy to the scalar product in Rn one can define a scalar product for R-valued
functions in the interval [a, b],

⟨u, v⟩ = uiv
i → ⟨u, v⟩ =

b∫
a

dx u(x)v(x) (X.495)

and for complex scalar products in Cn and C-valued functions

⟨u, v⟩ = u∗i v
i → ⟨u, v⟩ =

b∫
a

dx u∗(x)v(x) (X.496)

with a complex conjugation.
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The notion of orthogonality
⟨ui , uj⟩ ∝ δij (X.497)

generalises straightforwardly to a set of functions u(i)(x) indexed by i, where we
denote functions as vectors with a basis |ui⟩ and the associated linear forms with a
basis ⟨ui |, borrowing the k bra-ket notation from quantum mechanics.

If such as set should be able to approximate a function g(x) in a linear combination

g(x) = ai |ui(x)⟩ (X.498)

needs to make sure that the quadratic error ∆N

⟨aiui(x) − g(x)|ajuj (x) − g(x)⟩ (X.499)

between the function and its approximation over the interval [a, b] becomes small,
and ideally vanishes in the limit N →∞. It is sensible to integrate up the quadratic
difference because the linear combination can over- or underestimate g(x): ∆N is
positive definite and vanishes in the case of a perfect approximation.

∆N = a∗ia
j⟨ui , uj⟩ − a∗i⟨u

i , g⟩ − aj⟨g, uj⟩ + ⟨g, g⟩ (X.500)

If the basis system of functions |ui(x)⟩ is chosen to be orthogonal,

⟨ui , uj⟩ =

b∫
a

dx u(i)(x)∗u(j)(x) = δij (X.501)

the double sum in the first term collapses to a single sum, such that

∆N = a∗ia
i − a∗i⟨u

i , g⟩ − ai⟨g, ui⟩ + ⟨g, g⟩ (X.502)

The squared error ∆N can be minimised with respect to ak and a∗k , which are mutually
independent (think of them as being complex numbers, clearly the real and imaginary
part are independent)

∂

∂ak
∆N =

∂a∗i
∂ak︸︷︷︸
=0

ai + a∗i
∂ai

∂ak︸︷︷︸
=δik

−
∂a∗i
∂ak︸︷︷︸
=0

⟨ui , g⟩ − ∂ai

∂ak︸︷︷︸
=δik

⟨g, ui⟩ +
∂

∂ak
⟨g, g⟩︸     ︷︷     ︸

=0

(X.503)

such that

∂
∂ak

∆N = a∗k − ⟨g, u
k⟩ = 0 → ak∗ = ⟨g, uk⟩ =

b∫
a

dx g(x)∗u(k)(x) (X.504)
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Similarly, minimisation with respect to a∗k yields

∂
∂a∗k

∆N =
∂a∗i
∂a∗k︸︷︷︸
=δki

ai + a∗i
∂ai

∂a∗k︸︷︷︸
=0

−
∂a∗i
∂a∗k︸︷︷︸
=δki

⟨ui , g⟩ − ∂ai
∂a∗k︸︷︷︸
=0

⟨g, ui⟩ +
∂
∂a∗k
⟨g, g⟩︸     ︷︷     ︸

=0

(X.505)

implying

∂
∂a∗k

∆N = ak − ⟨uk , g⟩ → ak = ⟨uk , g⟩ =

b∫
a

dx uk(x)∗g(x) (X.506)

which is the hermitean conjugate of eqn. (X.504): When determining the expansion
coefficients ak of a complex function g(x), one directly obtains both the real and
imaginary part of ak from the projection integral, so a∗k = ⟨g, uk⟩ and ak = ⟨uk , g⟩ are
equivalent. In the case of a real-valued function g(x), both a∗k and ak coincide, which
implies that the coefficients themselves are real-valued.

With the coefficents ai and a∗i derived by projection, the value of the squared error
∆N at the minimum is given by

∆
(min)
N = ⟨g, g⟩ − a∗ia

i (X.507)

which ideally would tend towards zero as N →∞,

lim
N→∞

∆
(min)
N = lim

N→∞
⟨aiui − g, aiui − g⟩ = 0 → ⟨g, g⟩ = lim

N→∞
a∗ia

i (X.508)

referred to as convergence in the quadratic mean, implying the Parseval-relation,
which is tightly related to the completeness relation of the basis system: After all,
not all basis systems are able to make sure that the minimised mean quadratic error
tends to zero.

a∗ia
i = ⟨g, ui⟩ ⟨ui , g⟩ =

b∫
a

dx g(x)∗ui(x)

b∫
a

dx′ ui(x′)∗g(x′) (X.509)

Changing the integration order leads to

a∗ia
i =

b∫
a

dx g(x)∗
b∫
a

dx′ g(x′) ui(x′)∗ui(x) (X.510)
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If the system of functions fulfils

ui(x)∗ui(x
′) = δD(x − x′) (X.511)

then one can continue to write

a∗ia
i =

b∫
a

dx g(x)∗
b∫
a

dx′ g(x′)δD(x − x′) =

b∫
a

dx g(x)∗g(x) = ⟨g, g⟩ (X.512)

and convergence is assured. This means, that the system of functions |ui(x)⟩ needs to
be able to represent the Dirac δD-function. If that is the case, the system is complete
for representing any function in the quadratic mean.

X.2 Fourier-transforms

Popular basis functions are plane waves because many differential equations in
physics actually describe oscillations. In the finite interval [−π,+π] ⊂ R, a discrete set
of plane waves un = exp(inx) would be perfectly suited as a complete basis system,
because

N∑
n

exp(inx) exp(−inx′) =
N∑
n

exp(in(x − x′)) =

N∑
n

exp(i(x − x′))n =
exp(i(x − x′)(N + 1)) − 1

exp(i(x − x′)) − 1
(X.513)

as a consequence of the limit formula for geometric series, which can be reformulated
to yield

= exp
(
i
N
2

(x − x′)
) sin

(
N+1

2 (x − x′)
)

sin
(

1
2 (x − x′)

) ∼ δD(x − x′) (X.514)

as the exponential becomes 1 in the limit x → x′, the sin(x)/x-function indeed
approximates the Dirac δD-function. To show that the value at x = x′ is actually
proportional to N + 1 requires the application of de l’Hôpital’s rule for computing
the limit x→ x′ .

For the case of the infinite interval (−∞,+∞) one can transition to a continuous set
of basis functions. Introducing a wave vector k = 2π/L for a plane wave exp(2πix/L) =
exp(ikx) in the interval is likewise a complete basis system, and becomes continuous
in the limit L→ 0. In fact,

+π/L∫
−π/L

dk
2π

exp(ikx) exp(ikx′)∗ =

+π/L∫
−π/L

dk
2π

exp(ik(x − x′)) =
1

2π
exp(ik(x − x′))

i(x − x′)

∣∣∣∣∣∣
+π/L

−π/L

(X.515)

and evaluating the integral yields

=
1
π

sin(π(x − x′)/L)
π(x − x′)/L

(X.516)
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Figure 31: Eqn. X.516 as an approximation to the δD-function in the limit N →∞.

which in the limit L→ 0 behaves like the Dirac δD-function: The case of x− → x′ can
be sorted out by application of de l’Hôpital’s rule, just as before in the discrete case.

In the continuum limit, the Fourier-transform g(k) of a function g(x) is given by

g(x) =
∫

dk
2π

g(k) exp(+ikx) ↔ g(k) =
∫

dx g(x) exp(−ikx) (X.517)

where you’ll find in the literature any combination of distributing the factor 2π and
choosing the sign in the wave exp(±ikx). The two are really inverse, as

g(x) =
∫

dk
2π

∫
dx′ g(x′) exp(ik(x − x′)) =∫

dx′ g(x′)
∫

dk
2π

exp(ik(x − x′)) =
∫

dx′ g(x′)δD(x − x′) = g(x) (X.518)

illustrating the necessity of the 2π-factor. Generalising to more dimensions it be-
comes clear that the plane wave exp(±iki r i) factorises in Cartesian coordinates into
exp(±ikxx) exp(±ikyy) exp(±ikzz), such that the Fourier-transform in n dimensions
becomes a sequence of Fourier-transforms in 1 dimension:

g(r) =
∫

d3k

(2π)3 g(k) exp(+iki r
i) ↔ g(k) =

∫
d3r g(r) exp(−iki r

i) (X.519)

Any further simplification is only possible if the function to be transformed itself
factorises, too. The (scalar) product k · r = ki r

i in index notation shows that ki is in
fact a linear form, which is foreshadowing quantum mechanics that sets ℏki = pi with
the momentum pi .

X.3 Convolutions with Fourier-transforms

One of the primary applications of Fourier-transforms is to carry out convolutions
ϕ ⊗ ψ, as convolutions reduce to straightforward multiplications in Fourier-space.
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Figure 32: Square wave, assembled from the first 20 Fourier components.
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Figure 33: Sawtooth wave, assembled from the first 20 Fourier components.
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Setting up a product ϕ(k)ψ(k) between two Fourier-transformed functions ϕ(k) and
ψ(k) and transforming back to configuration space yields

ϕ ⊗ ψ(r) =
∫

d3k

(2π)3 [ϕ(k)ψ(k)] exp(+iki r
i) (X.520)

and substituting the forward-transformed fields gives

=
∫

d3k

(2π)3

∫
dV′ ϕ(r′) exp(−iki r

′ i)
∫

dV′′ ψ(r′′) exp(−ikj r
′′ j ) exp(+ikkr

k) (X.521)

which, after reordering the integrations, is equivalent to

=
∫

dV′ ϕ(r′)
∫

dV′′ ψ(r′′)
∫

d3k

(2π)3 exp(+iki · [r − r′ − r′′]i) (X.522)

The d3k-integration gives the Dirac δD-function, which fixes r′′ to the value r − r′ ,

=
∫

dV′ ϕ(r′)
∫

dV′′ψ(r′′)δD(r − r′ − r′′) =
∫

dV′ ϕ(r′)ψ(r − r′) (X.523)

i.e. a convolution, as advertised. Due to the perfect symmetry between Fourier-space
and configuration space, the opposite is true as well: Convolutions in Fourier-space
are products in configuration space.

X.4 Green-functions with Fourier-transforms

In the discussion of Poisson-type equations ∆Φ = −4πρ for solving potential problems
we have seen that the potential Φ is given by a convolution of the charge distribu-
tion ρ with the Green-function G, which incidentally is 1/r for the ∆-operator in 3
dimensions:

Φ(r) =
∫

dV′ G(r − r′)ρ(r′) =
∫

dV′
ρ(r′)
|r − r′ |

(X.524)

This convolution needs to become a product in Fourier-space

Φ(k) = G(k)ρ(k) with G(k) =
4π
k2 (X.525)

To obtain the expression for the Green-function G in configuration space it suffices
to transform G(k) back, where we make the replacement r − r′ → r′, as the Green-
function only depends on the relative distance:

G(r) =
∫

d3k

(2π)3 G(k) exp(+iki r
i) (X.526)

As G(k) = 4π/k2 is spherically symmetric, it makes sense to carry out the integration
in spherical coordinates: d3k = k2dk dµ dϕ with µ = cos θ being the cosine of the
polar angle θ:
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x. fourier-transforms and orthonormal systems

G(r) =

∞∫
0

k2dk
(2π)3

+1∫
−1

dµ

2π∫
0

dϕ
4π
k2 exp(+ikrµ) =

4π
(2π)2

∞∫
0

dk

+1∫
−1

dµ exp(ikrµ) (X.527)

because ki r
i = kr cos θ = krµ, and because dϕ-integration just yields 2π. Next, the

dµ-integration can be carried out to yield

=
1
π

∞∫
0

dk
exp(+ikr) − exp(−ikr)

ikr
=

2
π

∞∫
0

dk
sin(kr)

kr
=

2
π

∞∫
0

dk j0(kr) =
1
r

(X.528)

because the integral over j0(x) = sin(x)/x can be shown to be

∞∫
0

dx
sin(x)

x
=
π

2
(X.529)

after substitution x = kr, usually with the methods of complex calculus (see chap-
ter Y), but there are more down-to-Earth methods: There is no direct integration
method for this type of integral, but neat tricks exist!

∞∫
0

dx
sin x
x

=

∞∫
0

dx sin(x)

∞∫
0

dy exp(−yx)

︸             ︷︷             ︸
=1/x

=

∞∫
0

dy

∞∫
0

dx sin(x) exp(−yx) (X.530)

after changing the order of integration. The resulting dx-integral can be solved by
double integration by parts:

∞∫
0

dx sin(x) exp(−yx) = −1
y

sin(x) exp(−yx)
∣∣∣∣∣∞
0

+
1
y

∞∫
0

dx cos(x) exp(−yx) (X.531)

where the first term vanishes at both boundaries. Continuing with the second inte-
gration by parts yields

. . . = − 1
y2 cos(x) exp(−yx)

∣∣∣∣∣∞
0
− 1
y2

∫
dx sin(x) exp(−yx) (X.532)

where the first term in this case yields −1 at the lower integration boundary. Collect-
ing the terms gives (

1 +
1
y2

) ∞∫
0

dx sin(x) exp(−yx) =
1
y2 (X.533)

such that
∞∫

0

dx sin(x) exp(−yx) =
1
y2

1 + 1
y2

=
1

1 + y2 (X.534)
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x.4. green-functions with fourier-transforms

and finally
∞∫

0

dx
sin(x)

x
=

∞∫
0

dy
1

1 + y2 = arctan(x)
∣∣∣∣∣∞
0

=
π

2
(X.535)

The inverse problem and slight generalisation of the above calculation is the
Fourier-transform of 1/r,

∞∫
0

r2dr

+1∫
−1

dµ

2π∫
0

dϕ
1
r

exp(−ikrµ) →
∞∫

0

r2dr

+1∫
−1

dµ

2π∫
0

dϕ
exp(−λr)

r
exp(−ikrµ)

(X.536)

where the issue about convergence of the integral can be alleviated by introducing
a factor exp(−λr) to the integrand, and by considering the limit λ → 0 after the
integration: This method is known as regularisation of an integral. Physically, we
compute the Fourier-transform of a Yukawa-potential instead of a Coulomb-potential.
Continuing as before gives

. . . = 4π

∞∫
0

r2dr
exp(−λr)

r

sin(kr)
kr

=
4π
k

∞∫
0

dr exp(−λr) sin(kr) (X.537)

The remaining integral can be solved again by double integration by parts: Firstly,

∞∫
0

dr exp(−λr) sin(kr) = −1
λ

exp(−λr) sin(kr)
∣∣∣∣∣∞
0

+
k
λ

∞∫
0

dr exp(−λr) cos(kr) (X.538)

where the first term vanishes at both boundaries. Applying the second integration by
parts on the remaining term yields

k
λ

∞∫
0

dr exp(−λr) cos(kr) = − k

λ2 exp(−λr) cos(kr)
∣∣∣∣∣∞
0
− k2

λ2

∞∫
0

dr exp(−λr) sin(kr)

(X.539)

where at this step the first term vanishes at the upper, but not at the lower boundary.
Consequently, (

1 +
k2

λ2

) ∞∫
0

dr exp(−λr) sin(kr) =
k

λ2 (X.540)

suggesting for the final result:

4π
k

∞∫
0

dr exp(−λr) sin(kr) = 4π
1
λ2

1 + k2

λ2

=
4π

k2 + λ2 →
4π
k2 for λ→ 0 (X.541)

Clearly, the inverse Fourier-transform of 4π/k2 should be 1/r (in three dimensions);
as well in agreement with our experience with electrostatic potentials Φ ∝ 1/r around
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x. fourier-transforms and orthonormal systems

point charges. The regularisation

1
r
→ exp(−λr)

r
corresponds to

4π
k2 →

4π
k2 + λ2 , (X.542)

and would work for inverse Fourier-transforms just as well.

A more professional method, which generalises to other types of Green-functions
more easily, is to use the residue theorem from complex analysis. Restarting at

G(r) =

∞∫
0

k2dk
(2π)3

+1∫
−1

dµ

2π∫
0

dϕ
4π
k2 exp(+ikrµ) =

2
π

∞∫
0

dk
sin(kr)

kr
(X.543)

led us to the dk-integration over the spherical Bessel function. We can extend the
integration domain from −∞ to +∞ as the integrand is a symmetric function, and
write sin(x) out in terms of complex exponentials:

+∞∫
−∞

dx
sin x
x

=
1
2i

+∞∫
−∞

dx
x

(exp(ix) − exp(−ix))→ 1
2i

+∞∫
−∞

dz
z

(exp(iz) − exp(−iz))

(X.544)

by continuation to the complex plane. The two terms need to be treated differently
when closing the integration to a loop: The first term exp(iz) will decrease exponen-
tially towards the positive imaginary axis, so one should close the integration contour
there, while the second term exp(−iz) decreases exponentially towards the negative
imaginary axis, so this is where the loop should be closed. Keep in mind that the first
loop is traversed in the mathematically positive sense, while the second one in the
negative sense, leading in principle to negative results. Now, the integrand needs
to get shifted by ±iϵ with a small ϵ > 0, such that the pole is contained in one of
the integration contours and does not lie on the real axis. Let’s chose to move the
integrand towards the positive imaginary axis by changing z to z − iϵ. In this case,
only the first term contributes to the integral (with the integration contour ) as the
second integration contour ( ) does not contain the pole and is therefore zero:

1
2i

+∞∫
−∞

dz
z

(exp(iz) − exp(−iz)) =
1
2i

∮
dz
z

exp(iz) +
1
2i

∮
dz
z

exp(−iz) (X.545)

Simplifying the relation further, the loop-integral can be solved with Cauchy’s
integral formula: ∮

Γ

dζ
g(ζ)
ζ − z

= 2πi g(z) (X.546)

with ζ set to zero. As exp(iζ) = 1 at this location, the sought integral bocomes

2

∞∫
0

dx
sin x
x

=

+∞∫
−∞

dx
sin x
x

=
1
2i

∮
dz
z

exp(iz) = π. (X.547)
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x.4. green-functions with fourier-transforms

Fig. 34 illustrates the integrand of the Green-function for ∆ in Fourier-space, with
the singularity at the origin.

While these methods generalise straightforwardly to n ≥ 4, the case of n = 2 is
downright weird. The corresponding Poisson-equation reads

∆Φ = −2πρ in two dimensions, (X.548)

because the solid angle element in 2d is 2π, as the circumference of a circle with
unit radius. But the Fourier-transform of ∆ is still ∝ 1/k2 as shown before, only that
k2 = k2

x + k2
y in 2 dimensions. Writing formally

G(r) = 2π
∫

d2k

(2π)2
1
k2 exp(ik · r) =

∞∫
0

kdk

2π∫
0

dϕ
1
k2 exp(ikr cosϕ) (X.549)

after introducing polar coordinates that imply d2k = kdkdϕ, and writing the scalar
product as k · r = kr cosϕ, with ϕ being the angle between k and r. Carrying out the
dϕ-integration first leads to the cylindrical Bessel-function J0, because

J0(kr) =

2π∫
0

dϕ exp(ikr cosϕ) (X.550)

such that

G(r) =

∞∫
0

dk
k

J0(kr)→
∞∫

0

dk
k

k2 + λ2 J0(kr) (X.551)

by introducing a regularisation in the denominator, which avoids the divergence at
k = 0. Integrations of this type have the general solution

∞∫
0

dk
kν+1

(k2 + λ2)µ+1 Jν(kr) =
rµλν−µ

2µΓ (µ + 1)
Kν−µ(λr) = K0(rλ) with ν = µ = 0 (X.552)

in our particular case, with K0(rλ) being the modified Bessel-function of the second
kind,

K0(rλ) =

∞∫
0

dt
cos(rλt)
√

1 + t2
. (X.553)

This particular Bessel-function can be written in terms of a power series in its
argument rλ. In the limit of vanishing regularisation, the value of the power series is
dominated by its first term:

K0(rλ) = − (ln(rλ) + γ) I0(rλ) (X.554)

with I0(rλ) as the modified Bessel function of the first kind approaching unity in the
limit λ→ 0, leaving G(r) ∝ ln(r). γ is k Euler’s constant.
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Figure 34: Function exp(±ik)/k over the complex plane k = Re(k) + i Im(k), with color
indicating phase and hue indicating the absolute value, for the positive sign the exponent
(decreasing towards the positive imaginary axis) on the top and the negative sign (decreas-
ing towards the negative imaginary axis) on the bottom. The singularity at the origin is
clearly visible.
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x.5. spectra of musical instruments

X.5 Spectra of musical instruments

An externally driven oscillator illustrates nicely the purpose of a Green-function
to cope with inhomogeneities: Let’s work with a harmonic oscillator with proper
frequency ω0, a damping γ driven by an external acceleration a(t). Its defining
differential equation is

ẍ + γẋ + ω2
0x(t) = a(t) (X.555)

Finding a solution for the homogeneous equation is straightforward: The ansatz
x(t) ∝ exp(iωt) yields the characteristic equation ω2− iωγ−ω2

0 = 0, with two solutions,

ω± =
(
iγ ±

√
γ2 − 4ω2

0

)
/2. Effectively, this corresponds to taking the Fourier-transform

of the differential equation, which then becomes algebraic:∫
dω
2π

[
−ω2 + iγω + ω2

0

]
exp(iωt)x(ω) = 0 (X.556)

as the differentiation d/dt replaces the prefactor iω, such that we recover the
quadratic characteristic equation again. The incorporation of the inhomogeneity
can easily be achieved in Fourier-space:∫

dω
2π

[
−ω2 + iγω + ω2

0

]
exp(iωt)x(ω) =

∫
dω
2π

a(ω) exp(iωt). (X.557)

Because the differential equation has become algebraic, solving for x(ω) is easy:

x(ω) =
1

−ω2 + iγω + ω2
0

a(ω) = G(ω)a(ω) (X.558)

such that the inverse Fourier-transform yields x(t) for a given driving term a(t). The
product relation in Fourier-space must be a convolution in real space,

x(t) =
∫

dω
2π

1

−ω2 + iγω + ω2
0

a(ω) exp(iωt) =
∫

dt′ G(t − t′)a(t′) (X.559)

where the inverse differential operator is just the Green-function for this problem:

G(t − t′) =
∫

dω
2π

1

−ω2 + iγω + ω2
0

exp(iω(t − t′)) (X.560)

G(ω) or equivalently, G(t − t′) determines the response of the system, i.e. the damped
harmonic oscillator, to an external driving. Most obviously, this is understood in
Fourier-space, where G(ω) translates the driving a(ω) to the resulting amplitude x(ω),
frequency by frequency. In configuration space, G(t − t′) is likewise the response of
the system, and it is defined formally as the solution to the differential equation to a
δD-like inhomogeneity,(

d2

dt2 + γ
d
dt

+ ω2
0

)
G(t − t′) = δD(t − t′) (X.561)
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because any inhomogeneity can be constructed from this by linear superposition:
Multiplying both sides with a(t′) and integrating over dt′ gives(

d2

dt2 + γ
d
dt

+ ω2
0

) ∫
dt′ G(t − t′)a(t′)︸                  ︷︷                  ︸

=x(t)

=
∫

dt′δD(t − t′)a(t′) = a(t) (X.562)

such that the solution for the amplitude as a function of time has to be given by

x(t) =
∫

dt′ G(t − t′)a(t′) (X.563)

i.e. as a convolution relation over the excitation a(t). The interpretation of the
response G(t − t′) as defined by eqn. (X.561) would now be the solution to the
dynamical system to an infinitely sharp excitation. Actually, this is sensible, as it
would in fact contain all possible Fourier-modes, even at equal amplitude. But is it
possible to construct the Green-function explicitly from the differential operator?
After all, the inhomogeneity a(t) is taken care of by the integration eqn. (X.563) and
the Green-function itself is defined formally by eqn. (X.561): In fact, in Fourier-space
this relation reads:(

d2

dt2 + γ
d
dt

+ ω2
0

)
G(t − t′) =

(
d2

dt2 + γ
d
dt

+ ω2
0

) ∫
dω
2π

G(ω) exp(iωt) =∫
dω
2π

(
−ω2 + iγω + ω2

0

)
G(ω) exp(iωt) =

∫
dω
2π

exp(iωt) = δD(t − t′) (X.564)

such that
G(ω) =

1

−ω2 + iγω + ω2
0

(X.565)

with the inverse transform

G(t − t′) =
∫

dω
2π

G(ω) exp(iω(t − t′)) =
∫

dω
2π

1

−ω2 + iγω + ω2
0

exp(iω(t − t′)) (X.566)

which can be shown to be a Lorentzian k spectral line profile.
To complete the analogy to electrodynamics it’s instructive to think of the inho-

mogeneity ρ in electrostatic Poisson-equation ∆Φ = −4πρ as the external driving
that perturbs the solution to the k Laplace equation ∆Φ = 0. The resulting Green-
function G(ω) is complex-valued; its real and imaginary parts are depicted in Fig. 35,
along with its modulus and phase.

A more complete view is presented in Fig. 36, where the Green-function is shown
with the phase in color and the modulus in hue.
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Figure 35: Complex-valued Green-function G(ω) for the damped harmonic oscillator, for
ω0 = γ = 1, specifically the real and imaginary parts as well as the modulus and the phase
angle.

An external, sinusoidal driving would correspond to a choice of a value for ω
on the real axis, and a value close to the two singularities would result in resonant
driving. The singularities are situated at

ω2 − iγω − ω2
0 = 0 → ω± =

iγ ±
√

4ω2
0 − γ2

2
, (X.567)

i.e. at
√

3/2 + i/2 for the numerical example with ω0 = γ = 1.
Fig. 37 shows spectra for a range of musical instruments. All spectra show the

k harmonic series of integer multiples of the base note. Their relative amplitudes
determine the sound of the respective instruments.

Fig. 38 illustrates, how incredibly well-fitting the Lorentzian line shape for spectra
lines actually is. From this observation, one might conclude that a damped harmonic
oscillator with an external driving is a good mechanical model for the sound genera-
tion in a musical instrument, and motivates sound engineering in a k synthesiser.

X.6 Spherical harmonics

It is well possible to construct complete orthonormal systems of functions on other
manifolds, for instance on the surface of a sphere. As in the case of plane waves for
Euclidean space with Cartesian coordinate, which solve the Helmholtz differential
equation, one can look for the set of solutions to the wave equation

∆Yℓm(θ,ϕ) = −ℓ(ℓ + 1)Yℓm(θ,ϕ) → [∆ + ℓ(ℓ + 1)] Yℓm(θ,ϕ) = 0 (X.568)

where the Laplace-operator is a differentiation with respect to the angular coordinate
θ and ϕ. Comparing to the Cartesian Helmholtz-PDE

[
∆ + k2

]
exp(±ki r i) = 0 one

identifies the term ℓ(ℓ + 1) with k2, implying that π/ℓ should be a wave length (in
terms of radians) just like 2π/k would be a physical wave length λ.
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Figure 36: Complex-valued Green-function G(ω) over the complex plane ω = Re(ω) +
i Im(ω), with phase indicated by colour and absolute value by hue, again for ω0 = γ = 1.
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Figure 37: Spectra of different musical instruments, showing higher-order harmonics.
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Figure 38: Spectral line of a tone with a best-fitting Lorentz-profile.
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Figure 39: Legendre polynomials Pℓ(x) for ℓ = 1 . . . 8, with even parity for even ℓ, and odd
parity for odd ℓ.
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The Laplace-operator ∆ in angular coordinates applied onto a scalar function
ψ(θ,ϕ) reads explicitly

∆ψ =
1

sin θ
∂
∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂ϕ2 (X.569)

As there are no mixed derivatives one should try a separation ansatz

ψ(θ,ϕ) = T(θ)P(ϕ) (X.570)

so that the Helmholtz-PDE becomes

∆ψ =
P(ϕ)
sin θ

∂
∂θ

(
sin θ

∂T(θ)
∂θ

)
+

T(θ)

sin2 θ

∂2P(ϕ)
∂ϕ2 = −ℓ(ℓ + 1)T(θ)P(ϕ) (X.571)

such that division by T(θ)P(ϕ) separates the terms as dependent on θ or ϕ

sin θ
T

∂
∂θ

(
sin θ

∂T
∂θ

)
+ ℓ(ℓ + 1) sin2 θ = − 1

P
∂2P
∂ϕ2 (X.572)

to the left and right side of the equation: They must therefore both be equal to a
separation constant m2. Then, the right side gives

1
P
∂2P
∂ϕ2 = −m2 →

(
∂2

∂ϕ2 + m2
)

P(ϕ) = 0 (X.573)

which is again a Helmholtz-differential equation, this time in ϕ only. It has wave-type
solutions

P(ϕ) ∝ exp(±imϕ) (X.574)

with m playing the role of a wave number, but it has to be integer because otherwise
the continuity of the solution could not be ensured when rotating by 2π:

P(ϕ+2π) = P(ϕ) implies exp(±im(ϕ+2π)) = exp(±2πim)︸         ︷︷         ︸
=1

exp(±imϕ) = exp(±imϕ)

(X.575)

if m is integer. With this knowledge we return to the θ-equation, which becomes the
associated Legendre-differential equation[

1
sin θ

∂
∂θ

(
sin θ

∂
∂θ

)
− m2

sin2 θ
+ ℓ(ℓ + 1)

]
T(θ) = 0 (X.576)

after resorting the terms, where the particular case m = 0 leads to the actual Legendre-
differential equation,

1
sin θ

∂
∂θ

(
sin θ

∂T
∂θ

)
+ ℓ(ℓ + 1)T(θ) = 0 (X.577)
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Figure 40: Associated Legendre polynomials Pℓm(cos θ) in a polar representation.

Transitioning to the new variable x = cos θwith sin θ =
√

1 − x2 then yields

(1 − x2)
d2T
dx2 − 2x

dT
dx

+ ℓ(ℓ + 1)T(x) = 0 (X.578)

whose solution are the Legendre-polynomials Pℓ(x). They can be shown to obey an
orthogonality relation

+1∫
−x

dx Pℓ(x)Pℓ′ (x) =
2

2ℓ + 1
δℓℓ′ (X.579)

in the same way as the plane waves exp(±imϕ) for the azimuthal coordinate, confirm-
ing that the Helmholtz differential equation in fact defines a system of orthonormal
waves on the surface of the sphere.

In the same way there is an orthogonality relation for the solutions to the associ-
ated Legendre differential equation
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+1∫
−1

dx Pℓm(x)Pℓ′m′ (x) =
2

2ℓ + 1
(ℓ + |m|)!
(ℓ − |m|)!

δℓℓ′δmm′ (X.580)

such that the definition of the spherical harmonics including the prefactors

Yℓm(θ,ϕ) =

√
4π

2ℓ + 1

√
(ℓ − |m|)!
(ℓ + |m|)!

Pℓm(cos θ) exp(+imϕ) (X.581)

gives the fundamental orthogonality∫
4π

dΩ Yℓm(θ,ϕ)Y∗ℓ′m′ (θ,ϕ) = δℓ,ℓ′δmm′ (X.582)

and completeness relations

∞∑
ℓ=0

+ℓ∑
m=−ℓ

Yℓm(θ,ϕ)Y∗ℓm(θ′ ,ϕ′) = δD(θ− θ′)δD(ϕ − ϕ′) (X.583)
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Figure 41: Spherical harmonics Yℓm(θ,ϕ) for ℓ = 0, 1, 2, 3 (top to bottom) and 0 ≤ m ≤ ℓ
(corresponding rows).
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Y complex calculus

Y.1 Aspects of complex differentiability

Many of the integrals needed for the construction of a Green-function with the Fourier
method are not solvable with elementary methods, i.e. integration by substitution, by
parts or using partial fractions, for instance

+∞∫
−∞

dω
1

(ck)2 − ω2 exp (−iω(t − t′)) (Y.584)

which shows two singularities at ω = ±ck. Methods from complex analysis, though,
provide a pathway of doing that.

A function g(z) = u(x, y) + iv(x, y) maps a complex argument z = x + iy onto a
complex value g = u + iy. It is continuous in ζ if there is an ϵ > 0 for every δ > 0 such
that |g(z) − g(ζ)| < ϵ follows form |z − ζ| < δ. In other words, the limit

lim
ζ→z
|g(z) − g(ζ)| = 0 (Y.585)

does not depend on the way how ζ approaches z. The function g(z) is complex
differentiable in z, if the limit

lim
ζ→z

g(z) − g(ζ)
z − ζ

=
dg
dz

(z) (Y.586)

exists and is unique, or in other words: if the differential quotient is continuous.
Complex differentiability is a weird and very powerful concept. Historically, four

different aspects have been discovered which turn out to be identical and merely dif-
ferent sides of the same idea: (i) complex differentiable, (ii) analytical, meaning that
the Cauchy-Riemann differential equations hold, (iii) regular, defined as a vanishing
loop integral over closed curves, and (iv) holomorphic, meaning that the function
fulfils the residue theorem. An weidly enough, it blurs the boundaries between inte-
gration and differentiation, as exemplified by the Cauchy-theorem. Fundamentally, it
is yet another example of the powerful concept of exact differentials.

Y.2 Cauchy-Riemann differential equations

In a complex differentiable function, the derivative does not depend on the direction
how ∆z, itself a complex number, approaches zero,

dg
dz

= lim
∆z→0

g(z + ∆z) − g(z)
∆z

. (Y.587)

Therefore, the derivative in x-direction parallel to the real axis,

lim
∆x→0

g(z + ∆x) − g(z)
∆x

=
∂g

∂x
(Y.588)
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and the derivative in the y-direction parallel to the imaginary axis,

lim
∆y→0

g(z + i∆y) − g(z)
i∆y

=
1
i
∂g

∂y
(Y.589)

must be equal. Writing this relation in terms of the components of g yields

∂g

∂x
=

∂u
∂x

+ i
∂v
∂x

=
1
i
∂g

∂y
=

1
i
∂u
∂y

+
∂g

∂y
(Y.590)

and with a subsequent separation of the real and imaginary parts on arrives at the
Cauchy-Riemann differential equations

∂u
∂x

= +
∂v
∂y

and
∂v
∂x

= −∂u
∂y

. (Y.591)

The notions of complex differentiability and the fulfilment of the Cauchy-Riemann
differential equations is equivalent.

Y.3 Complex line and loop integrals

Given a curve Γ parameterised with λ running from point A with coordinates z(a) to
point B at z(b), one can define a complex line integral by reducing it to an integral
over the parameter by substitution,

∫
ΓAB

dz g(z) =

b∫
a

dλ
dz
dλ

g(z(λ)). (Y.592)

Covering the same path in opposite direction yields the same numerical result, but
with a negative sign

∫
ΓBA

dz g(z) =

a∫
b

dλ
dz
dλ

g(z(λ)) = −
b∫
a

dλ
dz
dλ

g(z(λ)) (Y.593)

If an integral does not depend on the particular path from A to B, one can assemble
a trip from A to B on one path followed by a return trip from B to A on another path,
with the two contributions cancelling each other, with the overall result being∫

ΓAB

dz g(z) +
∫
ΓBA

dz g(z) =
∮
Γ

dz g(z) = 0 (Y.594)

Just as before, traversing a closed loop in the opposite sense of rotation would yield
an overall minus sign. Writing this relation component-wise∮

Γ

dz g(z) =
∮
Γ

(dx + idy) (u + iv) =
∮
Γ

(udx − vdy) + i
∮
Γ

(vdx + udy) = 0 (Y.595)
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y.4. residue theorem and holomorphic functions

Both terms can be reformulated as area integrals by virtue of Green’s theorem, ∂C = Γ ,∮
Γ

(udx − vdy) = −
∫
C

dxdy
(
∂u
∂y
− ∂v
∂x

)
and

∮
Γ

(vdx + udy) =
∫
C

dxdy
(
∂u
∂x

+
∂v
∂y

)
(Y.596)

where one immediately recognises the Cauchy-Riemann equations in the integrands,
making both results vanish. In summary,∮

Γ

dz g(z) = 0 (Y.597)

for any complex differentiable function. k Green’s theorem, which allows the con-
version of a loop integral to an area integral works for simply connected regions.

Y.4 Residue theorem and holomorphic functions

The Cauchy-theorem states that every value of a complex differentiable function
inside a closed curve Γ is fixed by the values on that curve,

g(z) =
1

2πi

∮
Γ

dζ
g(ζ)
ζ − z

(Y.598)

Functions with that property are called holomorphic, which is synonymous to
complex differentiable. In fact,

1
2πi

∮
Γ

dζ
g(ζ)
ζ − z

=
1

2πi

∮
Γ

dζ
g(ζ)

=0︷        ︸︸        ︷
−g(z) + g(z)
ζ − z

=

g(z)
2πi

∮
Γ

dζ
1

ζ − z
+

1
2πi

∮
Γ

dζ
g(ζ) − g(z)
ζ − z

= g(z), (Y.599)

after reordering the terms and using that
∮

dζ g(z) . . . = g(z)
∮

dζ . . .. The first term
can be shown to be∮

Γ

dζ
ζ

=
∮
Γ

d ln ζ =

2π∫
0

dλ
dζ
dλ

1
ζ

= i

2π∫
0

dλ exp(iλ) exp(−iλ) = i

2π∫
0

dλ = 2πi (Y.600)

after substitution ζ − z → ζ, which can then be solved by choosing the unit circle
ζ = exp(iλ) with dζ = i exp(iλ)dλ = iζdλ as the integration contour. The second
integral can be treated like this:∣∣∣∣∣∣∣∣ 1

2πi

∮
Γ

dζ
g(ζ) − g(z)
ζ − z

∣∣∣∣∣∣∣∣ ≤ 1
|2πi|

∣∣∣∣∣∣∣∣
∮
Γ

dζ
g(ζ) − g(z)
ζ − z

∣∣∣∣∣∣∣∣ ≤ ϵ

|2πi|

∣∣∣∣∣∣∣∣
∮
Γ

dζ
1

ζ − z

∣∣∣∣∣∣∣∣ = ϵ (Y.601)
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if the function g is continuous, which is quite obvious as it is already assumed to
be complex differentiable: Then, the integration contour can be chosen to be small
enough such that |g(ζ) − g(z)| < ϵ. In addition, the integral was already shown to
be 2πi. Overall, the second integral is bounded by ϵ, and does effectively does not
contribute, as ϵ can be chosen to be arbitrarily small.

It is worth memorising the iconic result

1
2πi

∮
Γ

dζ
ζ

= 1, (Y.602)

but what about other powers in ζ? Clearly, for both positive and negative n, as long
as n , −1,

∮
dζ ζn =

2π∫
0

dλ
dζ
dλ
ζn = i

2π∫
0

dλ exp(iλ) exp(inλ) =

i

2π∫
0

dλ exp(i(n + 1)λ) =
exp(i(n + 1)λ)

n + 1

∣∣∣2π
0

= 0 (Y.603)

from elementary integration, again with the parameterised unit circle exp(iλ) as the
integration contour. But alternatively, one could argue that the plane waves form an
orthonormal system. Therefore, only for n = −1 one gets a nonzero result.

The Cauchy-theorem can be generalised to higher-order derivatives: Starting with
a Taylor-expansion of g(ζ) around z,

g(ζ) = g(z) +
dg
dζ

∣∣∣
z
(ζ − z) +

d2g

dz2

∣∣∣
z

(ζ − z)2

2
+ · · · (Y.604)

Using the results from above, one can isolate g(z) from the series by multiplying it
with 1/(ζ − z), followed by a loop integration comprising z:∮
Γ

dζ
g(ζ)
ζ − z

= g(z)
∮
Γ

dζ
1

ζ − z︸       ︷︷       ︸
=2πi

+
dg
dz

∣∣∣
z

∮
Γ

dζ
ζ − z
ζ − z︸       ︷︷       ︸

=0

+
1
2

d2g

dz2

∣∣∣
z

∮
Γ

dζ
(ζ − z)2

ζ − z︸           ︷︷           ︸
=0

+ · · · (Y.605)

For accessing a higher order derivative, for instance dg/dz, one would need to
multiply the series by 1/(ζ − z)2 before integrating,∮
Γ

dζ
g(ζ)

(ζ − z)2 = g(z)
∮
Γ

dζ
1

(ζ − z)2︸           ︷︷           ︸
=0

+
dg
dz

∣∣∣
z

∮
Γ

dζ
ζ − z

(ζ − z)2︸           ︷︷           ︸
=2πi

+
1
2

d2g

dz2

∣∣∣
z

∮
Γ

dζ
(ζ − z)2

(ζ − z)2︸           ︷︷           ︸
=0

+ · · ·

(Y.606)
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This pattern generalises to the Cauchy-theorem for derivatives of g(z),

dng

dzn
∣∣∣
z

=
n!

2πi

∮
Γ

dζ
g(ζ)

(ζ − z)n+1 , (Y.607)

with the interesting implication that derivatives of a complex differentiable function
can be obtained through an integration process. If a function is complex differen-
tiable once, it is complex differentiable arbitrarily often, in stark contrast to real
differentiability.

The Cauchy-theorem can be applied in the solution of real-valued integrals that
can not be solved (easily) by means of elementary integration. A classic example of
this is

+∞∫
−∞

dx
1

1 + x2 = arctan x
∣∣∣+∞−∞ = π (Y.608)

where a solution is only possibly by using the rule of the derivative of the inverse func-
tion and trigonometric identities. Instead, one can perform a complex continuation,

+∞∫
−∞

dx
1

1 + x2 →
+∞∫
−∞

dz
1

1 + z2 (Y.609)

where x is interpreted as a complex-valued variable z. The denominator has two
poles at z = ±i, allowing a decomposition into partial fractions,

1
1 + z2 =

1
(1 + z)(1 − z)

=
1
2i

( 1
z − i

− 1
z + i

)
, (Y.610)

and the integration along the real axis from −∞ to +∞ can be extended by an semi-
circular arc, which does not contribute to the value of the integrand, as its arc length
increases with radius, but the value of the integrand decreases proportional to the
squared radius. This arc now makes the integration a complex loop integral, so that
we can write ∮

Γ

dz
1

z2 + 1
=

1
2i

∮
dz
z − i︸  ︷︷  ︸

=2π

− 1
2i

∮
Γ

dz
z + i︸    ︷︷    ︸

=0

= π (Y.611)

because only the pole at z = +i is contained inside the integration contour.

One would have arrived at exactly the same result if the arc had been closed at
the bottom instead of the top: Then, the sense in which the curve Γ is traversed, is
inverted, yielding a negative sign:∮

Γ

dz
1

z2 + 1
=

1
2i

∮
dz
z − i︸  ︷︷  ︸
=0

− 1
2i

∮
dz
z + i︸  ︷︷  ︸

=−2π

= π (Y.612)

as now the other pole at z = −i is caught by the integration contour.
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Y.5 Laurent-series

In the example above we have already embedded a function of a single, real-valued
variable into the complex plane, and consider it to a (differentiable) mapping between
complex numbers. This idea can be generalised in analytical continuations of a
complex function g(z), in cases where it is known in a region around z0 to a second
region around z bounded by ∆. There, the Cauchy-relation

g(z) =
1

2πi

∮
∆

dζ
g(ζ)
ζ − z

and
dng

dzn
∣∣∣
z

=
n!

2πi

∮
∆

dζ
g(ζ)

(ζ − z)n+1 (Y.613)

for any Γ circling the point z allows to access the values of g and its derivatives. The
function and its derivatives at z0 can be used to construct a power series that extends
from a region around z0 to z and defines the continuation of the function in this terra
incognita bounded by ∆.

The function’s values inside ∆ are fixed by the Cauchy-theorem, and one can
assemble an integration path consisting of two concentric loops Γ1 (with radius r1)
and Γ2 with radius r2, joined by two bridges A1 and A2. This integration path replaces
∆, as it would result from continuous deformation within the holomorphic region.
Then, g(z) can be computed as

g(z) =
1

2πi

∮
Γ2

dζ
g(ζ)
ζ − z

− 1
2πi

∮
Γ1

dζ
g(ζ)
ζ − z

, (Y.614)

because the contributions along A1 and A2 cancel each other due to the opposite
direction in which they are traversed. Please note that the second loop Γ1 contributes
with a minus sign as the integration path is followed in a clockwise direction, i.e. in
the mathematically negative sense. From the two integrals, the secoond one vanishes
because of the Cauchy-theorem because z is outside Γ1, but the first integral gives a
non-vanishing result, with z being contained in Γ2.

In our construction, the values of ζ traversed in the integration along the large
loop Γ2 have a modulus of r2. Then, one can argue that

1
ζ − z

=
1

ζ − z0

1
1 − z−z0

ζ−z0

=
1

ζ − z0

∑
n

(
z − z0

ζ − z0

)n
(Y.615)

where in the last step we replaced the 1/(1−q)-term with its corresponding geometric
series. There is no issue of convergence of∑

n

qn =
1

1 − q
because q =

∣∣∣∣∣ z − z0

ζ − z0

∣∣∣∣∣ =
r
r2

< 1 (Y.616)

Conversely, if ζ is situated on the loop Γ1 with radius r1, an analogous argument
applies, as

1
ζ − z

=
1

z − z0

1

1 − ζ−z0
z−z0

=
1

z − z0

∑
n

(
ζ − z0

z − z0

)n
. (Y.617)
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In this case, convergence of the geometric series is ensured by∑
n

pn =
1

1 − p
where p =

∣∣∣∣∣ζ − z0

z − z0

∣∣∣∣∣ =
r1

r
< 1 (Y.618)

Collecting these results leads to

g(z) =
1

2πi

∮
Γ2

dζ g(ζ)
∑
n

(z − z0)n

(ζ − z0)n+1 −
1

2πi

∮
Γ1

dζ g(ζ)
∑
n

(ζ − z0)n

(z − z0)n+1 . (Y.619)

It is an interesting realisation that the two fractions are inverses of each other, leading
to a natural continuation of the series towards negative n. Reordering integration and
summation yields:

g(z) =
∑
n

 1
2πi

∮
Γ2

dζ
g(ζ)

(ζ − z0)n+1

×(z−z0)n−
∑
n

 1
2πi

∮
Γ1

dζ
g(ζ)

(ζ − z0)−n

×(z−z0)−(n+1).

(Y.620)

In summary, this result can be rewritten

g(z) =
+∞∑

n=−∞
an(z − z0)n with an =

1
2πi

∮
Γ

dζ
g(ζ)

(ζ − z0)n+1 , (Y.621)

for any close curve running between Γ1 and Γ2, where the minus-sign is cancelled by
choosing a joint sense of rotation for the integration loop. This result is known as the
Laurent-series, a power-law expansion of holomorphic functions, with its remarkable
negative powers.

Y.6 Residue theorem

Looking at the Laurent series for g(z),

∞∑
n=−∞

an(z − z0)n = · · ·+ a−n
(z − z0)n

+ · · ·+ a−1

(z − z0)
+ a0 + a1(z − z0) + · · ·+ an(z − z0)n + · · · ,

(Y.622)

all terms belonging to positive indices n ≥ 0 remain finite in the limit z → z0, while
the terms for negative n , 0 are divergent. The function g(z) would possess a pole
of order −n at z0 if the Laurent series terminates at finite −n. Please note that the
Laurent-series is constructed in a consistent way: Applying

1
2πi

∮
Γ

dz . . . (Y.623)

to both sides yields for the terms with positive exponents n ≥ 0,

1
2πi

∮
Γ

dz (z − z0)n = 0, (Y.624)
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and similarly for the negative exponents with n ≥ 2,

1
2πi

∮
Γ

dz
1

(z − z0)n
= 0, (Y.625)

whereas only the term for n = −1 yields a non-vanishing result, namely:

1
2πi

∮
Γ

dz
1

z − z0
= 1. (Y.626)

The particular coefficient corresponding to n = −1 of the Laurent series,

a−1 =
1

2πi

∮
Γ

dζ g(ζ), (Y.627)

is called the residue of g(z) at z0, which needs to be located within Γ .

Y.7 Conformal mappings

Analytical (or complex differentiable, or regular, or holomorphic) functions automati-
cally fulfil the Laplace-equation ∆g = 0 in two dimensions and, as such, are viable
solutions to the field equation ini vacuum. Starting with g(z) = u(x, y) + iv(x, y) we
write:

∂2u

∂x2 =
∂
∂x

∂u
∂v︸︷︷︸

=∂v/∂y

=
∂
∂y

∂v
∂x︸︷︷︸

=−∂u/∂y

= −
∂2y

∂x2 → ∆u = 0 (Y.628)

taking advantage of the fact that partial differentiations interchange and substituting
the Cauchy-Riemann equations twice. Conversely, one shows for the imaginary part

∂2v

∂x2 =
∂
∂x

∂v
∂x︸︷︷︸

=−∂u/∂y

= − ∂
∂y

∂u
∂x︸︷︷︸

=∂v/∂y

= −∂
2v

∂y2 → ∆v = 0 (Y.629)

from which we conclude that ∆u + i∆v = ∆(u + iv) = ∆g = 0. In addition, as complex
conjugation is a linear operation, it is valid that ∆g∗ = 0.

Clearly, the solution to the field equation ∆Φ = 0 in electrostatics in vacuum or
to the field equations ∆Ai = 0 for all three components Ai of the vector potential
in Coulomb-gauge in magnetostatics, again in vacuum, could be represented by
a holomorphic function. One needs to keep in mind, though, that g is a complex
number with two components, whereas the potentials are real numbers. Hence the
question arises, what the other component Ψ of g = Φ + iΨ could represent!

If one were to identify Φ with the real value of g, it would need to represent the
electric field Ei = −∂Φ/∂xi as the gradient of Φ. It is possible to re-express the electric
field as a complex number Ex + iEy = −∂Φ with the Wirtinger derivative instead of
Ei = −∂iΦ in Cartesian coordinates. Additionally, there seems to be an auxiliary field
Ψ , called the stream function, to be identified as Ψ = v.
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The stream function is always perpendicular to lines of constant potential, which
can be seen by this argument: The gradients ∇u and ∇v are clearly perpendicular,

∇u · ∇v =
∂u
∂x

∂v
∂x︸︷︷︸

=−∂u/∂y

+
∂u
∂y

∂v
∂y︸︷︷︸

=+∂u/∂x

= 0 (Y.630)

by substituting the Cauchy-Riemann differential equations, and so would be the
functions Φ and Ψ .

There is a neat shortcut to this relation, by using the tools of k Wirtinger-calculus:
Motivated by the fact that the coordinates x and y are combined into a complex
number z = x + iy (and its conjugate z∗ = x − iy), one can define the composite
derivatives:

∂ ≡ ∂
∂z

=
∂
∂x

+ i
∂
∂y

as well as ∂∗ ≡ ∂
∂z∗

=
∂
∂x
− i

∂
∂y

. (Y.631)

Combination of the two derivatives leads directly to the Laplace operator, as both
∂∂∗g as well as ∂∗∂g are equal to ∆g!

There is a neat application of conformal applications to potentials in vacuum in
two dimensions. Commonly, potential problems are easy to solve in highly symmetric
charge distributions, which makes the convolution with the Green-function relatively
simple: In particular, a convolution of spherical symmetric charge distributions
with spherically symmetric Green-functions give rise to the a spherically symmetric
potential. To make this point more obvious, let’s consider a circularly symmetric
charge distribution in two dimensions. The potential is necessarily Φ ∝ ln r with the
electric field Er = 1/r and Eϕ = 0. A more complicated charge distribution would
generate the potential Φ =

∫
d2r ′ ρ(r) ln (|r − r′ |), with a potentially complicated

d2r ′-integration.
The problem might be alleviated if a mapping of the old coordinates x, y to new

coordinates u, v can be found which would not have an influence on the differential
structure of the field equation.

This can in fact be achieved in two dimensions, where the coordinates can be com-
bined into a complex number z = x + iy, for vacuum solutions that obey the Laplace
equation ∆Φ = 0. The Laplace-operator ∆ transforms under coordinate change in a
peculiar way and acquires just an overall strictly positive, position-dependent pref-
actor, which is called a conformal factor α2. The vacuum field equation transforms
as ∆Φ → α∆Φ = 0 but clearly, the conformal factor α is irrelevant and drops out
for vacuum solutions. Therefore, any vacuum solution in one set of coordinates is
automatically a valid vacuum solution in the transformed coordinates. The necessary
prerequisite is an analytical coordinate change.

To make things specific, let’s consider the mapping

G(u, v)→ g(x, y) = G(u(x, y), v(x, y)) (Y.632)

and derive the Laplace-equation for g in the coordinates x, y in terms of the Laplace-
equation for G in terms of u, v. For the first derivatives one obtains:

∂g

∂x
=

∂u
∂x

∂G
∂u

+
∂v
∂x

∂G
∂v

as well as
∂g

∂y
=

∂u
∂y

∂G
∂u

+
∂v
∂y

∂G
∂v

. (Y.633)
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Continuing with the second derivatives one arrives at

∂2g

∂2x
=

(
∂u
∂x

)2
∂2G
∂u2 +

∂u
∂x

∂v
∂x

∂2G
∂u∂v

+
∂2u

∂x2
∂G
∂u

+
(
∂v
∂x

)2
∂2G
∂v2 +

∂v
∂x

∂u
∂x

∂2G
∂v∂u

+
∂2v

∂x2
∂G
∂u

(Y.634)

together with

∂2g

∂2y
=

(
∂u
∂y

)2
∂2G
∂u2 +

∂u
∂y

∂v
∂y

∂2G
∂u∂v

+
∂2u

∂x2
∂G
∂u

+
(
∂v
∂y

)2
∂2G
∂v2 +

∂v
∂y

∂u
∂y

∂2G
∂v∂u

+
∂2v

∂y2
∂G
∂u

(Y.635)

These two expressions can be combined into

∂2g

∂x2 +
∂2g

∂y2 = . . . =

(∂u∂x
)2

+
(
∂u
∂y

)2 (∂2G
∂u2 +

∂2G
∂v2

)
(Y.636)

by making use of the interchangeability of the second partial derivatives and the
Cauchy-Riemann differential equations. The prefactor in square brackets is the posi-
tive conformal factor. In a actual application the problem of performing the convolu-
tion of the Green-function with the charge distribution is then reduced to finding an
analytical mapping between the simple and the complicated geometry.
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Z.1 Vectors and linear forms

Many quantities in physics have components, or internal degrees of freedom. This
is particularly true in modern physics, with e.g. the realisation that the energy den-
sity ρc2 = T t

t is part of the energy momentum-tensor T ν
µ as a larger entity. The

geometric picture is that there is a (vector)-space for all vectors υ = υiei =
∑
i
υiei

which are decomposed into their components υi with a basis ei , with the Einstein
summation convention in place. Velocities υ, accelerations a, the magnetic field B and
the dielectric displacement D are examples of vectors. There is an associated (vector)
space of linear forms p = piei =

∑
i
piei which has identical geometric properties and

is spanned by a basis ei . Examples of linear forms are, for instance, the canonical
momentum p, the gradient of a potential ∂Φ, the electric field E or the magnetic
induction H.

A very useful notation used throughout theoretical physics is the so-called abstract
index notation, where one works entirely with the components of vectors and linear
forms, with an implicitly assumed basis. By convention, one denotes vectors with a
superscript, contravariant index υi and linear forms with a subscript, covariant index
pj .

Canonically, one defines an orthogonality relation eiej = δij between the basis
vector of the vector space and the basis linear forms, such that the inner product
between a vector υ and a linear form p is given by

p · υ = pie
i υjej = piυ

j eiej = piυ
jδij = piυ

i . (Z.637)

According to the Einstein sum convention (also called a contraction), an expression
like piυ

i is to be interpreted as
∑
i
piυ

i , with an automatic implied summation over

all index pairs which are appear as super- and subscripts.
A metric γij is used for converting a vector υj to its associated linear form υi =

γijυ
j , while the inverse metric γij does the opposite: It translates a linear form pj to

its associated vector pi = γijpj . Of course, making a linear form out of a vector and
then translating it back to being a vector again can not change anything,

γij
(
γjkυ

k
)

= γijγjk︸︷︷︸
=δik

υk = υi (Z.638)

and in this sense the metric and its inverse are related to each other:

γijγjk = δik . (Z.639)

Instead of computing piυ
i directly as the contraction between a linear form pi and

the vector υi , one can use the metric to generate the linear form pi from a vector,
pi = γijp

j to arrive at
piυ

i = γijp
iυi = γijpiυj (Z.640)
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Alternatively, one can generate the vector υi = γijυj from the associated linear
form υj using the inverse metric γij . With this argument, one can say that the metric
defines a scalar product between vectors, while the inverse metric defines a scalar
product between linear forms. It is well worth it to differentiate carefully between the
metric γij and the Kronecker symbol δij , even in the case of Euclidean vector spaces.
The Kronecker symbol renames indices of vectors or linear forms, but never changes
them:

υi = δijυ
j and pi = δ

j
ipj (Z.641)

Z.2 Coordinates and differentials

Coordinates are usually written as vectorial tuples xi (in themselves, they are not
vectors!), and this choice is purely conventional. The coordinates have the property
that every entry of xi can change independently from the others, so

∂xi

∂xj
= δij (Z.642)

because xi only changes in the direction of xi at unit speed, whereas xi remains
constant if xj is changed. This is encapsulated by the Kronecker symbol δij . But in

this sense, derivatives with respect to the coordinates ∂i = ∂/∂xi are linear forms,

∂xi

∂xj
=

∂

∂xj
xi = ∂jx

i = δij (Z.643)

and the contraction

∂ix
i =

∂xi

∂xi
= δii = n (Z.644)

is sensibly defined and returns the dimensionality n. Then, the divergence ∂iυ
i of

a vector υi is defined in a straightforward way, and the divergence of a linear form
would be γij∂ipj = ∂iγ

ijpj = ∂ip
i with the inverse metric.

This point can be illustrated better by considering a curve xi(λ) which runs
through a scalar field Φ: The derivative of Φ along the curve as λ evolves, is

dΦ
dλ

=
dxi

dλ
∂Φ

∂xi
= ẋi∂iΦ (Z.645)

by virtue of the chain rule. We interpret this expression as the projection, or scalar
product between the gradient ∂iΦ of the potential as a linear form with the velocity
ẋi = υi = dxi(λ)/dλ as a vector.

Let’s try out a change of coordinates with an invertible and differentiable replace-
ment xi(ya): The chain rule suggests that

dΦ
dλ

=
dxi

dλ
∂Φ

∂xi
=

(
dya

dλ
∂xi

∂ya

) (
∂yb

∂xi
∂Φ

∂yb

)
=

dya

dλ
∂xi

∂ya
∂yb

∂xi︸    ︷︷    ︸
=δba

∂Φ

∂yb
=

dya

dλ
∂Φ
∂ya

= ẏa∂aΦ

(Z.646)

148



z.2. coordinates and differentials

such that the rate dΦ/dλ is unchanged, no matter which coordinates have been
used to compute the velocity and the gradient. This is achieved because the Jacobian
∂xi /∂ya used to transform the vectorial velocity and ∂yb/∂xi for the transformation
of the potential gradient as a linear form are inverses to each other:

∂xi

∂ya
∂yb

∂xi
=

∂yb

∂ya
= δba (Z.647)

by recognising that the expression originates from ∂yb/∂ya from an intermediate
differentiation with respect to xi as dictated by the chain rule. With the latter relation
it becomes clear that even though the coordinates xi are not (yet) a vector, the velocity
υi = dxi /dλ as the derivative is, and the gradient ∂Φ/∂xi is truly a linear form: Both
have the correct transformation properties. Vectors such as the velocity transforms
according to υi → Jiaυ

a = ∂xi /∂ya υa, and linear forms inversely, pi → Jai pa =
∂ya/∂xi pa. Indeed, in differential geometry all quantities (scalars, vectors, linear
forms, tensors of various rank and valence) are defined through their transformation
behaviour.

The Kronecker symbol arises as the fundamental property of the coordinates ya

then makes sure that only equal indices are considered in multiplying ẏaδba∂bΦ =
ẏa∂aΦ. This neat cancellation would not automatically take place in scalar products
between two vectors: Defining the Jacobian Jia = ∂xi /∂ya suggests the transformation
υi → Jiaυ

a, and the scalar product γijυiυj can only be invariant if the metric trans-
forms inversely (defining an orthogonal transform), γij → J a

i J b
j γab with the inverse

Jacobian J a
i :

Jia J b
i =

∂xi

∂ya
∂yb

∂xi
= δba (Z.648)

such that scalar products are in fact invariant:

J a
i J b

j γab Jicυ
c Jjdυ

d = J a
i Jic J b

j Jjd γabυ
cυd = δacδ

b
dγabυ

cυd = γab δ
a
cυ

c δbdυ
d = γabυ

aυb.
(Z.649)

The same argument applies to the invariance of the scalar product γijpipj , only that
the Jacobians now transforms the inverse metric γij and the inverse Jacobians the
linear forms pi :

Jia Jjbγ
abJ c

i pcJ d
j pd = Jia J c

i Jjb J d
j γabpcpd = δcaδ

d
bγ

abpcpd = γab δcapc δ
d
bpd = γabpapb

(Z.650)

The transformation properties of the metric and its inverse show that they are in fact
tensors of rank 2.
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Z.3 Lagrange- and Hamilton-formalism in components

If one chooses the coordinates to be summarised in a vectorial tuple xi , the velocity
ẋi = dxi /dt and the acceleration ẍi = d2xi /dt2 are vectors as well. The construction
of a scalar quantity like the Lagrange function requires the metric γij for the kinetic
term,

L(xi , ẋi) =
m
2
γij ẋ

i ẋj − Φ(xi) (Z.651)

as well as the potential Φ. Variation with the Euler-Lagrange equation

d
dt

∂L
∂ẋa

=
∂L
∂xa

(Z.652)

leads to

∂L
∂ẋa

=
m
2
γij

( ∂ẋi

∂ẋa︸︷︷︸
=δia

ẋj + ẋi
∂ẋj

∂ẋa︸︷︷︸
=δja

)
=

m
2

(
γaj ẋ

j + γiaẋ
i
)

= mγaj ẋ
j (Z.653)

because the metric is symmetric, γia = γai , and any internal index in an expression
can be renamed. Together with

∂L
∂xa

= − ∂Φ
∂xa

(Z.654)

one arrives at the Newtonian equation of motion

mγaj ẍ
j = − ∂Φ

∂xa
(Z.655)

which can be brought into a more familiar shape by multiplying both sides with the
inverse metric γia:

mγiaγaj ẍ
j = mδij ẍ

j = mẍi = −γia ∂Φ
∂xa

= −γia∂aΦ → mẍi = −γia∂aΦ (Z.656)

with γiaγaj = δij such that the inverse metric relates the gradient of the potential,
itself a linear form, to the acceleration as a vector.

The canonical momentum,

pi =
∂L
∂ẋi

(Z.657)

is, by this reasoning, a linear form (and a function pj(ẋi) of the vectorial velocity
ẋi , which can be inverted to yield ẋi(pj ) for convex Lagrange-functions), so that the
Legendre transform

H = pi ẋ
i(pj ) − L(xi , ẋi(pj )) (Z.658)

is sensibly defined and yields a scalar Hamilton function. The contraction of the
vectorial velocity ẋi with the linear form pi appears naturally. And it provides an
argument, why the canonical momentum pi = ∂L/∂ẋi is more than just the kinetic
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momentum mẋi : On the contrary, with the definition of the canonical momentum pi
one obtains for a standard form of the Lagrange-function

pi = mγij ẋ
i and consequently, ṗi = −∂iΦ (Z.659)

from the Euler-Lagrange equation, showing how the metric is necessary, in one way
or another, to mediate between velocity and acceleration as vectorial quantities on
one side and momentum and potential gradient as linear forms on the other, even in
the case of a standard kinetic term in the Lagrange-function. Hamilton’s equations of
motion

ṗi = −∂H
∂xi

and ẋi = +
∂H
∂pi

(Z.660)

remain consistent as the derivative with respect to a vector is a linear form, while
the derivative with respect to a linear form returns again a vector: ∂pi /∂pj = δ

j
i for

pi as a phase space coordinate. Please note how ṗi as a linear form emerges from
−∂H/∂xi = −∂Φ/∂xi without a metric in contrast to equation (Z.655), in a consistent
variant of Newton’s second law: ṗi = −∂iΦ.

Z.4 Duals

The cross product x × y between two vectors is defined in terms of their basis decom-
position as

x × y = xjej × ykek = xjyk ej × ek = xjyk ϵijke
i = ϵijkx

jyk︸   ︷︷   ︸
=(x×y)i

ei , (Z.661)

with the Levi-Civita symbol as an expression of the right-handed orientation of the
(orthogonal) basis system. Therefore, cross product ϵijkxjyk is naturally a linear form,
but is it possible to construct a naturally antisymmetric quantity out of the vectors
xj and yk as a vectorial object? Clearly, the antisymmetric rank-2 tensor xjyk − xkyj
would be such a thing, and would be, up to a factor of two, equal to the cross product:

ϵijk

(
xjyk − xkyj

)
= ϵijkx

jyk − ϵikjxjyk =
(
ϵijk − ϵikj

)
xjyk = 2ϵijkx

jyk (Z.662)

where in the first step the indices are interchanged j ↔ k, and then the property ϵijk =
−ϵikj is used. (xjyk − xkyj )/2 is called the dual, and the usability hinges heavily on the
fact that the contraction of two antisymmetric objects is nonzero. The dual xjyk − xkyj
is a vectorial (antisymmetric) tensor that contains the same information as the linear
form resulting from ϵijkx

jyk . Duals can be defined for any antisymmetric tensor, for
instance G̃αβ = 1

2 ϵαβµνGµν. They convert all Maxwell-equations into divergences, as

ϵijk∂jEk = ∂j

(
ϵijkEk

)
= ∂jE

ij = −∂ctB
i , (Z.663)

as exemplified by the induction equation.
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Z.5 Gauß- and Stokes-theorems

The Gauß-theorem relates the volume integral over the divergence of a vector field to
the integral of that particular vector field over the surface bounding the volume,∫

V

dV ∂iD
i =

∫
∂V

dSi Di and
∫
V

dV ∂iB
i =

∫
∂V

dSi Bi , (Z.664)

where in electrodynamics the relation gets applied to the two vector fields Di and
Bi . The surface element dSi is a linear form, because it originates from the cross
product of two vectors. Similarly, the Stokes-theorem relates the surface integral of
the rotation of a field to the line integral along the boundary,∫

S

dSi ϵ
ijk∂jEk =

∫
∂S

dr i Ei and
∫
S

dSi ϵ
ijk∂jHk =

∫
∂S

dr i Hi , (Z.665)

where in electrodynamics this becomes relevant for the two linear forms Ei and Hi .
It is a bit remarkable that the assignment of vectors and linear forms to the fields
in Maxwell’s equations only needs as geometric objects the differential ∂i and the
associated surface element dSi as linear forms, and never their possible vectorial
counterparts. The Gauß-theorem gets only ever applied to the vectors Di and Bi ,
whereas the application of the Stokes-theorem is restricted to the linear forms Ei

and Hi . This, in fact, is a hint that electrodynamics would work even on non-metric
spacetimes, because the metric (and its inverse) would be a mean to convert between
the two types of fields.

Z.6 Summary of co- and contravariant quantities in electrodynamics

0. rank 0: scalars and pseudoscalars

Φ electric potential
θ axion field amplitude
ρ electric charge density
dV volume element

1. rank 1: vectors and linear forms
xi Euclidean coordinates ∂i coordinate differential
ẋi velocity pi momentum
ẍi acceleration ∂iΦ potential gradient
Di dielectric displacement Ei electric field
Bi magnetic field Hi magnetic induction

Ai vector potential
Pi Poynting vector Yi Poynting linear form
ȷi electric current density dSi surface element

xµ Minkowski coordinates ∂µ coordinate differential
uµ 4-velocity pµ 4-momentum

Aµ 4-potential
ȷµ 4-current density
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2. rank 2: co-, contravariant and mixed tensors

γij inverse Euclidean metric γij Euclidean metric
ϵij permissivity tensor ϵij inverse permissivity
µij permeability tensor µij inverse permeability
σij conductivity

ηµν inverse Minkowski metric ηµν Minkowski metric
Gµν excitation Fµν Faraday tensor
F̃µν Faraday dual G̃µν excitation dual

δ
j
i , δ

µ
ν Kronecker-symbol

T j
i Maxwell stress tensor

T ν
µ energy-momentum tensor
Λi

j endomorphism for vectors
υi → Λi

jυ
j

Λ
j
i endomorphisms for linear

forms pi → Λ
j
i pj
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to Jörg Jäckel, for discussions in particular in relation to axions, and to Francesco
Pace. And of course I would like to thank my students Zichu Li (violin), Vivienne
Leidel (clarinet), Britta Zieser (human voice, soprano), Sebastian Leyer (trumpet,
tuba, trombone), Luca Prechtel (flute, English horn, oboe, saxophone, bassoon, pic-
colo flute), Max Anton Gramberg (guitar), Jan Brauch (organ), Kenneth von Bünau
(cello), Jan Schneider (banjo, mandolin), Mia Sittinger (recorder), Frederik Carstens
(harp), Niklas Gronwald (French horn), Noah Kriesch (viola) for providing samples
of their instruments for computing the Fourier-transform. The sampling and Fourier-
transform was done with Ì PhyPhox. I’m indebted to Justus Zimmermann, whose
careful reading made him spot many mistakes.

There is a large number of excellent textbooks on electrodynamics and relativistic
field theory, and my script is not supposed to be a replacement for them. In no
particular order I would like to mention:

• J.D. Jackson: Classical Electrodynamics, Wiley, 1998

• W. Greiner: Classical Electrodynamics, Springer, 1992

• F. Scheck: Classical Field Theory, Springer, 2012

• J.D. Bjorken, S.D. Drell: Relativistic Quantum Fields, McGraw-Hill, 1965

Concerning notation in this script, the index notation and the distinction between
vectors and linear forms, my readers deserve an k apology, or at least a justification:
My feeling was that students take some time to transition to the index notation which
is widely used in field theory and relativity, and one might as well start that transition
early in the curriculum. I hope that nowhere there was an unexplained or underived
vector identity, which I found dissatisfying as a student and which I hope to remedy
in my script. To my view, the subtleties related to vectors and linear forms, and the
properties of media matter a lot, for instance the differences between energy and
momentum transport, and it was my intention to convey this in my lecture.

I would like to acknowledge the lecture LATEX-class by Ì V.H. Belvadi. The
spacetime-diagrams are adapted from the examples on Ì TikZ.net and I am very
grateful to I. Neutelings, who made this possible. All § python scripts for the genera-
tion of figures are available on request, with no implied support.

155

https://phyphox.org
https://en.wikipedia.org/wiki/A_Mathematician%27s_Apology
https://vhbelvadi.com/latex-lecture-notes-class/
https://tikz.net
mailto:bjoern.malte.schaefer@gmail.com?subject=edynamics python scripts




index

1905, 60

Ampère’s law, 4
apology, 155
axion field, 103

Baker-Hausdorff-Campbell formula,
68

Bianchi-identity, 85
bianisotropic media, 5
binomial formula, 67
birefringence, 98
bra-ket notation, 116

calcite, 98
Cauchy-Schwarz inequality, 46
charge conjugation C, 7
Cholesky-decomposition, 12
conformal symmetry, 107
conic sections, 54
constitutive relations, 4
continuity equation, 1
continuum theory, 1
convolution, 11

differential forms, 108
Dirac’s δD-function, 12
Dirichlet-boundary conditions, 22
dispersion-free, 39
duality transform, 6

electric charge, 1
electrostatic potential, 11
elementary charge, 1
elliptical differential equations, 55
energy momentum-tensor, 47
energy needed to displace a charge, 14
equipotential surfaces, 12
Euclidean metric, 4
Euler’s constant, 125

Faraday tensor, 84
Faraday-law, 3
Fermat’s principle, 97
Finsler geometry, 109
Fourier-transform, 18
Fourier-transform algorithms, 19

Gauß-system of units, 2
Gauß-theorem, 1

gauge condition, 32
gauge transforms, 32
geometric optics, 97
gravitational constant, 106
Green’s theorem, 139
Green-function, 11

harmonic series, 129
Helmholtz-equation, 56
Hesse normal form, 41
Higgs-mechanism, 105
horizon, 111
hyperbolic, 55
hyperbolic tangent, 68

Jefimenko’s equations, 53

Kirchhoff, 101

Lagrangian optics, 97
Laplace equation, 128
Laplace-operator, 12
Lenz-rule, 3
Lie-derivative, 102
light-cone coordinates, 55
Liénard-Wiechert potentials, 53
Lorentz, 36
Lorentz-force, 1
Lorenz, 36
Lorenz-gauge, 36

magnetic charges, 3, 7
massive gravity, 105
Maxwell, 2
Maxwell stress tensor, 45
Maxwell-equations, 2
mesh and knot rules, 101
mirror charges, 22
momentum, 44

Neumann-boundary conditions, 22

Ohm’s law, 41

parity inversion P , 7
photon mass, 105
Poynting-vector, 43
principle of virtual work, 95
Proca-term, 104

radiation pressure, 47
refractive index, 41

157



INDEX

relativistic mass, 112
residue theorem, 50
retarded Green-function, 53

scale-free, 106
Schrödinger equation, 54
Schwarz’s theorem, 6
solid angle, 20
sources of the electric field, 2
spectral line profile, 128
synthesiser, 129

Tachyons, 112

tardyons, 112
Taylor-expansion, 60
telegraph equation, 41
teleportation, 6
test particles, 1
time reversal T , 7

variational principles, 91

Wirtinger-calculus, 145

Yukawa-potential, 106

158



27,00 EUR (DE)
27,80 EUR (AT)

Electrodynamics is a cornerstone of every modern education in 
theoretical physics, as it introduces a geometric picture of the laws 
of Nature, and is permeated by relativity. Starting from the funda-
mental phenomenology of Maxwell’s equations, the script treats 
the construction of Green-functions for solving potential problems, 
before moving to the dynamics of the electromagnetic field and 
the Poynting-theorems. Retardation bridges to the notion of light 
cones and the emergence of relativity, leading to a covariant formu-
lation of Maxwell’s equations. Gauge transformations are treated in 
detail, as well as the behaviour of Maxwell’s equation under discrete 
symmetries.

About the Author
Björn Malte Schäfer works at Heidelberg University on problems in 
modern cosmology, relativity, statistics, and on theoretical physics  
in general.

ISBN 978-3-96822-170-0

9 783968 221700


	Front cover
	Front matter
	Contents
	A Maxwell-equations
	A.1 Fields and test charges
	A.2 Physical properties of the electric charge
	A.3 Maxwell-equations
	A.3.1 Gauß-law for electric fields
	A.3.2 Non-existence of magnetic charges
	A.3.4 Ampère-law

	A.4 Linear media for electrodynamics
	A.5 Conservation of electric charge
	A.6 Electromagnetic duality
	A.7 Maxwell-equations under discrete symmetries
	A.8 Electrostatic potential
	A.9 Potential energy of a static charge distribution
	A.10 Boundary conditions for fields on surfaces

	B Potential theory
	B.1 Potential theory
	B.2 Systematic construction of Green-functions
	B.3 Green-theorems
	B.4 Spherical multipole expansion
	B.5 Cartesian multipole expansion
	B.6 Potential energy of a charge distribution in a potential
	B.7 Magnetic vector potential and gauging

	C Dynamics of the electromagnetic field
	C.1 Potentials and wave equations
	C.2 Solving the wave equation for potentials
	C.3 Wave equation for fields
	C.4 Electromagnetic waves in matter and the telegraph equation
	C.5 Energy transport and the Poynting vector
	C.6 Momentum transport and the Poynting linear form
	C.7 Time-dependent Green-functions and retardation
	C.8 Li´enard-Wiechert potentials
	C.9 Anatomy of partial differential equations
	C.9.1 Hyperbolic, parabolic and elliptical differential equations
	C.9.2 Wave-equation and its reductions


	D special relativity
	D.1 Lorentz-transforms
	D.2 Lorentz-invariants
	D.3 Rapidity
	D.4 Spacetime symmetries
	D.5 Lorentz-group as a Lie-group
	D.6 Adding velocities
	D.7 Relativistic effects
	D.7.1 Constancy of the speed of light
	D.7.2 Relativity of simultaneity
	D.7.3 Time dilation
	D.7.4 Length contraction
	D.7.5 Causal ordering inside the light cone

	D.8 Proper time
	D.9 Relativistic motion
	D.10 Relativistic dispersion relations

	E Covariant electrodynamics
	E.1 Covariant formulation of electrodynamics
	E.2 Maxwell’s equations
	E.2.1 Inhomogeneous Maxwell equations
	E.2.2 Homogeneous Maxwell equations

	E.3 Relativistic potentials and gauging
	E.4 Dual field tensors and the Bianchi-identity
	E.5 Covariant electrodynamics
	E.6 Lagrange-density for the dynamics of fields
	E.6.1 Scalar field on a Euclidean background
	E.6.2 Scalar field on a Lorentz background
	E.6.3 Maxwell field on a Lorentz background
	E.6.4 Maxwell field in matter

	E.7 Optics
	E.8 Gauge-invariance and charge conservation
	E.9 Conservation of energy and momentum
	E.9.1 Scalar field on a Lorentz background
	E.9.2 Maxwell field on a Lorentz background

	E.10 Maxwell’s equations under discrete symmetries, revisited
	E.11 Links to particle physics
	E.11.1 Axions and pseudoscalar particles
	E.11.2 Massive fields, Proca-terms and the Higgs-mechanism
	E.11.3 Modifications of the Coulomb-potential

	E.12 Conformal invariance of the Maxwell-theory
	E.13 Gauge-invariance as a geometric concept
	E.14 Motion of particles through spacetime
	E.14.1 Fermat’s or Hamilton’s principle?
	E.14.2 Relativistic horizons
	E.14.3 Tachyons and tardyons


	X Fourier-transforms and orthonormal systems
	X.1 Scalar products and orthogonality
	X.2 Fourier-transforms
	X.3 Convolutions with Fourier-transforms
	X.4 Green-functions with Fourier-transforms
	X.5 Spectra of musical instruments
	X.6 Spherical harmonics

	Y Complex calculus
	Y.1 Aspects of complex differentiability
	Y.2 Cauchy-Riemann differential equations
	Y.3 Complex line and loop integrals
	Y.4 Residue theorem and holomorphic functions
	Y.5 Laurent-series
	Y.6 Residue theorem
	Y.7 Conformal mappings

	Z Index notation
	Z.1 Vectors and linear forms
	Z.2 Coordinates and differentials
	Z.3 Lagrange- and Hamilton-formalism in components
	Z.4 Duals
	Z.5 Gauß- and Stokes-theorems
	Z.6 Summary of co- and contravariant quantities in electrodynamics

	Acknowledgements
	Index



